CN114931853A - 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品 - Google Patents

捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品 Download PDF

Info

Publication number
CN114931853A
CN114931853A CN202210884258.7A CN202210884258A CN114931853A CN 114931853 A CN114931853 A CN 114931853A CN 202210884258 A CN202210884258 A CN 202210884258A CN 114931853 A CN114931853 A CN 114931853A
Authority
CN
China
Prior art keywords
steel slag
flue gas
carbon
cement
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210884258.7A
Other languages
English (en)
Other versions
CN114931853B (zh
Inventor
莫立武
钟敬魁
董仕宏
刘宗峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Bonouqiang New Material Technology Co ltd
Original Assignee
Suzhou Bonouqiang New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Bonouqiang New Material Technology Co ltd filed Critical Suzhou Bonouqiang New Material Technology Co ltd
Priority to CN202210884258.7A priority Critical patent/CN114931853B/zh
Publication of CN114931853A publication Critical patent/CN114931853A/zh
Application granted granted Critical
Publication of CN114931853B publication Critical patent/CN114931853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • C04B7/21Mixtures thereof with other inorganic cementitious materials or other activators with calcium sulfate containing activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • C04B7/367Avoiding or minimising carbon dioxide emissions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]

Abstract

本申请涉及一种利用大宗固体废弃物钢渣连续捕集水泥窑烟气CO2协同制备低碳水泥的方法及得到的产品。本申请通过气‑固悬浮床式反应器协同预混活化、CO2矿化强化剂间歇式脉冲喷雾工艺手段,利用大宗固体废弃物钢渣作为CO2矿化捕集介质,实现水泥窑烟气CO2的连续式高效捕集与永久固定。碳捕集产物可作为安定性优异的高水化活性水泥混合材应用于低碳水泥的生产。本申请具有工艺流程短、连续性强、烟气CO2捕集量大等显著优势,可有效降低水泥工业碳排放同时实现钢渣等大宗固体废弃物的高附加值资源化利用。

Description

捕集水泥窑烟气CO2协同制备低碳水泥的方法及得到的产品
技术领域
本申请属于CO2捕集与工业尾废资源再利用领域,具体涉及一种利用大宗固体废弃物钢渣连续捕集水泥窑烟气CO2协同制备低碳水泥的方法及得到的产品。
背景技术
水泥是国民经济建设的重要基础原材料,水泥工业的持续发展是支撑社会发展的重要基础和刚性需求,然而水泥工业作为能源密集型产业,水泥的生产也是碳排放主要来源之一。相关统计数据表明,2020年我国水泥行业CO2排放量超14亿吨,约占全国CO2排放总量的13%。2021年1月16日,中国建筑材料联合会向全行业发出了《推进建筑材料行业碳达峰、碳中和行动倡议书》,明确要求我国建筑材料行业要在2025年前全面实现碳达峰,水泥等行业要在2023年前率先实现碳达峰。随着国家“双碳政策”的陆续制定与施行,水泥工业的碳减排压力愈发突出。
目前,含CO2工业烟气的碳捕集手段主要包括有机胺吸附法、膜分离法、低温分离法。其中,有机胺吸附法和膜分离法存在分离介质成本高、损耗大且单位时间处理量较低等问题;低温分离法也存在能耗过高、设备复杂等缺陷。此外,水泥窑烟气具有排放量大、烟气成分复杂、CO2浓度较低等特点,上述CO2捕集分离手段难以简单复制应用于水泥窑烟气CO2的捕集固定,目前水泥工业烟气CO2的大规模捕集、固定与利用技术仍极为匮乏。
CO2矿化捕集与封存是指利用CO2与高碱度天然矿物或工业固体废弃物在一定条件下反应生成碳酸盐,进而实现CO2的永久捕集与固定。CO2矿化捕集技术具有封存产物稳定性高、封存矿物来源广泛,被视为一类极具潜力的CO2减排技术。钢渣是一类典型的高碱度固体废弃物,其化学组成中CaO含量可达40-60%,具有较高的CO2矿化活性,利用钢渣实现工业烟气CO2的捕集与固定具有广阔的应用前景。此外,相关研究表明,钢渣的CO2矿化产物具有较高的水化反应活性,且固碳钢渣的安定性亦得到大幅提升,固碳钢渣在水泥工业中可替代高活性混合材应用于水泥的生产。
现有的公开文献数据表明,利用钢渣矿化捕集CO2存在反应条件较为严苛、矿化捕集效率差异较大、无法实现连续捕集等问题,这使得工业烟气的CO2的矿化捕集技术难以展开规模化应用。因此,探索利用钢渣实现对水泥窑烟气CO2的连续、高效矿化捕集,对于水泥工业的碳减排以及大宗工业固废钢渣的资源化利用具有重大学术价值和环境效益。
发明内容
本发明要解决的技术问题是:为解决现有技术中的不足,从而提供一种能够进行连续捕集的效率高的钢渣连续矿化捕集水泥窑烟气CO2协同制备低碳水泥的方法及得到的水泥。
本发明解决其技术问题所采用的技术方案是:
本申请提供一种捕集水泥窑烟气CO2协同制备低碳水泥的方法,包括以下步骤:
(1)将钢渣微粉置入混料设备中进行预混,预混过程中加入活化助剂,所述活化助剂是质量比为92~98:1~2:0.5~1.5:0.5~1.5:0.1~0.5的水、碳酸钠、水杨酸、酒石酸和聚羧酸组成的混合液;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,所述烟气来源于干法回转窑窑尾废气烟道,烟气中CO2浓度为10~30%;
(3)通过雾化装置向烟气悬浮反应器喷入CO2矿化增强剂;
(4)待钢渣微粉于烟气悬浮反应器内达到预定反应时间后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓;
(5)收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品;
步骤(3)中CO2矿化增强剂的组成为:95~100质量份水、0.5~1.5质量份乙二胺四乙酸、0.1~1质量份羟乙基二异丙醇胺;
或者,步骤(3)中CO2矿化增强剂的组成为:90~100质量份水、1~3质量份乙二胺四乙酸、0.5~1.5质量份N,N-二甲基乙酰胺、0.1~1质量份哌嗪、0.1~1质量份羟乙基二异丙醇胺;
CO2矿化增强剂的使用量为步骤(1)中的钢渣微粉的质量的1~10%。
本申请的方法,在步骤(1)中,所述钢渣微粉颗粒粒径范围为150~250目。
本申请的方法,在步骤(1)中,所述混料设备为连续式螺带混合机或连续式无重力混合机。
本申请的方法,在步骤(1)中活化助剂的掺量为钢渣微粉质量的3-10%。
本申请的方法,在步骤(2)中烟气反应器为气-固悬浮床式反应器。
本申请的方法,在步骤(3)中雾化装置为间歇式脉冲雾化器,经由脉冲雾化器喷入的CO2矿化增强剂液滴尺寸范围为3~150微米,脉冲周期30~240s,脉冲宽度0.5~5s。
本申请的方法,在骤(4)中,钢渣微粉在反应器内的连续悬浮反应时间为10-30分钟。
本申请的方法,在步骤(4)中,气固分离后的尾气经过增湿处理后再次汇入烟气悬浮反应器内。
本申请的方法,增湿处理通过鼓泡增湿塔或者喷雾增湿塔实现。
本申请还提供由上述方法制备得到的低碳水泥。
本发明的有益效果是:
(1)通过气-固悬浮床式反应器,利用大宗固体废弃物钢渣作为捕集介质,实现水泥窑烟气CO2的连续式捕集,有效降低烟气排放的CO2浓度并实现CO2的永久固定封存。
(2)通过预混活化、CO2矿化强化剂间歇式脉冲喷雾等工艺手段显著提高连续捕集工况下水泥窑烟气CO2矿化捕集效率,最优工艺条件下单位质量钢渣微粉20分钟内CO2矿化捕集量可达6.94%,CO2捕集效率较无CO2矿化强化工艺条件下提升204%。
(3)烟气脱碳后端产品(固碳钢渣微粉)可替代至少30%水泥熟料应用于水泥的生产,有效降低水泥生产的碳排放及优质资源消耗。
附图说明
下面结合附图和实施例对本申请的技术方案进一步说明。
图1 为利用钢渣连续矿化捕集水泥窑烟气CO2协同制备低碳水泥的工艺流程图。
图2 为对比例1中原状钢渣微粉及对比例2、实施例3固碳钢渣微粉X射线衍射谱图。
图3和图4均为实施例3中固碳钢渣微粉的微观形貌图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
本实施例提供一种利用钢渣连续矿化捕集水泥窑烟气CO2协同制备高性能低碳水泥的工艺方法,包括以下工艺流程:
(1)选取颗粒粒径150目的原状钢渣微粉投料至连续式无重力混合机进行混合,预混过程中加入活化助剂,所述活化助剂为活化助剂是质量比为92:1:0.5:0.5:0.1的水、碳酸钠、水杨酸、酒石酸和聚羧酸组成的混合液,活化助剂使用量(质量)为钢渣微粉质量的3%;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,即向烟气悬浮反应器内持续通入干法回转窑窑尾废气,烟气中CO2浓度为10%,并将分散均匀后的活化钢渣微粉经输送机构连续供入烟气悬浮反应器至物料达到悬浮沸腾状态,物料悬浮反应20分钟后得到固碳钢渣微粉;
(3)物料悬浮反应期间内经由脉冲雾化装置向反应器烟气悬浮反应器内间歇式喷入CO2矿化增强剂,CO2矿化增强剂的组成为:95份水、0.5份乙二胺四乙酸、0.1份羟乙基二异丙醇胺,经由脉冲雾化器喷入的CO2矿化增强剂液滴尺寸范围为3微米,脉冲周期240s,脉冲宽度2s,CO2矿化增强剂的使用量(质量)为(1)步骤中的钢渣微粉的质量的2%;
(4)待钢渣微粉于烟气悬浮反应器内同水泥窑烟气连续反应10分钟后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓,气固分离后的尾气经鼓泡增湿塔进行增湿处理后可再次汇入烟气悬浮反应器进行烟气CO2的循环矿化捕集,或者经过处理后达到环保标准后进行排放;
(5)将收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品。比如常见的可以将30份固碳钢渣产品与65份水泥熟料、5份脱硫石膏粉磨得到低碳水泥产品。
实施例2
本实施例提供一种利用钢渣连续矿化捕集水泥窑烟气CO2协同制备高性能低碳水泥的工艺方法,包括以下工艺流程:
(1)选取颗粒粒径200目的原状钢渣微粉投料至连续式无重力混合机进行混合,预混过程中加入活化助剂,所述活化助剂为活化助剂是质量比为98:1.5: 1.5: 1.5: 0.5的水、碳酸钠、水杨酸、酒石酸和聚羧酸组成的混合液,活化助剂使用量为钢渣微粉质量的5%;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,即向烟气悬浮反应器内持续通入干法回转窑窑尾废气,烟气中CO2浓度为20%,并将分散均匀后的活化钢渣微粉经输送机构连续供入烟气悬浮反应器至物料达到悬浮沸腾状态,物料悬浮反应20分钟后得到固碳钢渣微粉;
(3)物料悬浮反应期间内经由脉冲雾化装置向反应器烟气悬浮反应器内间歇式喷入CO2矿化增强剂,CO2矿化增强剂的组成为:100份水、1.5份乙二胺四乙酸、1份羟乙基二异丙醇胺,经由脉冲雾化器喷入的CO2矿化增强剂液滴尺寸范围为150微米,脉冲周期30s,脉冲宽度0.5s,CO2矿化增强剂的使用量为(1)步骤中的钢渣微粉的质量的5%;
(4)待钢渣微粉于烟气悬浮反应器内同水泥窑烟气连续反应30分钟后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓,气固分离后的尾气经鼓泡增湿塔进行增湿处理后可再次汇入烟气悬浮反应器进行烟气CO2的循环矿化捕集,或者经过处理后达到环保标准后进行排放;
(5)将收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品。比如常见的可以将30份固碳钢渣产品与65份水泥熟料、5份脱硫石膏粉磨得到低碳水泥产品。
实施例3
本实施例提供一种利用钢渣连续矿化捕集水泥窑烟气CO2协同制备高性能低碳水泥的工艺方法,包括以下工艺流程:
(1)选取颗粒粒径250目的原状钢渣微粉投料至连续式无重力混合机进行混合,预混过程中加入活化助剂,所述活化助剂为活化助剂是质量比为95:2: 1.2: 1.2: 0.3的水、碳酸钠、水杨酸、酒石酸和聚羧酸组成的混合液,活化助剂使用量为钢渣微粉质量的10%;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,即向烟气悬浮反应器内持续通入干法回转窑窑尾废气,烟气中CO2浓度为30%,并将分散均匀后的活化钢渣微粉经输送机构连续供入烟气悬浮反应器至物料达到悬浮沸腾状态,物料悬浮反应20分钟后得到固碳钢渣微粉;
(3)物料悬浮反应期间内经由脉冲雾化装置向反应器烟气悬浮反应器内间歇式喷入CO2矿化增强剂,CO2矿化增强剂的组成为: CO2矿化增强剂由96.5份水、1.5份乙二胺四乙酸、1份N,N-二甲基乙酰胺、0.5份哌嗪、0.5份羟乙基二异丙醇胺组成,经由脉冲雾化器喷入的CO2矿化增强剂液滴尺寸范围为150微米,脉冲周期50s,脉冲宽度5s,CO2矿化增强剂的使用量为(1)步骤中的钢渣微粉的质量的5%;
(4)待钢渣微粉于烟气悬浮反应器内同水泥窑烟气连续反应20分钟后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓,气固分离后的尾气经鼓泡增湿塔进行增湿处理后可再次汇入烟气悬浮反应器进行烟气CO2的循环矿化捕集,或者经过处理后达到环保标准后进行排放;
(5)将收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品。比如常见的可以将30份固碳钢渣产品与65份水泥熟料、5份脱硫石膏粉磨得到低碳水泥产品。
实施例4
本实施例中采用的原状钢渣微粉及生产方法与实施例3相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中CO2矿化增强剂脉冲雾化喷入量为原状钢渣微粉总质量的8%,钢渣微粉悬浮反应时间为缩短至10分钟。
实施例5
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(3)中CO2矿化增强剂的组成为:90份水、1份乙二胺四乙酸、0.5份N,N-二甲基乙酰胺、0.1份哌嗪、0.1份羟乙基二异丙醇胺;
CO2矿化增强剂的使用量为(1)步骤中的钢渣微粉的质量的1%。
实施例6
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(3)中CO2矿化增强剂的组成为:98份水、2份乙二胺四乙酸、1份N,N-二甲基乙酰胺、0.5份哌嗪、0.5份羟乙基二异丙醇胺;
CO2矿化增强剂的使用量为(1)步骤中的钢渣微粉的质量的5%。
实施例7
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(3)中CO2矿化增强剂的组成为:100份水、3份乙二胺四乙酸、1.5份N,N-二甲基乙酰胺、1份哌嗪、1份羟乙基二异丙醇胺;
CO2矿化增强剂的使用量为(1)步骤中的钢渣微粉的质量的10%。
实施例8
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中经由脉冲雾化装置喷入的雾化CO2矿化增强剂液滴尺寸110微米,脉冲周期30s,脉冲宽度0.5s。
实施例9
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
CO2矿化增强剂的组成为:98份水、1份乙二胺四乙酸、0.6份羟乙基二异丙醇胺。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中经由脉冲雾化装置喷入的雾化CO2矿化增强剂液滴尺寸85微米,脉冲周期90s,脉冲宽度2s。
实施例10
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中经由脉冲雾化装置喷入的雾化CO2矿化增强剂液滴尺寸30微米,脉冲周期60s,脉冲宽度3s。
实施例11
本实施例中采用的原状钢渣微粉及生产方法与实施例3基本相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中经由脉冲雾化装置喷入的雾化CO2矿化增强剂液滴尺寸10微米,脉冲周期60s,脉冲宽度5s。
实施例12
本实施例中采用的原状钢渣微粉及活化助剂、CO2矿化增强剂的浓度与掺量与实施例3相同。
本实施例中制备固碳钢渣微粉的步骤与实施例3不同之处在于步骤(2)中经由脉冲雾化装置喷入的雾化CO2矿化增强剂液滴尺寸为3微米,脉冲周期30s,脉冲宽度5s。
上述实施例中的所述步骤(4)中,气固分离后的尾气经过增湿处理后再次汇入烟气悬浮反应器内,从而实现循环捕集。增湿处理可以通过鼓泡增湿塔或者喷雾增湿塔实现。
对比例1
本对比例中采用原状钢渣微粉制备水泥,水泥配比为30份原状钢渣微粉、65份水泥熟料、5份脱硫石膏。
对比例2
本对比例中不使用活化助剂和CO2矿化增强剂;
具体工艺流程为:
(1)选取颗粒粒径250目的原状钢渣微粉投料至连续式无重力混合机进行混合;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,即向烟气悬浮反应器内持续通入干法回转窑窑尾废气,烟气中CO2浓度为30%,并将分散均匀后的活化钢渣微粉经输送机构连续供入烟气悬浮反应器至物料达到悬浮沸腾状态,物料悬浮反应20分钟后得到固碳钢渣微粉;
(3)待钢渣微粉于烟气悬浮反应器内同水泥窑烟气连续反应20分钟后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓,气固分离后的尾气经鼓泡增湿塔进行增湿处理后可再次汇入烟气悬浮反应器进行烟气CO2的循环矿化捕集,或者经过处理后达到环保标准后进行排放;
(4)将收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品。比如常见的可以将30份固碳钢渣产品与65份水泥熟料、5份脱硫石膏粉磨得到低碳水泥产品。
利用对比例1和2及实施例1-12中固碳钢渣微粉产品的灼减量差异对各实施例中固碳钢渣产品的烟气CO2矿化捕集量进行定量分析;参照《YB/T 4328-2012 钢渣中游离氧化钙含量测定方法》将对比例1中原状钢渣粉及实施例1-12中固碳钢渣粉产品的游离氧化钙进行定量滴定;参照《GB/T 20491-2017 用于水泥和混凝土中的钢渣粉》进行对比例1及实施例1-12中低碳水泥产品进行6h压蒸膨胀率测试;参照《GB/T 17671-2021 水泥胶砂强度检验方法》对实施例1-12及对比例1中低碳水泥产品的7d和28d强度进行测定,相应结果如下表所示。
Figure 904461DEST_PATH_IMAGE001
通过对比对比例1与实施例1-6可知,采用恰当的活化助剂、CO2矿化增强剂的使用可显著提高单位时间内原状钢渣微粉的烟气CO2捕集量。相较无助剂条件下(对比例1),最优助剂添加条件下(实施例9)钢渣微粉的CO2捕集量提升幅度超200%,这表明活化助剂及CO2矿化增强剂的选用,有效激发了钢渣中游离氧化钙及低活性硅酸钙矿相的反应活性,提高了钢渣微粉在水泥窑窑尾烟气等低二氧化碳浓度工况下的CO2捕集效率。对比实施例7-12可知,CO2矿化增强剂脉冲喷入气-固悬浮反应器内的液滴尺寸、脉冲周期及脉冲宽度可显著影响CO2矿化增强剂的矿化增强效果,进而影响固碳钢渣产品的CO2矿化捕集量、游离氧化钙含量以及相应低碳水泥产品的压蒸安定性及力学强度。
上述实施例表明,通过预混活化助剂、CO2矿化增强剂的间歇式脉冲喷雾以及脉冲喷雾工艺条件的优化,可实现利用气-固悬浮床式反应器连续、高效矿化捕集烟气中低浓度CO2,有效降低工业烟气碳排放。此外,经本发明工艺处理后的固碳钢渣产品其水化活性及压蒸安定性大幅提高,可作为高活性混合材应用于高性能低碳水泥产品的生产。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种捕集水泥窑烟气CO2协同制备低碳水泥的方法,其特征在于,包括以下步骤:
(1)将钢渣微粉置入混料设备中进行预混,预混过程中加入活化助剂,所述活化助剂是质量比为92~98:1~2:0.5~1.5:0.5~1.5:0.1~0.5的水、碳酸钠、水杨酸、酒石酸和聚羧酸组成的混合液;
(2)预混均匀后的活化钢渣微粉经由进料系统连续供入烟气悬浮反应器进行烟气CO2的矿化捕集,所述烟气来源于干法回转窑窑尾废气烟道,烟气中CO2浓度为10~30%;
(3)通过雾化装置向烟气悬浮反应器喷入CO2矿化增强剂;
(4)待钢渣微粉于烟气悬浮反应器内达到预定反应时间后,固碳钢渣物料直接排出反应器输送至料仓,烟气中的固碳钢渣粉料经气固分离后输送至料仓;
(5)收集料仓中的固碳钢渣粉料与水泥熟料、石膏粉磨后即可制备得到低碳水泥产品;
步骤(3)中CO2矿化增强剂的组成为:95~100质量份水、0.5~1.5质量份乙二胺四乙酸、0.1~1质量份羟乙基二异丙醇胺;
或者,步骤(3)中CO2矿化增强剂的组成为:90~100质量份水、1~3质量份乙二胺四乙酸、0.5~1.5质量份N,N-二甲基乙酰胺、0.1~1质量份哌嗪、0.1~1质量份羟乙基二异丙醇胺;
CO2矿化增强剂的使用量为步骤(1)中的钢渣微粉的质量的1~10%。
2.根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述钢渣微粉颗粒粒径范围为150~250目。
3.根据权利要求1所述的方法,其特征在于,在步骤(1)中,所述混料设备为连续式螺带混合机或连续式无重力混合机。
4.根据权利要求1所述的方法,其特征在于,在步骤(1)中活化助剂的掺量为钢渣微粉质量的3-10%。
5.根据权利要求1所述的方法,其特征在于,在步骤(2)中烟气反应器为气-固悬浮床式反应器。
6.根据权利要求1所述的方法,其特征在于,在步骤(3)中雾化装置为间歇式脉冲雾化器,经由脉冲雾化器喷入的CO2矿化增强剂液滴尺寸范围为3~150微米,脉冲周期30~240s,脉冲宽度0.5~5s。
7.根据权利要求1所述的方法,其特征在于,在骤(4)中,钢渣微粉在反应器内的连续悬浮反应时间为10-30分钟。
8.根据权利要求1所述的方法,其特征在于,在步骤(4)中,气固分离后的尾气经过增湿处理后再次汇入烟气悬浮反应器内。
9.根据权利要求8所述的方法,其特征在于,增湿处理通过鼓泡增湿塔或者喷雾增湿塔实现。
10.一种由权利要求1-9任一项所述方法制备得到的低碳水泥产品。
CN202210884258.7A 2022-07-26 2022-07-26 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品 Active CN114931853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210884258.7A CN114931853B (zh) 2022-07-26 2022-07-26 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210884258.7A CN114931853B (zh) 2022-07-26 2022-07-26 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品

Publications (2)

Publication Number Publication Date
CN114931853A true CN114931853A (zh) 2022-08-23
CN114931853B CN114931853B (zh) 2022-11-25

Family

ID=82868854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210884258.7A Active CN114931853B (zh) 2022-07-26 2022-07-26 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品

Country Status (1)

Country Link
CN (1) CN114931853B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536224A (zh) * 2022-09-28 2022-12-30 中建安装集团有限公司 矿化再生微粉-工业废渣协同固化淤泥自动化设备及方法
CN116459650A (zh) * 2023-04-20 2023-07-21 北京工业大学 一种水泥窑烟气碳捕集利用一体化系统与工艺
CN117510106A (zh) * 2023-12-29 2024-02-06 苏州仕净科技股份有限公司 一种钢渣捕碳资源化处理装置及处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840872A (zh) * 2005-03-02 2006-10-04 液压环有限公司 用于机动车废气处理的喷射设备
CN104759203A (zh) * 2015-03-17 2015-07-08 华能国际电力股份有限公司 一种直接捕集矿化烟气中二氧化碳的流化床工艺与系统
CN205216575U (zh) * 2015-12-04 2016-05-11 佛山山象环保工程服务有限公司 一种高压喷雾废气处理装置
CN106882831A (zh) * 2017-03-20 2017-06-23 南京工程学院 一种有机胺‑工业石膏体系固定二氧化碳的方法
CN206315652U (zh) * 2016-11-01 2017-07-11 广东生益科技股份有限公司 气体净化设备
CN114591052A (zh) * 2022-02-25 2022-06-07 碳达(深圳)新材料技术有限责任公司 一种利用高温烟气和碱性固废制备建筑材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1840872A (zh) * 2005-03-02 2006-10-04 液压环有限公司 用于机动车废气处理的喷射设备
CN104759203A (zh) * 2015-03-17 2015-07-08 华能国际电力股份有限公司 一种直接捕集矿化烟气中二氧化碳的流化床工艺与系统
CN205216575U (zh) * 2015-12-04 2016-05-11 佛山山象环保工程服务有限公司 一种高压喷雾废气处理装置
CN206315652U (zh) * 2016-11-01 2017-07-11 广东生益科技股份有限公司 气体净化设备
CN106882831A (zh) * 2017-03-20 2017-06-23 南京工程学院 一种有机胺‑工业石膏体系固定二氧化碳的方法
CN114591052A (zh) * 2022-02-25 2022-06-07 碳达(深圳)新材料技术有限责任公司 一种利用高温烟气和碱性固废制备建筑材料的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536224A (zh) * 2022-09-28 2022-12-30 中建安装集团有限公司 矿化再生微粉-工业废渣协同固化淤泥自动化设备及方法
CN115536224B (zh) * 2022-09-28 2023-08-18 中建安装集团有限公司 矿化再生微粉-工业废渣协同固化淤泥自动化设备及方法
CN116459650A (zh) * 2023-04-20 2023-07-21 北京工业大学 一种水泥窑烟气碳捕集利用一体化系统与工艺
CN116459650B (zh) * 2023-04-20 2023-12-15 北京工业大学 一种水泥窑烟气碳捕集利用一体化系统与工艺
CN117510106A (zh) * 2023-12-29 2024-02-06 苏州仕净科技股份有限公司 一种钢渣捕碳资源化处理装置及处理方法
CN117510106B (zh) * 2023-12-29 2024-04-12 苏州仕净科技股份有限公司 一种钢渣捕碳资源化处理装置

Also Published As

Publication number Publication date
CN114931853B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN114931853B (zh) 捕集水泥窑烟气co2协同制备低碳水泥的方法及得到的产品
CN112125541A (zh) 一种湿法碳化活化废旧混凝土再生微粉的方法及再生微粉的应用
CN103111186A (zh) 一种强化钢渣矿化固定二氧化碳的方法
CN102602973A (zh) 利用电石渣合成超细碳酸钙的方法
CN107715845A (zh) 一种烟气脱硫脱硝吸附剂及其制备和使用方法
CN112316913A (zh) 一种以赤泥废渣为原料的水处理吸附剂及其制备方法
CN102658194A (zh) 粉煤灰制备y型分子筛催化剂用于燃煤电厂脱硝的方法
CN1377722A (zh) 尿素添加剂湿法烟气同时脱硫脱氮方法
CN111111773A (zh) 一种水泥生产脱硫脱硝催化剂
CN113499778B (zh) 一种煤气化渣水泥窑炉高温烟气脱硝催化剂及其制备方法
Li et al. Synergetic utilization of microwave-assisted fly ash and carbide slag for simultaneous desulfurization and denitrification: High efficiency, low cost and catalytic mechanism
CN104014232A (zh) 利用尿素联产制备技术进行烟气脱硫脱硝的方法
CN112452144B (zh) 一种以气化渣制备用于水泥预热器的脱硝材料的方法
CN105384375A (zh) 一种建材用活性掺合料
CN105561750A (zh) 一种锰矿浆微生物耦合烟气脱硫脱硝方法
CN105541150A (zh) 一种利用半干法脱硫灰制成的活性掺合料
CN106268283B (zh) 水泥窑烟气脱除重金属和硫硝污染物及资源化利用的方法
CN116395731A (zh) 一种利用工业固废固定co2并制备纳米碳酸钙的循环工艺
CN104474887A (zh) 新型干法水泥窑用脱硫脱硝复合剂制备及使用方法
CN114950119B (zh) 工业烟气脱碳并协同制备钢渣砼的方法及得到的产品
CN106310932B (zh) 一种磷矿浆液相催化氧化脱除工业废气中no的方法
CN104353351A (zh) 一种由废碱制备烟气净化中碳酸氢钠的工业化制备方法
CN106944040A (zh) 利用含钛矿渣和含锰矿渣制备氮氧化物净化催化剂的方法
CN116282992A (zh) 一种烟气co2封存和微纤维增强水泥的制备方法
CN101091870A (zh) 酰胺化腐殖酸治理含NOx废气的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant