CN113083257A - 多重互锁功能有机聚合物材料的制备方法及应用 - Google Patents

多重互锁功能有机聚合物材料的制备方法及应用 Download PDF

Info

Publication number
CN113083257A
CN113083257A CN202110416181.6A CN202110416181A CN113083257A CN 113083257 A CN113083257 A CN 113083257A CN 202110416181 A CN202110416181 A CN 202110416181A CN 113083257 A CN113083257 A CN 113083257A
Authority
CN
China
Prior art keywords
paf
quaternary ammonium
pfoa
ndmb
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110416181.6A
Other languages
English (en)
Inventor
李柏延
刘雄利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202110416181.6A priority Critical patent/CN113083257A/zh
Publication of CN113083257A publication Critical patent/CN113083257A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开多重互锁功能有机聚合物材料的制备方法及应用,属于功能材料技术领域。是将PAF‑1‑CH2Cl、季铵盐化试剂、有机溶剂混合,进行季铵盐化反应,得到季铵盐化改性的多孔芳香骨架材料PAF‑1‑R。本发明制备所得材料对全氟辛酸(PFOA)具有非常高的吸附容量以及快速的吸附速率,同时对天然有机物兼具优良的抗干扰能力,并实现多次循环利用。该方法制备的吸附剂1g能够净化11.77L 500ppb的PFOA废水(含20ppm的腐殖酸),达到美国国家环境保护局所规定的饮用水标准(PFOA+PFOS<70ppt)。因此,该方法制备的吸附材料具有极其优异的PFAS吸附性能和工业化应用前景。

Description

多重互锁功能有机聚合物材料的制备方法及应用
技术领域
本发明属于功能材料技术领域,具体涉及多重互锁功能有机聚合物材料在全氟/多氟化合物吸附的应用
背景技术
全氟/多氟化合物(PFASs)是一类以部分或完全氟化的烷基链和末端官能团(如羧酸盐、磺酸盐、磺酰胺、膦酸盐和醇)为特征的脂肪族化合物。其中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)是环境中存在的最为典型的两种PFASs,也是多种PFASs转化的最终产物。PFASs在环境中难以被光解、水解或者生物降解,因此具有高持久性、生物累积性和长距离迁移等特征。在全球范围内地表水、地下水、大气、污泥、动植物以及人体内发现PFASs的存在。美国环境保护局(EPA)规定,饮用水中全氟辛酸(PFOA)和全氟辛酸(PFOS)的复合浓度须小为70ng L-1。因此,开发先进的PFASs去除剂具有极为重要的现实意义。
多孔有机聚合物(porous organic polymers,POPs)具有比表面大、孔径可调、结构多样化、水/化学稳定性好等优点,在气体吸附分离、催化、质子传导、水处理等领域受到广泛关注。因而,通过在多孔有机聚合物骨架中引入具有多重互锁功能的静电吸附和疏水协同吸附位点,实现对全氟/多氟化合物的快速选择性分离,解决现有吸附材料如活性炭、分子印迹聚合物、生物吸附剂、金属有机框架等材料的吸附容量低、平衡时间长、亲合力弱、水/化学稳定性差、天然有机物(NOM)选择性低等缺点。
发明内容
针对现有技术的不足,本发明目的在于提供一种多重互锁功能有机聚合物材料制备及其在全氟/多氟化合物的吸附应用。本发明选用的多孔有机聚合物为PAF-1。本发明提供的制备方法,工艺简单;且制备的改性多孔有机聚合物对全氟辛酸的吸附速率和饱和吸附量达到目前文献报道的最高值,此外所制备的改性多孔有机聚合物对全氟辛酸的吸附选择性高。
为实现上述发明目的,本发明提供以下技术方案:
本发明提供多重互锁功能有机聚合物材料的制备方法,同时提供了所得有机聚合物材料的应用。
本发明所用的多孔有机聚合物为PAF-1,其制备方法参照文献Ben,T.etal.Angew.Chem.Int.Ed.2009,48,9457–9460。
所用的氯甲基化改性PAF-1-CH2Cl,其制备方法参照文献Li,B.etal.Nat.Commun.2014,5,5537。
本发明采用的技术方案是:一种多重互锁功能有机聚合物材料的制备方法,
将所述PAF-1-CH2Cl、季铵盐化试剂、有机溶剂混合,进行季铵盐化反应,得到季铵盐化多孔芳香骨架材料(PAF-1-R)。本发明以常用有机配体为原料,所合成的有机聚合物材料包括但不限于共轭微孔聚合物(Conjugated Microporous Polymers,CMPs)、超交联聚合物(Hyper-Crosslinked Polymers,HCPs)、自具微孔聚合物(Polymer of IntrinsicMicroporosity,PIMs)、共价有机框架(Covalent Organic Frameworks,COFs);所用的反应包括但不限于氯甲基化、季铵盐化中能对有机聚合物进行季铵盐及疏水改性功能修饰反应。
所述季铵盐化试剂包括但不限于三甲胺、N,N-二甲基丙胺、N,N-二甲基丁胺、N,N-二甲基己胺等、四甲基乙二胺、四甲基丙二胺、四甲基己二胺中的任一种能与PAF-1-CH2Cl发生季铵盐改性的试剂。
所述季铵盐反应的有机溶剂包括但不限于甲醇、乙醇、乙腈、N,N-二甲基甲酰胺(DMF)中的任一种能溶解季铵盐试剂的溶剂。
所述PAF-1-CH2Cl、季铵盐试剂和有机溶剂的质量比为1:(0.1~300):(20~1000)。
所述季铵盐反应温度为40~120℃,时间为12~96h。
本发明还提供了所得季铵盐改性多孔芳香骨架材料做为全氟辛酸(PFOA)选择性吸附分离剂的应用。
本发明提供的季铵盐改性多孔芳香骨架材料的制备方法,包括以下步骤:在保护气氛下,将有机单体、镍催化剂、催化剂稳定剂和无水溶剂混合,进行Yamamoto反应,得到多孔芳香骨架材料;所述有机单体包括四溴四苯甲烷或1,3,5-三溴苯等常用有机配体;所述多孔芳香骨架材料的比表面积为2000~5600m2g-1;将所述多孔芳香骨架材料、氯甲基化试剂和溶剂混合,进行氯甲基化反应,得到氯甲基化多孔芳香骨架材料;将所述氯甲基化多孔芳香骨架材料、季铵盐前驱体和有机溶剂混合,进行季铵盐化反应,得到季铵盐/疏水链改性的多孔芳香骨架材料。本发明首先制备得到多孔芳香骨架材料,制备的多孔芳香骨架材料比表面积大,且季铵盐改性构建的多孔芳香聚合物既有季铵盐又有相邻疏水链,可以作为多重互锁位点,通过静电和疏水相互作用与PFAS中的负电荷和疏水链结合。如本发明实施例结果所示,本发明提供的季铵盐疏水链改性多孔芳香骨架材料(PAF-1-NDMB)对PFOA的吸附容量高达2000mg g-1,对PFOA的吸附速率高达24000g mg-1h-1,是目前文献报道的最高值。
与现有技术相比,本发明的有益效果是:
本发明相比于传统吸附剂,具有吸附速率快,饱和吸附量高,是目前文献报道的最高值。水相突破实验结果表明,1g本发明所制备吸附剂可将11.77L 500ppb的PFOA溶液(含20mg L-1腐殖酸)纯化至54ppt,达到美国环保局建议的饮用水标准。因此,该吸附剂的制备方法对推进PFOA吸附材料工业化应用具有重要意义。
附图说明
图1是“多重互锁”策略构建去除PFOA的高效吸附剂示意图(HA代表腐殖酸);
图2是PFOA与PAF-1-NDMB之间静电位点和疏水位点作用示意图;
图3是PAF-1-TMA、PAF-1-SE、PAF-1-NDMB、PAF-1-NDMH的合成示意图:反应条件:(a)多聚甲醛、AcOH、H3PO4、HCl、90℃;(b)TMA(三甲胺)、NDMB(N,N-二甲基丁胺)、NDMH(N,N-二甲基己胺)、SE(乙醇钠)、EtOH、90℃;
图4是PAF-1和功能化PAF-1的光谱分析图谱。(a)PAF-1、PAF-1-CH2Cl和PAF-1-NDMB的固态13C NMR;(b)PAF-1、PAF-1-CH2Cl和PAF-1-NDMB的FT-IR光谱分析图谱;
图5是(a)PAF-NDMB、DFB-CDP和PAC对PFOA的吸附动力学;(b)PFOA平衡吸附容量与PFOA平衡浓度的关系;(c)PAF-1-NDMB与PAC等其他多孔材料PFOA饱和吸附量和k2值的比较;FCX4-P46;SWCNT;MIL-101(Cr);UIO-67;GAC;DFB-CDP;
图6是(a)PAF-TMA、PAF-1-SE和PAF-1-NDMH的PFOA吸附动力学;(b)PFOA平衡吸附容量与PFOA平衡浓度的关系;(c)PFOA@PAF-1-NDMB的EDS图片;(d)PFOA,PAF-1-NDMB的FTIR谱,PFOA的PFOA@PAF-1-NDMB;(e)PFOA和PFOA@PAF-1-NDMB的19F NMR图谱;(f)PFOA,PAF-1-NDMB,PFOA@PAF-1-NDMB的13C NMR图谱;
图7是PAF-1-NDMB和DFB-CDP在PFOA/HA水溶液中的突破实验;
图8是(a)PAF-1、PAF-1-CH2Cl、PAF-1-TMA、PAF-1-NDMB和PAF-1-NDMH的X射线光电子能谱(XPS);(b)PAF-1-TMA中C1的XPS谱图;(c)PAF-1-NDMB中C1s的XPS谱图;(d)PAF-1-NDMH中C1的XPS谱图;
图9是PAF-1及其改性材料的扫描电镜图(a)PAF-1,(b)PAF-1-CH2Cl,(c)PAF-1-TMA,(d)PAF-1-NDMB,(e)PAF-1-NDMH,(f)PFOA@PAF-1-NDMB;
图10是PAF-1-CH2Cl、PAF-1-TMA、PAF-1-NDM和PAF-1-NDMH的Energy-dispersivespectroscopy(EDS)图;
图11是PAF-1、PAF-1-CH2Cl、PAF-1-NDMH、PAF-1-NDMB、PAF-1-TMA和PAF-SE在77K时的氮吸附等温线,填充符号表示吸附曲线,空符号表示解吸曲线;
图12是不同样品对PFOA吸附的准二级动力学图(PFOA浓度:1000ppb):(a)PAF-1-TMA(b)PAF-1-NDMB PAF-1-NDMH(c),(d)PAF-1-SE,(e)DFB-CDP,(f)PAC;
图13是不同浓度PFOA的相对丰度标准曲线;
图14是根据线性化Langmuir模型方程绘制出PFOA吸附实验的平衡吸收结果;
图15是PAF-1-TMA、PAF-1-NDMH和PAF-1-SE的红外光谱图;
图16是吸附剂吸附前后的红外光谱图;(a)PFOA,PFOA@PAF-1-TMA和PAF-1-TMA;(b)PFOA,PFOA@PAF-1-NDMH,和PAF-1-NDMH;
图17是PAF-1-TMA和PAF-1-NDMH的固态13C MAS NMR谱图;
图18是PAF-1-NDMB在1000ppb PFOA溶液中搅拌时不同搅拌时间测量的Zeta电位图;
图19是PAF-1-NDMB吸附次数与饱和吸附量关系图;
图20是PAF-1和PAF-1改性材料的热重曲线图。
具体实施方式
为使本发明的目的、技术方案及优点更加清晰,以下结合实施例,对本发明做进一步详细说明。显然,所描述的实施例仅是本发明一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1
PAF-1的合成参照文献Ben,T.et al.Angew.Chem.Int.Ed.2009,48,9457–9460;PAF-1-CH2Cl的合成参照文献Li,B.et al.Nat.Commun.2014,5,5537.具体的:
S1、在氩气气氛中,将1,5-环辛二烯(cod,1.05mL,8.32mmol,CaH2干燥)、双(1,5-环辛二烯)镍((Ni(cod)2,2.25g,8.18mmol))和2,2'-联吡啶(2,2'-Bpy,1.28g,8.18mmol)加入到双颈瓶中,用注射器加入120mL无水无氧的N,N'-二甲基甲酰胺,在80℃下反应1h,得到活化催化剂溶液;本发明构建策略示意图、吸附作用示意图、合成示意图分别如图1、图2、图3所示;
S2、将四溴四苯甲烷(1.0g,1.57mmol)溶解于N-N'二甲基甲酰胺(30mL)中,得到四溴四苯甲烷溶液;将四溴四苯甲烷溶液加入所述活化催化剂溶液中,在80℃下反应12h,得到紫色溶液;将反应混合溶液冷却至室温,向双颈瓶中加入20mL 6mol L-1盐酸,溶液由紫色变为绿色,然后进行过滤,得到固体。将得到的固体分别用6mol L-1盐酸(3×30mL)、分别用三氯甲烷(5×30mL)、四氢呋喃(5×30mL)、去离子水(5×30mL)依次洗涤,在120℃条件下真空干燥48h,得到多孔芳香骨架材料(简写为PAF-1,产率为91%,纯度为99.9%)。PAF-1的红外及碳谱核磁图如图15及图17所示。
S3、将上述所得PAF-1(200.0mg)、多聚甲醛(1.0g)、冰醋酸(6.0mL)、H3PO4(3.0mL)、和浓盐酸(20.0mL)加入至150mL耐压瓶中,在90℃下反应3天。将所得悬浮液冷却至室温,过滤,并用去离子水(2×30mL)、甲醇洗涤(5×30mL),然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-CH2Cl(产率为98%,纯度为99.9%),PAF-1-CH2Cl的红外及碳谱核磁图如图4所示。
S4、将上述所得PAF-1-CH2Cl(300.0mg)、N,N-二甲基丁胺(N,N-Dimethyl-butylamine,NDMB,6.2g,0.061mol),乙醇(70mL)加入至150mL耐压瓶中,在90℃下反应3天。将所得悬浮液冷却至室温,过滤,并用甲醇(10×30mL)洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-NDMB(产率为96%,纯度为99.9%),PAF-1-NDMB的红外、碳谱核磁图及X射线光电子能谱(XPS)分别如图4、图8所示。PAF-1-NDMB的FT-IR光谱显示,在1677、2352和2952cm-1处出现了三个新的波段,分别归属于PAF-1-NDMB中的C-N、CH3-N+和CH3。XPS图谱表明在结合能为285.8eV的位置出现了C-N信号,证实了NDMB的成功接枝到PAF-1骨架中,固体核磁结果表明,相比PAF-1,PAF-1-NDMB中在31.5ppm处出现新的吸收峰,这归因于NDMB中的碳原子,此外,NDMB的引入,导致PAF-1骨架中C6发生2ppm的化学位移,证实了NDMB成功接枝到PAF-1骨架中。
实施例2
PAF-1、PAF-1-CH2Cl的具体合成方法同实例1;
将上述所得PAF-1-CH2Cl(300.0mg)、三甲胺(trimethylamine,TMA,3.6g,0.061mol),乙醇(70mL)加入至150mL耐压瓶中,在90℃下反应3天。将所得悬浮液冷却至室温,过滤,并用甲醇(10×30mL)洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-TMA(产率为96%,纯度为99.9%)。PAF-1-TMA的红外、碳谱核磁图及X射线光电子能谱(XPS)分别如图4、图15和图17所示。PAF-1-TMA的FT-IR光谱显示,在1677、2352和2952cm-1处出现了三个新的波段,分别归属于PAF-1-TMA中的C-N、CH3-N+和CH3。XPS图谱表明在结合能为285.8eV的位置出现了C-N信号,证实了TMA成功接枝到PAF-1骨架中,固体核磁结果表明,相比PAF-1,PAF-1-TMA中在53.5ppm处出现新的吸收峰,这归因于TMA中的碳原子,证实NDMB成功接枝到PAF-1骨架中。
实施例3
PAF-1、PAF-1-CH2Cl的具体合成方法同实例1;
将上述所得PAF-1-CH2Cl(300.0mg)、N,N-二甲基己胺(N,N-Dimethylhexylamine,NDMH,7.9g,0.061mol),乙醇(70mL)加入至150mL耐压瓶中,在90℃下反应3天。将所得悬浮液冷却至室温,过滤,并用甲醇(10×30mL)洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-NDMH(产率为96%,纯度为99.9%)。PAF-1-NDMH的红外、碳谱核磁图及X射线光电子能谱(XPS)分别如图4、图15和图17所示。PAF-1-NDMH的FT-IR光谱显示,在1725、2352和2952cm-1处出现了三个新的波段,分别归属于PAF-1-NDMH中的C-N、CH3-N+和CH3。XPS图谱表明在结合能为285.8eV的位置出现了C-N信号,证实了NDMH成功接枝到PAF-1骨架中,固体核磁结果表明,相比PAF-1,PAF-1-NDMH中在29.5ppm处出现新的吸收峰,这归因于NDMH中的碳原子,证实了NDMB成功接枝到PAF-1骨架中。
实施例4
PAF-1、PAF-1-CH2Cl的具体合成方法同实例1;
该实例为对照组,即仅在PAF-1骨架中引入疏水链,不引入季铵盐。将上述所得PAF-1-CH2Cl(300.0mg)、乙醇钠(Sodium ethoxide,SE,4.2g,0.061mol),乙醇(70mL)加入至150mL耐压瓶中,在90℃下反应3天。将所得悬浮液冷却至室温,过滤,并用甲醇(10×30mL)洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-TMA(产率为96%,纯度为99.9%)。PAF-1-NDMH的红外如图15所示。PAF-1-SE的FT-IR光谱显示,在1094和2952cm-1处出现了两个新的波段,分别归属于PAF-1-SE中的C-O和CH3,证实了SE成功接枝到PAF-1骨架中。
测试例1
吸附动力学研究:
将50mL PFOA水溶液(1000ppb)加入锥形烧瓶中。然后加入20.0mg的吸附剂(DFB-CDP作为对照组,合成参照之前报道的文献Dichtel,W.R.et al.J.Am.Chem.Soc.2017,139(23),7689-7692.)和PAC(作为对照组,在阿拉丁公司购买),)。混合物在室温下搅拌2h。分别在0、5s、10s、20s、40s、1分钟、2分钟、5分钟、10分钟、30分钟、60分钟和120分钟用1mL注射器吸取1mL液体样品,并用0.2μm Whatman无机过滤膜过滤。滤液用HPLC-MS(液质联用仪,LCMS-2020)测定残余PFOA含量。吸附剂对PFOA的去除效率由式S1计算。
Figure BDA0003025962590000091
式中C0(mg L-1)和Ct(mg L-1)分别为原液和滤液中污染物的初始浓度和残留浓度。吸附剂上的污染物含量由式S2确定:
Figure BDA0003025962590000092
式中qt(mg g-1)为任意时刻t(min)固相上吸附的微污染物量;C0(ng/L)为对照实验样品中PFOA的平均浓度;Ct(ng L-1)为任意采样时间t(min)时PFOA在液相中的浓度;CA(mg L-1)为吸附剂浓度。各吸附剂的动力学可以用拟二阶动力学模型线性化,如式S3:
Figure BDA0003025962590000101
式中qe(mg g-1)为平衡时吸附在固相上的PFOA的量;k2(g mg-1min-1)为吸附速率常数。
测试例2
吸附等温线的研究:
将吸附剂(10.0mg)分别添加到含有不同浓度(20,50,100,150,200,300,400,600ppm)PFOA溶液(100mL)的锥形瓶中。将混合物在室温下搅拌8h,然后用0.2微米的膜过滤器分别过滤,用HPLC-MS分析滤液,确定剩余PFOA的含量。
通过方程S4中的非线性最小二乘回归得到Langmuir等温拟合:
Figure BDA0003025962590000102
式中qe(mg g-1)为平衡时吸附的污染物量。qm(mg g-1)是吸附剂平衡时的最大吸附量。Ce(mg L-1)为平衡时的残留污染物浓度。KL(L mg-1)是平衡常数。
上述实施例的吸附动力学和吸附等温线测试结果如图5、图6、图12、图13、图14所示。由图5a可知,PAF-1-NDMB在2min时对PFOA的去除率达到了99.999%,且能在仅2min内将1000ppb的PFOA溶液降低至54ppt,低于美国环境保护协会要求的标准(<70ppt)。而活性炭(PAC)和DFB-CDP在同等实验条件下,30min时对PFOA的去除率分别为35.8%和80%。且根据线性化拟二阶动力学模型可得PAF-1-NDMB的吸附速率常数k2=24000g mg-1h-1,由图5c可知该值是目前文献报道的最高值。此外,由图5b可知,PAF-1-NDMB的饱和吸附量qm=2000mg g-1,亦为目前文献报道的最高值。上述结果证实了多重互锁策略构建的吸附剂可快速而有效的去除PFASs。
由图6a,6b可知,仅在PAF-1骨架上引入季铵盐(PAF-1-TMA)或仅引入疏水链(PAF-1-SE)时,在上述同等实验条件下,PAF-1-TMA(k2=7.5g mg-1h-1,qm=1667mg g-1)及PAF-1-SE(k2=0.3g mg-1h-1,qm=1250mg g-1)的吸附动力学及饱和吸附量都低于PAF-1-NDMB(k2=24000g mg-1h-1,qm=2000mg g-1),进一步证实了PAF-1-NDMB中多重互锁位点的有效性。而PAF-1-NDMH饱和吸附量与PAF-1-NDMB相同,均为2000mg g-1,吸附动力学(k2=17g mg-1h-1)则远低于PAF-1-NDMB,原因可能是NDMH中较长的疏水链在PAF-1孔道中形成了空间位阻,进而阻碍了吸附剂对PFOA的吸附,从而降低吸附速率。此外,PFOA与PAF-1-NDMB强的结合作用分别通过EDS、Zeta电位、红外光谱、19F及13C固体核磁证实。EDS图片表明F、O原子均匀分布于PFOA@PAF-NDMB表面,表明PFOA分子被锁在PAF-1-NDMB孔道内(图6c)。由图18可知,吸附5s时,Zeta电位由-41.3mv迅速降低至-47.19mv,该结果证明吸附时PFOA和PAF-1-NDMB中发生强的静电相互作用。红外光谱分析(图6d)表明,PFOA@PAF-1-NDMB中C-N伸缩由1676cm-1位移至1683cm-1,表明PFOA中的COO-与PAF-1-NDMB中的CH3-N+形成了强静电吸附作用。19FMASNMR结果表明PFOA@PAF-1-NDMB中F7发生了3ppm的化学位移,而F2或F6则消失或减弱,可归因于PFOA中F链和PAF-1-NDMB中的碳链发生疏水作用(图6e)。13C NMR结果表明PAF-1-NDMB中的C6由45.8ppm位移至PFOA@PAF-1-NDMB中的50.8ppm,表明了PFOA与PAF-1-NDMB间存在强的疏水作用(图6f)。此外,PAF-1-TMA,PAF-NDMB的吸附PFOA前后的红外,固体核磁如图15、图16、图17所示。
测试:3
将PAF-1-NDMB或DFB-CDP(300mg)装入移液管(内径~3.3mm)中,。然后将500ppb的PFOA溶液(含20ppm腐植酸)装入移液管,收集滤液,然后用0.2微米的膜过滤器分别过滤,用HPLC-MS分析滤液,确定剩余PFOA的含量。
突破实验结果表明,1g PAF-1-NDMB可将11.77L 500ppb PFOA(含20mg L-1腐殖酸)溶液纯化至<53ppt,低于美国环境保护协会要求的标准70ppt。该吸附量是DFB-CDP的14.6倍(图7)。
测试例4
PAF-1-NDMB再生实验:
PFOA负载的PAF-1-NDMB在100mL甲醇和饱和NaCl(v:v=1:1)的组合溶液中搅拌24小时后过滤收集固体,在真空(80℃,12h)下干燥,作为吸附剂进行另一次吸附实验。
吸附剂可通过甲醇和饱和NaCl的混合溶液洗涤以实现再生,再生实验表明吸附剂至少可保证不减少吸附量的前提下循环使用6次(图19)。
本发明采用所制备具有多重互锁功能的季铵盐及疏水改性吸附剂PAF-1-NDMB,制备方式简单,对全氟辛酸(PFOA)的吸附速率(24000g mg-1h-1)及饱和吸附量(2000mg g-1)高,是目前文献报道的最高值,且该材料在腐殖酸存在下,对PFOA具有吸附选择性。该方法制备的1g吸附剂能够净化11.77L 500ppb的PFOA废水(含20ppm的腐殖酸),达到美国国家环境保护局所规定的饮用水标准(PFOA+PFOS<70ppt)。因此,该材料具有极其优异的PFAS吸附性能和工业化应用前景。
上述对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术人员可以很容易对这些实施例作出各种修改:包括但不限于修改所使用的有机聚合物原料,修改对有机聚合物进行季铵盐改性的方法,修改吸附实验中全氟/多氟化合物的种类(例如修改所吸附污染物PFOA为PFOS)等,并把在此说明的一般原理应用到其他实施例中而不必经过创造性劳动。因此,本发明不限于这里所述的实施例,本领域技术人员根据本发明揭示,不脱离本发明范畴所做出的改进和修改都应在本发明保护范围之内。

Claims (8)

1.多重互锁功能有机聚合物材料的制备方法,其特征在于:
以常用有机配体为原料,所合成的有机聚合物材料包括但不限于共轭微孔聚合物(Conjugated Microporous Polymers,CMPs)、超交联聚合物(Hyper-CrosslinkedPolymers,HCPs)、自具微孔聚合物(Polymer ofIntrinsic Microporosity,PIMs)、共价有机框架(Covalent Organic Frameworks,COFs);所用的反应包括但不限于氯甲基化、季铵盐化中能对有机聚合物进行季铵盐及疏水改性功能修饰反应;是将PAF-1-CH2Cl、季铵盐化试剂、有机溶剂混合,进行季铵盐化反应,得到季铵盐化改性的多孔芳香骨架材料PAF-1-R。
2.根据权利要求1所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述季铵盐化改性的多孔芳香骨架材料PAF-1-R,选用的反应试剂包括但不限于三甲胺、N,N-二甲基丙胺、N,N-二甲基丁胺、N,N-二甲基己胺等、四甲基乙二胺、四甲基丙二胺、四甲基己二胺中的能与PAF-1-CH2Cl发生季铵盐反应的试剂,溶剂包括但不限于甲醇、乙醇、乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺中的任一种常用有机溶剂。
3.根据权利要求1所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述PAF-1-CH2Cl、季铵盐化试剂和有机溶剂的质量比为1:(0.1~300):(20~1000)。
4.根据权利要求1所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述季铵盐反应温度为40~120℃,时间为12~96h。
5.根据权利要求1或2所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述季铵盐化改性的多孔芳香骨架材料PAF-1-R为PAF-1-NDMB,是将PAF-1-CH2Cl、N,N-二甲基丁胺(N,N-Dimethyl-butylamine,NDMB)、乙醇加入至耐压瓶中,在90℃下反应3天,将所得悬浮液冷却至室温,过滤,并用甲醇洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-NDMB。
6.根据权利要求1或2所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述季铵盐化改性的多孔芳香骨架材料PAF-1-R为PAF-1-TMA,是将PAF-1-CH2Cl、三甲胺(trimethylamine,TMA)、乙醇加入至耐压瓶中,在90℃下反应3天,将所得悬浮液冷却至室温,过滤,并用甲醇洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-TMA。
7.根据权利要求1或2所述的多重互锁功能有机聚合物材料的制备方法,其特征在于,所述季铵盐化改性的多孔芳香骨架材料PAF-1-R为PAF-1-NDMH,是将PAF-1-CH2Cl、N,N-二甲基己胺(N,N-Dimethylhexylamine,NDMH)、乙醇加入至耐压瓶中,在90℃下反应3天,将所得悬浮液冷却至室温,过滤,并用甲醇洗涤,然后置于80℃真空干燥箱中干燥48h,得到黄色固体PAF-1-NDMH。
8.权利要求1-7任一项方法所得多重互锁功能有机聚合物材料在全氟辛酸(PFOA)或相关多氟化合物的选择性吸附应用。
CN202110416181.6A 2021-04-19 2021-04-19 多重互锁功能有机聚合物材料的制备方法及应用 Pending CN113083257A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110416181.6A CN113083257A (zh) 2021-04-19 2021-04-19 多重互锁功能有机聚合物材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110416181.6A CN113083257A (zh) 2021-04-19 2021-04-19 多重互锁功能有机聚合物材料的制备方法及应用

Publications (1)

Publication Number Publication Date
CN113083257A true CN113083257A (zh) 2021-07-09

Family

ID=76678883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110416181.6A Pending CN113083257A (zh) 2021-04-19 2021-04-19 多重互锁功能有机聚合物材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113083257A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920907A (zh) * 2022-05-17 2022-08-19 福建农林大学 一种氨基化多孔芳香骨架类化合物及其制备方法和应用
CN115181248A (zh) * 2022-07-28 2022-10-14 东莞理工学院 带有季铵盐结构的多孔有机聚合物及其制备方法和应用
CN115554996A (zh) * 2022-11-09 2023-01-03 南开大学 一种季铵盐及路易斯碱双功能化有机聚合物材料及其制备方法和碘吸附应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175261A1 (en) * 2005-02-10 2006-08-10 Noelke Charles J Monitoring column breakthrough in a process for removing fluorosurfactant from aqueous fluoropolymer dispersions
CN101605728A (zh) * 2007-02-16 2009-12-16 3M创新有限公司 用于从水中去除含氟化合物的系统和方法
JP2014512442A (ja) * 2011-04-21 2014-05-22 ビーエーエスエフ ソシエタス・ヨーロピア 多孔質芳香族骨格(paf)材料を含む成形体
CN111013554A (zh) * 2019-12-30 2020-04-17 高陵蓝晓科技新材料有限公司 一种用于去除水中全氟化合物的复合型大孔吸附树脂
CN111154074A (zh) * 2020-01-13 2020-05-15 东北师范大学 一种磺酸盐多孔芳香骨架材料及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175261A1 (en) * 2005-02-10 2006-08-10 Noelke Charles J Monitoring column breakthrough in a process for removing fluorosurfactant from aqueous fluoropolymer dispersions
CN101605728A (zh) * 2007-02-16 2009-12-16 3M创新有限公司 用于从水中去除含氟化合物的系统和方法
JP2014512442A (ja) * 2011-04-21 2014-05-22 ビーエーエスエフ ソシエタス・ヨーロピア 多孔質芳香族骨格(paf)材料を含む成形体
CN111013554A (zh) * 2019-12-30 2020-04-17 高陵蓝晓科技新材料有限公司 一种用于去除水中全氟化合物的复合型大孔吸附树脂
CN111154074A (zh) * 2020-01-13 2020-05-15 东北师范大学 一种磺酸盐多孔芳香骨架材料及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAIYAN LI ET AL.: ""Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution"", 《NATURE COMMUNICATIONS》 *
杨晓辉等: "《环境功能材料对有机污染物的界面催化降解》", 31 December 2019, 中国环境出版集团 *
董秉直等: "《饮用水膜法处理新技术》", 30 September 2015, 同济大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920907A (zh) * 2022-05-17 2022-08-19 福建农林大学 一种氨基化多孔芳香骨架类化合物及其制备方法和应用
CN115181248A (zh) * 2022-07-28 2022-10-14 东莞理工学院 带有季铵盐结构的多孔有机聚合物及其制备方法和应用
CN115554996A (zh) * 2022-11-09 2023-01-03 南开大学 一种季铵盐及路易斯碱双功能化有机聚合物材料及其制备方法和碘吸附应用
CN115554996B (zh) * 2022-11-09 2024-01-26 南开大学 一种季铵盐及路易斯碱双功能化有机聚合物材料及其制备方法和碘吸附应用

Similar Documents

Publication Publication Date Title
Li et al. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater
Bai et al. A novel functional porous organic polymer for the removal of uranium from wastewater
CN113083257A (zh) 多重互锁功能有机聚合物材料的制备方法及应用
CN108610472B (zh) 一种含氮多孔芳香骨架材料及其制备方法和应用
Ravi et al. Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal
CN112679731A (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
Li et al. A fully conjugated organic polymer via Knoevenagel condensation for fast separation of uranium
CN108912343B (zh) 一种聚不饱和羧酸类改性的金属有机骨架材料及其制备方法和应用
CN113042011B (zh) 一种含氟共轭微孔聚合物的应用
Dong et al. Fabrication of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic dye adsorbents
US8361323B2 (en) Methods for use of aniline copolymers
Zhang et al. Bismuth (III)-based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes
Song et al. An ionic covalent organic polymer toward highly selective removal of anionic organic dyes in aqueous solution
CN113372525B (zh) 一种具有分子印迹型的共价有机框架材料及其制备方法和应用
Chen et al. Porous gC 3 N 4 modified with phenanthroline diamide for efficient and ultrafast adsorption of palladium from simulated high level liquid waste
CN115850698B (zh) 一种用于黄金回收的氨基功能化共价三嗪框架及其制备方法和应用
Saedi et al. Influence of amine group on the adsorptive removal of basic dyes from water using two nanoporous isoreticular Zn (II)-based metal organic frameworks
CN114870822B (zh) 一种胺化共价机聚合物吸附剂及其制备方法和应用
CN112794994B (zh) 一种基于噻吩单元的多孔有机聚合物及其制备方法和应用
Chang et al. Synthesis of a pyridine-based covalent organic framework as an efficient adsorbent for rhodamine B removal
CN115160518B (zh) 一种基于芳香酮的三聚氰胺编织型聚合物材料及其制备方法和应用
US20230348660A1 (en) Alkyl-linked porous porphyrin polymer, and method of separating gas and method of recovering valuable metal using same
CN115894912B (zh) 一种基于三维共价有机框架的高铼酸根吸附方法
CN115739043B (zh) 一种三嗪结构功能化阳离子有机聚合物及其制备方法、应用
CN116925344B (zh) 一种多孔三嗪基含硫聚酰胺材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210709