CN114933484B - 一种增韧SiC基高温陶瓷复合材料及其制备方法 - Google Patents

一种增韧SiC基高温陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN114933484B
CN114933484B CN202210671867.4A CN202210671867A CN114933484B CN 114933484 B CN114933484 B CN 114933484B CN 202210671867 A CN202210671867 A CN 202210671867A CN 114933484 B CN114933484 B CN 114933484B
Authority
CN
China
Prior art keywords
sic
ceramic composite
composite material
toughened
tib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210671867.4A
Other languages
English (en)
Other versions
CN114933484A (zh
Inventor
李阳
刘江傲
程常桂
李伟
冯好
李洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202210671867.4A priority Critical patent/CN114933484B/zh
Publication of CN114933484A publication Critical patent/CN114933484A/zh
Application granted granted Critical
Publication of CN114933484B publication Critical patent/CN114933484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种增韧SiC基高温陶瓷复合材料及其制备方法,涉及高温结构陶瓷复合材料技术领域。本发明以15vol%TiB2、5‑25vol%ZrB2、1vol%石墨粉及余量的SiC制备原位生成(TixZr1‑x)B2增韧的SiC基高温陶瓷复合材料;方法为:将TiB2、ZrB2、SiC和石墨粉混合均匀,球磨后干燥、过筛,将得到的混合粉体进行放电等离子烧结处理,即得原位生成(TixZr1‑x)B2增韧的SiC基高温陶瓷复合材料。本发明利用原位生成的方法在基体中引入(TixZr1‑x)B2,使基体与增韧相结合强度高,制得的SiC复相陶瓷具有优越的断裂韧性。

Description

一种增韧SiC基高温陶瓷复合材料及其制备方法
技术领域
本发明涉及高温结构陶瓷复合材料技术领域,特别是涉及一种增韧SiC基高温陶瓷复合材料及其制备方法。
背景技术
SiC陶瓷具有强度高、硬度高、导热性好、抗氧化性能优异、耐磨、耐腐蚀等优点,在航空、航天领域被广泛应用,但是较低的断裂韧性依然限制了其应用范围。
大多数研究者采用液相烧结机理来烧结SiC陶瓷,如专利CN102390999A公开了一种以Al2O3-Y2O3为液相烧结助剂,TiC为第二相增韧的SiC-TiC复相陶瓷,采用无压烧结工艺,在1850-1950℃下,获得了抗弯强度为580MPa,断裂韧性为7.8MPa·m1/2的复相陶瓷。但由于液相烧结会在烧结过程中生成高温液相非晶态晶间相,从而导致SiC复相陶瓷在高温下(>1800℃)失效。因此,提高固相烧结SiC复相陶瓷的断裂韧性在高温领域具有广阔的应用前景。
近年来,以钛化物或锆化物作为第二相,来增强增韧SiC陶瓷受到广泛关注。例如专利CN111875399A公开了一种利用反应熔渗工艺在SiC基体中原位生成Ti3SiC2和TiB2两种增韧相,从而得到高韧性SiC基复相陶瓷。例如专利CN104140265A公开了一种以ZrO2为第二相增韧SiC-ZrO2复相陶瓷的方法,采用无压烧结工艺,在1850-1950℃下,获得了维氏硬度为23.6-25.3GPa,抗弯强度为513-586MPa,断裂韧性为5.17-5.97MPa·m1/2的复相陶瓷。利用原位生成增韧相以改善SiC基陶瓷的断裂韧性是一种行之有效的方法。
发明内容
本发明的目的是提供一种增韧SiC基高温陶瓷复合材料及其制备方法,以解决上述现有技术存在的问题,使SiC基高温陶瓷复合材料具有优异的断裂韧性。
为实现上述目的,本发明提供了如下方案:
本发明提供一种原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料的制备方法,包括以下步骤:
将TiB2、ZrB2、SiC和石墨粉混合均匀,球磨后干燥、过筛,得到混合粉体;
对所述混合粉体进行放电等离子烧结处理,得到所述原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料;其中X的值为0-1。
所述TiB2、ZrB2、SiC和石墨粉的体积百分含量如下:
TiB2 15vol%、ZrB2 5-25vol%、石墨粉1vol%、SiC余量。
进一步地,所述球磨的介质为无水乙醇和SiC球。
进一步地,所述球磨的时间为4-12h。
进一步地,所述放电等离子烧结的条件为:在真空条件下,采用20-50MPa压力,以100℃/min升温至1650-1850℃,保温5-10min。
本发明还提供上述制备方法制备得到的原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料。
本发明公开了以下技术效果:
本发明以少量石墨粉为烧结助剂,采用固相烧结机理,在高温下不会生成高温液相非晶态晶间相,使得原位生成(TixZr1-x)B2增韧的SiC复相陶瓷在高温下性能稳定。
本发明利用原位生成的方法在基体中引入(TixZr1-x)B2,使基体与增韧相结合强度高。由于(TixZr1-x)B2与SiC热膨胀系数的差异,因此(TixZr1-x)B2是理想的增韧相。
施加载荷时,当裂纹扩展到(TixZr1-x)B2相界面处将发生钝化和裂纹偏转,此外由于SiC晶粒之间为沿晶断裂,以上多种增韧机制的协同作用,促使材料有效增韧。
本发明制备的原位生成(TixZr1-x)B2增韧的SiC复相陶瓷具有优越的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例5混合粉体烧结前后的XRD图;
图2为实施例5烧结样品的维氏硬度测试下裂纹的扩展图;
图3为实施例5烧结样品的抗弯强度测试下断裂面形貌。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中采用的SiC为粒径0.5-1.5um的亚微米粉体;TiB2、ZrB2为粒径0.5-1.5um的亚微米粉体;石墨粉为烧结助剂,粒径为0.5-1.5um;其中,SiC为α-SiC和β-SiC的混合物,体积比为9∶1。
实施例1
原位生成(TixZr1-x)B2增韧的SiC复相陶瓷,原料包括以下组成成分:
TiB2为15vol%,ZrB2为5vol%,石墨粉为1vol%,余量为SiC;其中SiC为α-SiC和β-SiC体积比9∶1的混合物。
制备方法如下:
按照上述组成配比称取原料,使用无水乙醇和SiC球为研磨介质,球磨8h后干燥,过200目筛,得到混合粉体;
将上述混合粉体装入模具,采用放电等离子烧结方法,在真空条件下,使用50MPa压力,以100℃/min升温至1750℃,保温10min。得到原位生成(TixZr1-x)B2【(Ti0.81Zr0.19)B2】增韧的SiC复相陶瓷。
经测试,所制备的原位生成(TixZr1-x)B2【(Ti0.81Zr0.19)B2】增韧的SiC复相陶瓷的相对密度、抗弯强度、断裂韧性见表1。
实施例2
原位生成(TixZr1-x)B2增韧的SiC复相陶瓷,原料包括以下组成成分:
TiB2为15vol%,ZrB2为10vol%,石墨粉为1vol%,余量为SiC,其中SiC为α-SiC和β-SiC体积比9∶1的混合物。
制备方法如下:
按照上述组成配比称取原料,使用无水乙醇和SiC球为研磨介质,球磨4h后干燥,过200目筛,得到混合粉体;
将上述混合粉体装入模具,采用放电等离子烧结方法,在真空条件下,使用20MPa压力,以100℃/min升温至1850℃,保温5min。得到原位生成(TixZr1-x)B2【(Ti0.64Zr0.36)B2】增韧的SiC复相陶瓷。
经测试,所制备的原位生成(TixZr1-x)B2【(Ti0.64Zr0.36)B2】增韧的SiC复相陶瓷的相对密度、抗弯强度、断裂韧性见表1。
实施例3
原位生成(TixZr1-x)B2增韧的SiC复相陶瓷,原料包括以下组成成分:
TiB2为15vol%,ZrB2为15vol%,石墨粉为1vol%,余量为SiC,其中SiC为α-SiC和β-SiC体积比9∶1的混合物。
制备方法如下:
按照上述组成配比称取原料,使用无水乙醇和SiC球为研磨介质,球磨12h后干燥,过200目筛,得到混合粉体;
将上述混合粉体装入模具,采用放电等离子烧结方法,在真空条件下,使用40MPa压力,以100℃/min升温至1650℃,保温8min。得到原位生成(TixZr1-x)B2【(Ti0.55Zr0.45)B2】增韧的SiC复相陶瓷。
经测试,所制备的原位生成(TixZr1-x)B2【(Ti0.55Zr0.45)B2】增韧的SiC复相陶瓷的相对密度、抗弯强度、断裂韧性见表1。
实施例4
原位生成(TixZr1-x)B2增韧的SiC复相陶瓷,原料包括以下组成成分:
TiB2为15vol%,ZrB2为20vol%,石墨粉为1vol%,余量为SiC,其中SiC为α-SiC和β-SiC体积比9∶1的混合物。
制备方法如下:
按照上述组成配比称取原料,使用无水乙醇和SiC球为研磨介质,球磨10h后干燥,过200目筛,得到混合粉体;
将上述混合粉体装入模具,采用放电等离子烧结方法,在真空条件下,使用30MPa压力,以100℃/min升温至1700℃,保温7min。得到原位生成(TixZr1-x)B2【(Ti0.47Zr0.53)B2】增韧的SiC复相陶瓷。
经测试,所制备的原位生成(TixZr1-x)B2【(Ti0.47Zr0.53)B2】增韧的SiC复相陶瓷的相对密度、抗弯强度、断裂韧性见表1。
实施例5
原位生成(TixZr1-x)B2增韧的SiC复相陶瓷,原料包括以下组成成分:
TiB2为15vol%,ZrB2为25vol%,石墨粉为1vol%,余量为SiC,其中SiC为α-SiC和β-SiC体积比9∶1的混合物。
制备方法如下:
按照上述组成配比称取原料,使用无水乙醇和SiC球为研磨介质,球磨8h后干燥,过200目筛,得到混合粉体;
将上述混合粉体装入模具,采用放电等离子烧结方法,在真空条件下,使用35MPa压力,以100℃/min升温至1800℃,保温6min。得到原位生成(TixZr1-x)B2【(Ti0.42Zr0.58)B2】增韧的SiC复相陶瓷。
图1为实施例5混合粉体烧结前后的XRD图。可以看出,没有TiB2与ZrB2在烧结后的样品中存在,已完全合成(TixZr1-x)B2固溶体。
经测试,所制备的原位生成(TixZr1-x)B2【(Ti0.42Zr0.58)B2】增韧的SiC复相陶瓷的相对密度、抗弯强度、断裂韧性见表1。
图2为实施例5烧结样品的维氏硬度测试下裂纹的扩展图;图3为实施例5烧结样品的抗弯强度测试下断裂面形貌。
由图2可以看出,在施加载荷的情况下,裂纹扩展到(TixZr1-x)B2相界面处发生了钝化和裂纹偏转;由图3可以看出,SiC晶粒之间为沿晶断裂。
经测试,所制备的SiC陶瓷的相对密度、抗弯强度、断裂韧性见表1。
表1
样品 相对密度/% 抗弯强度/MPa 断裂韧性/MPa·m1/2
实施例1 >96% 555 4.63
实施例2 >99% 541 4.70
实施例3 >99% 499 7.46
实施例4 >99% 435 10.18
实施例5 >99% 486 7.06
从表1可以看出,本发明制得的原位生成(TixZr1-x)B2增韧的SiC复相陶瓷的相对密度大于96%,致密度高。当原位生成(TixZr1-x)B2后,SiC复相陶瓷的抗弯强度最高为555MPa,断裂韧性最高为10.18MPa·m1/2,具有较高的抗弯强度和优异的断裂韧性。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (2)

1.一种原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料的制备方法,其特征在于,包括以下步骤:
将TiB2、ZrB2、SiC和石墨粉混合均匀,球磨后干燥、过筛,得到混合粉体;
对所述混合粉体进行放电等离子烧结处理,得到所述原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料;其中x的值为0-1;
所述TiB2、ZrB2、SiC和石墨粉的体积百分含量如下:
TiB2 15vol%、ZrB2 15-25vol%、石墨粉1vol%、SiC余量;
所述SiC为α-SiC和β-SiC体积比为9∶1的混合物;
所述放电等离子烧结的条件为:在真空条件下,采用20-50MPa压力,以100℃/min升温至1650-1850℃,保温5-10min;
所述球磨的介质为无水乙醇和SiC球;所述球磨的时间为4-12h。
2.如权利要求1所述制备方法制备得到的原位生成(TixZr1-x)B2增韧SiC基陶瓷复合材料。
CN202210671867.4A 2022-06-14 2022-06-14 一种增韧SiC基高温陶瓷复合材料及其制备方法 Active CN114933484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210671867.4A CN114933484B (zh) 2022-06-14 2022-06-14 一种增韧SiC基高温陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210671867.4A CN114933484B (zh) 2022-06-14 2022-06-14 一种增韧SiC基高温陶瓷复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114933484A CN114933484A (zh) 2022-08-23
CN114933484B true CN114933484B (zh) 2023-08-18

Family

ID=82866373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210671867.4A Active CN114933484B (zh) 2022-06-14 2022-06-14 一种增韧SiC基高温陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114933484B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955675A (en) * 1959-06-30 1964-04-15 Commw Scient Ind Res Org Improvements in or relating to compacts and seals
JPH05279122A (ja) * 1992-03-30 1993-10-26 Sekiyu Sangyo Kasseika Center 炭化珪素複合焼結体の製造方法
JPH09221367A (ja) * 1996-02-15 1997-08-26 Chichibu Onoda Cement Corp 導電性炭化珪素質複合材料及びその製造方法
ITRM20020618A1 (it) * 2002-12-12 2004-06-13 Ct Sviluppo Materiali Spa Polvere termospruzzabile a base di carburo di silicio, suo metodo di
CN101525240A (zh) * 2009-04-23 2009-09-09 浙江大学 硼化物增强型碳化硅陶瓷及其制备方法
CN102167592A (zh) * 2011-01-25 2011-08-31 中国人民解放军国防科学技术大学 ZrB2-ZrC基耐超高温陶瓷的制备方法
CN103073299A (zh) * 2013-01-06 2013-05-01 复旦大学 一种碳球为添加剂的高韧性二硼化锆-碳化硅复相陶瓷材料及其制备方法
CN103387392A (zh) * 2013-07-25 2013-11-13 洛阳理工学院 硼化钛-硼化锆-碳化硅自润滑复合陶瓷材料及制备方法
CN104230364A (zh) * 2014-09-15 2014-12-24 山东理工大学 棒状ZrB2增韧ZrB2-SiC超高温陶瓷的制备工艺
CN108911757A (zh) * 2018-06-25 2018-11-30 广东工业大学 一种高性能硼化锆-碳化硅复相陶瓷及其制备方法和应用
CN110655404A (zh) * 2019-10-30 2020-01-07 合肥工业大学 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN113248258A (zh) * 2021-05-17 2021-08-13 中国科学院上海硅酸盐研究所 一种具有高光谱选择性的碳化硅基复相陶瓷材料及其制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955675A (en) * 1959-06-30 1964-04-15 Commw Scient Ind Res Org Improvements in or relating to compacts and seals
JPH05279122A (ja) * 1992-03-30 1993-10-26 Sekiyu Sangyo Kasseika Center 炭化珪素複合焼結体の製造方法
JPH09221367A (ja) * 1996-02-15 1997-08-26 Chichibu Onoda Cement Corp 導電性炭化珪素質複合材料及びその製造方法
ITRM20020618A1 (it) * 2002-12-12 2004-06-13 Ct Sviluppo Materiali Spa Polvere termospruzzabile a base di carburo di silicio, suo metodo di
CN101525240A (zh) * 2009-04-23 2009-09-09 浙江大学 硼化物增强型碳化硅陶瓷及其制备方法
CN102167592A (zh) * 2011-01-25 2011-08-31 中国人民解放军国防科学技术大学 ZrB2-ZrC基耐超高温陶瓷的制备方法
CN103073299A (zh) * 2013-01-06 2013-05-01 复旦大学 一种碳球为添加剂的高韧性二硼化锆-碳化硅复相陶瓷材料及其制备方法
CN103387392A (zh) * 2013-07-25 2013-11-13 洛阳理工学院 硼化钛-硼化锆-碳化硅自润滑复合陶瓷材料及制备方法
CN104230364A (zh) * 2014-09-15 2014-12-24 山东理工大学 棒状ZrB2增韧ZrB2-SiC超高温陶瓷的制备工艺
CN108911757A (zh) * 2018-06-25 2018-11-30 广东工业大学 一种高性能硼化锆-碳化硅复相陶瓷及其制备方法和应用
CN110655404A (zh) * 2019-10-30 2020-01-07 合肥工业大学 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN113248258A (zh) * 2021-05-17 2021-08-13 中国科学院上海硅酸盐研究所 一种具有高光谱选择性的碳化硅基复相陶瓷材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZrB_2-SiC复相陶瓷的制备及其力学性能研究;刘维良;谭金刚;阚艳梅;;陶瓷学报(第02期);全文 *

Also Published As

Publication number Publication date
CN114933484A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
Zhao et al. Microstructure and mechanical properties of TiB2–SiC ceramic composites by reactive hot pressing
Zhao et al. A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing
CN103924144A (zh) 一种无粘结相超细wc硬质合金制备方法
Zhao et al. Microstructure and mechanical properties at room and elevated temperatures of reactively hot pressed TiB2–TiC–SiC composite ceramic tool materials
CN101767989A (zh) ZrO2/Ti(C,N)纳米复合陶瓷模具材料及其制备方法
CN107117981B (zh) 一种层状Ti/B4C复合材料及其制备方法
CN104060173A (zh) 一种Ti3AlC2增强Fe基复合材料及其原位热挤压制备方法
CN102731093A (zh) 一种低温致密化烧结碳化硼基陶瓷材料的方法
CN101343183A (zh) 碳化锆钛颗粒增强硅铝碳化钛锆基复合材料及其制备方法
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN101824576B (zh) 一种锆铝硅碳-碳化硅复合材料及其制备方法
CN1321939C (zh) 一种用三氧化二铝弥散强化钛二铝氮陶瓷复合材料及其制备方法
CN114933484B (zh) 一种增韧SiC基高温陶瓷复合材料及其制备方法
CN102050626A (zh) 一种陶瓷喷砂嘴制造方法
CN107244918A (zh) 一种TiB‑TiC‑TiB2‑B4C‑Al复合陶瓷的快速制备方法
CN111910136B (zh) 一种三维纤维骨架韧化金属陶瓷及其制备方法
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN113416077A (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN100424039C (zh) 一种原位反应热压合成TiB2-NbC-SiC高温陶瓷复合材料的制备方法
CN102557644B (zh) 一种以钛铝碳作为烧结助剂制备二硼化钛陶瓷的方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
CN114262229B (zh) 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
CN103553631B (zh) 一种利用烧结助剂间原位反应致密二硼化钛材料的方法
CN102249697B (zh) 反应助剂促进烧结硼化钛陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant