CN114931128A - hoxaa基因簇缺失斑马鱼突变体的制备方法和应用 - Google Patents

hoxaa基因簇缺失斑马鱼突变体的制备方法和应用 Download PDF

Info

Publication number
CN114931128A
CN114931128A CN202210760745.2A CN202210760745A CN114931128A CN 114931128 A CN114931128 A CN 114931128A CN 202210760745 A CN202210760745 A CN 202210760745A CN 114931128 A CN114931128 A CN 114931128A
Authority
CN
China
Prior art keywords
gene cluster
hoxaa
mutant
gene
grna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210760745.2A
Other languages
English (en)
Other versions
CN114931128B (zh
Inventor
祖尧
武秀知
贺经纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ocean University
Original Assignee
Shanghai Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ocean University filed Critical Shanghai Ocean University
Priority to CN202210760745.2A priority Critical patent/CN114931128B/zh
Publication of CN114931128A publication Critical patent/CN114931128A/zh
Application granted granted Critical
Publication of CN114931128B publication Critical patent/CN114931128B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/89Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microinjection
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Rheumatology (AREA)
  • Diabetes (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了hoxaa基因簇缺失斑马鱼突变体的制备方法和应用,依次包括设计gRNA位点—PCR扩增—gRNA的模板纯化—体外转录—gRNA纯化—显微注射—检测敲除效率—饲养至成鱼—与野生型交配—检测下一代胚胎是否携带突变位点—饲养成年后剪尾鉴定出杂合突变体—两杂合体交配得到纯合突变体的步骤。本发明首次运用CRISPR技术删除基因组中hoxaa基因簇长片段构建hoxaa基因簇缺失的斑马鱼突变体,其可用于与hoxaa基因簇相关疾病的动物模型研究hoxa基因在动物体生长发育的调节机制和基因缺失引起的相关疾病治疗。

Description

hoxaa基因簇缺失斑马鱼突变体的制备方法和应用
技术领域
本发明属于分子生物学领域,具体涉及hoxaa基因簇缺失斑马鱼突变体的制备方法和应用。
背景技术
CRISPR/Cas技术是继ZFN及TALEN后近几年比较火热的基因编辑系统,基于其具有简单、高效、易操作等优势已经在全球多种模式生物中得到广泛应用。CRISPR/Cas系统是存在于古生物菌和细菌的一种获得性免疫系统,一早被发现仅需要两段RNA及Cas9一种核酸内切酶就可以对靶位点行使切割功能,由于其仅依赖传统的Watson-Crick方式识别20nt的核苷酸,很快被改良并应用到哺乳动物及人类细胞中并且实现了有效的切割,此后相继将CRISPR技术在小鼠、斑马鱼、果蝇、细菌等模式生物上进行应用并获得成功。
hox是编码含有同源框的一大类转录因子家族,在动物躯体形态构建中发挥重要作用。hox基因在进化过程中发生了全基因组的加倍,最先发现的果蝇中只含有一个hox基因簇,小鼠等四足动物中发生了两次全基因组的加倍,形成4个Hox基因簇,斑马鱼等大多数硬骨鱼发生了额外一次的基因组加倍,最终形成7~8个hox基因簇,斑马鱼中有7个hox基因簇,共48个基因成员。hox基因在染色体上成簇排列,不同的hox基因簇分布在不同的染色体上,每个hox基因簇由多个同源组基因组成。hox基因的表达遵循时间-空间共线性表达模式空间共线性是指:位于3’端的hox基因表达部位越靠近躯体前端,而位于5’端的基因则大多在躯体后端表达;时间共线性是指:3’端的hox基因比5’端的基因表达得要早。时间-空间共线性表达模式使得hox基因在躯体形态构建中按照一定的顺序发挥特定的功能。hoxa基因编码在肢体发育过程中起作用的重要的DNA结合转录因子,主要调节基因表达,进而调节形态发生和骨骼分化。在这些基因中,hoxa11和hoxa13被认为在从鱼类到四足动物的神秘进化过渡中发挥重要作用。
哺乳动物拥有39个hox基因,这些基因排列在四个线性簇中,每个簇有9至11个基因。hoxa基因家族编码包含DNA结合同源异型盒基序的蛋白质,并控制除后期发育事件之外的早期胚胎分割模式。hoxa基因家族与多种癌症类型相关,目前有研究表明hoxa基因家族与急性髓性白血病(AML)有关,影响细胞更新和白血病的发展。2005年,Tischfield报道人类hoxa1基因的纯合缺失会导致阿萨巴斯卡发育不良综合征(ABDS),其特征表现为面部畸形、面部麻痹、颈动脉形成缺陷等。hoxa1基因的突变还会导致先天性人类hoxa1综合征的Bosley-Salih-Alomainy综合征(BSAS),患者通常会出现以下症状:眼动、内耳空腔畸形、脑血管异常、心脏畸形、发育迟缓和自我认知障碍,还有部分患者会出现从单侧颈内动脉发育不良到双侧发育不全的脑血管畸形。在正常发育过程中,hoxa13在身体后部结构的形成中起着主导作用,特别是在肢体、肠道和泌尿生殖系统的发育中,也在肿瘤的发展和进展中发挥相关作用,并且hoxa13基因在癌变和肿瘤进展过程中的调节机制使其可以作为癌症诊断和治疗的生物标志物。
发明内容
本发明的主要目的在于提供hoxaa基因簇缺失斑马鱼突变体的制备方法,通过CRISPR技术构建hoxaa基因簇缺失斑马鱼突变体鱼系。
本发明的另一目的是提供通过上述制备方法得到的hoxaa基因簇缺失斑马鱼突变体作为动物模型的应用。
本发明的上述目的是通过以下技术方案来实现的:
本发明提供hoxaa基因簇缺失斑马鱼突变体的制备方法,通过CRISPR技术构建hoxaa基因簇缺失斑马鱼突变体,依次包括设计gRNA位点—PCR扩增—gRNA的模板纯化—体外转录—gRNA纯化—显微注射—检测敲除效率—饲养至成鱼—与野生型交配—检测下一代胚胎是否携带突变位点—饲养成年后剪尾鉴定出杂合突变体—两杂合体交配得到纯合突变体的步骤,具体包括以下步骤:
(1)获取斑马鱼的hoxaa基因簇序列;
(2)在斑马鱼hoxa13a基因的第一个外显子上设计如SEQ ID NO:1所示的靶点gRNA序列,在hoxa1a基因的第一个外显子上设计如SEQ ID NO:2所示的靶点gRNA序列;
(3)设计并合成gRNA引物:hoxa13a基因的gRNA引物F1和R1,序列分别如SEQ IDNO:3和SEQ ID NO:4所示;hoxa1a基因的gRNA引物F2和R2,序列分别如SEQ ID NO:5和SEQID NO:6所示;
(4)设计并合成hoxa13a和hoxa1a基因的检测引物:hoxa13a基因的检测引物F3和R3,序列分别如SEQ ID NO:7和SEQ ID NO:8所示;hoxa1a基因的检测引物F4和R4,序列分别如SEQ ID NO:9和SEQ ID NO:10所示;
(5)以gRNA骨架质粒为模板使用步骤(3)的gRNA引物进行PCR扩增反应,电泳检测PCR产物,纯化;
(6)在RNase-Free条件下将上述PCR纯化产物分别进行体外转录得到gRNA,转录体系中加入T7聚合酶和NTP,37℃反应1.5h,纯化;
(7)将步骤(6)纯化后的两种gRNA和Cas9蛋白混合后显微注射到斑马鱼单细胞期胚胎中,24h后取胚胎并提取DNA,用上述F3/R4这一对引物对敲除位点进行PCR扩增,电泳检测PCR产物,将敲除成功的小鱼饲养长大,作为F0
(8)待F0斑马鱼性成熟后,与野生型的斑马鱼杂交得到一定概率的杂合子,取胚胎并提取DNA,用上述F3/R4这一对引物对敲除位点进行PCR扩增,电泳检测PCR产物并测序确认,将有突变的斑马鱼培养长大,作为F1
(9)待F1斑马鱼性成熟后,将雌鱼和雄鱼的鱼尾切除进行尾鳍DNA提取,按照上述方法进行PCR扩增确认是否突变并测序确认,将有突变的雌雄斑马鱼配对,后代作为F2
(10)待F2斑马鱼性成熟后,将F2所有的鱼剪尾提取DNA,先用上述F3/R4这一对引物进行PCR检测,阳性结果的基因组用F3/R3或者F4/R4引物检测单个基因的完整性,阴性结果即纯合子,送公司测序确认,得到hoxaa基因簇缺失斑马鱼纯合突变体。
作为优选,步骤(5)中,PCR反应条件为:预变性94℃3min;变性94℃30s,退火65℃30s,延伸72℃30s进行35个循环,再72℃10min,最后保温在12℃。
作为优选,步骤(7)中,PCR反应条件为:预变性94℃3min;变性94℃30s,退火58℃30s,延伸72℃40s进行35个循环,再72℃10min,最后保温在12℃。
作为优选,步骤(7)中,hoxa13a和hoxa1a基因的gRNA终浓度均为100ng/μL,Cas9蛋白的终浓度为800ng/μL。
作为优选,步骤(8)至(10)中,F0斑马鱼、F1斑马鱼和F2斑马鱼性成熟的时间均为3-4个月。
本发明还提供hoxaa基因簇缺失斑马鱼突变体,通过上述任一所述hoxaa基因簇缺失斑马鱼突变体的制备方法得到,其中删除的hoxaa基因簇大小为56.6kb。
本发明还提供所述hoxaa基因簇缺失斑马鱼突变体在构建与hoxaa基因簇缺失相关疾病的动物模型和药物筛选中的应用。
与现有技术相比,本发明的有益效果在于:
一、本发明利用片段删除方法在斑马鱼中精确删除hoxaa基因簇获得hoxaa基因簇缺失突变体,hoxaa可稳定遗传,构建出可遗传的疾病模型为后续研究基因和基因簇的功能以及疾病机理提供基础材料。
二、利用利用CRISPR技术在hoxa13a和hoxa1a各设计特异性的靶位点使斑马鱼中hoxaa基因簇被敲除,又不影响其他基因,形成特异性hoxaa基因簇敲除的斑马鱼。
三、本发明运用CRISPR技术删除基因组中长片段序列,删除的hoxaa基因簇大小为56.6kb,跨越了几个基因,实现了多基因的删除。
四、本发明针对不同目的基因的靶点分别设计一对特异性引物,然后运用双外侧引物进行片段敲除检测和测序确认,成功构建hoxaa基因簇缺失斑马鱼突变体鱼系,可作为与hoxaa基因簇缺失相关疾病的动物模型,用于研究hoxaa基因在动物体生长发育的调节机制以及hoxaa基因缺失而引起的相关疾病治疗。
五、本发明通过CRISPR技术构建hoxaa基因簇缺失斑马鱼突变体,与传统的基因编辑技术相比具有毒性小、准确性高、效率高、成本低、易操作、成功周期短等特点,而且相对于传统遗传学操作方法,CRISPR/Cas9系统能对预编辑的目标序列进行剪切,具有很强的正选压力,不需要额外使用选择标记,避了传统操作方法中常遇到的可用选择标计已有限、引入抗生素标记产生生物安全隐患等。
附图说明
图1是实施例中利用CRISPR技术成功删除hoxaa基因簇:(A)利用CRISPR技术敲除hoxaa基因簇的模式图,在两端的两个基因上分别设计sgRNA和对应的检测引物,注射后检测各sgRNA的酶切效率;(B、C)hoxala和hoxa13a基因sgRNA酶切效率检测图和hoxaa片段敲除效率检测图,显示成功删除hoxaa基因簇;(D)hoxaa基因簇片段敲除检测胶图。
图2是实施例中hoxaa基因簇缺失纯合突变体的筛选结果:(A)hoxaa基因簇敲除F1基因型鉴定,用双外侧引物进行PCR检测,显示成功筛选到杂合子;(B、C)F2基因型鉴定显示成功筛选到纯合突变体;(D)hoxaa基因簇F2纯合子测序峰图。
图3是实施例中野生型WT和hoxaa基因簇缺失纯合突变体的斑马鱼胚胎原位杂交结果:(A,B)心室标记基因vmhc探针原位杂交结果;(C,D)心房标记基因amhc探针原位杂交结果;(E,F)心脏腔室标记基因nppa探针原位杂交结果;(G,H)心脏腔室标记基nppb探针原位杂交结果,发现斑马鱼hoxaa-/-纯合突变体相较于野生型:突变体的nppa和nppb基因在房室间隔区域异位表达,而正常野生型的nppa和nppb基因仅在心房和心室表达,不在房室间隔表达,表明hoxaa突变影响心脏房室间隔的发育;比例尺:200um。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下实施例中所用的引物均由上海生工生物公司合成,所用的gRNA骨架质粒来自于文献:Chang N,Sun C,Gao L,Zhu D,Xu X,Zhu X,Xiong JW,Xi JJ.Genome editingwith RNA-guided Cas9 nuclease in zebrafish embryos,Cell Res,2013,23(4):465-472,Cas9购自南京金斯瑞生物公司,PCR反应中的酶购自北京全式金生物公司,其余无机(NaOH,Tris-hCl等)及有机试剂(乙醇等)购自国药集团化学试剂有限公司,本发明中使用的斑马鱼为野生型斑马鱼AB品系来源于上海海洋大学水产与生命学院斑马鱼平台,斑马鱼的hoxaa基因簇序列在NCBI(https://www.ncbi.nlm.nih.gov/)网站上获取,靶点gRNA序列使用CHOPCHOP(http://chopchop.cbu.uib.no/)网站设计得到。
如图1所示,构建hoxaa基因簇缺失斑马鱼突变体鱼系:在hoxa1a的第一个外显子上设计特异的gRNA序列对hoxa1a进行敲除,在hoxa13a的第一个外显子上设计特异的gRNA序列对hoxa13a进行敲除,在斑马鱼单胚胎时期通过显微注射的方式同时注射两端特异的gRNA序列,将hoxa1a基因和hoxa13a基因之间的多个基因同时敲除,得到可稳定遗传的hoxaa基因簇缺失斑马鱼突变体鱼系,技术路线如下:利用CRISPR技术设计gRNA位点—PCR扩增—gRNA的模板纯化—体外转录—gRNA纯化—显微注射—检测敲除效率—饲养至成鱼—与野生型交配—检测下一代胚胎是否携带突变位点—饲养成年后剪尾鉴定出杂合突变体—两杂合体交配得到纯合突变体。
实施例1
本实施例通过CRISPR技术构建hoxaa基因簇敲除的斑马鱼突变体,其步骤如下:
(1)在hoxa13a基因的第一个外显子上设计gRNA序列为:
hoxa13a T1:5’-GGGCAATCACAACCAGTGGA-3’(SEQ ID NO:1);
在hoxa1a基因的第一个外显子上设计gRNA序列为:
hoxa1a T1:5’-GGGCACTTTGTCAAGCACC-3’(SEQ ID NO:2)。
(2)设计并合成gRNA引物,其中,hoxa13a基因引物序列为:
F1:5’-TAATACGACTCACTATAGGGCAATCACAACCAGTGGAGTTTTA
GAGCTAGAAATAGC-3’(SEQ ID NO:3);
R1:5’-AAAAAAAGCACCGACTCGGTGCCAC-3’(SEQ ID NO:4);
hoxa1a基因引物序列为:
F2:5’-TAATACGACTCACTATAGGGCACTTTGTCAAGCACCGTTTTAGAGCTAGAAATAGC-3’(SEQID NO:5);
R2:5’-AAAAAAAGCACCGACTCGGTGCCAC-3’(SEQ ID NO:6)。
(3)分别以上述引物、gRNA质粒骨架为模板进行PCR反应,反应体系为:
Figure BDA0003724211320000051
Figure BDA0003724211320000061
PCR反应条件为:预变性94℃3min;变性94℃30s,退火65℃30s,延伸72℃30s进行35个循环,再72℃10min,最后保温在12℃;电泳检测PCR产物后,利用DNA纯化试剂盒进行纯化,用RNase-Free的水进行溶解洗脱。
(4)在RNase-Free条件下,分别将上述PCR纯化产物进行体外转录得到gRNA,转录体系为:
Figure BDA0003724211320000062
反应条件为:37℃反应1.5h,后加入DNase 1μL,37℃反应15min。体外转录后用LiCl沉淀法对gRNA进行纯化,具体方法为:向上述反应液中加入2.5μL的4M LiCl,再加入100μL的100%乙醇;放置-80℃冰箱孵育至少2小时(也可以过夜处理);4℃、12000rpm、15min,弃上清;用预冷的70%乙醇洗两次,4℃、8000rpm、10min,弃上清,目的是为了去除杂质;超净台中室温通风晾干5min;最后加入15μL RNase-free水溶解,Nanodrop检测浓度和电泳检测。
(5)将前述纯化后的gRNA和Cas9蛋白混合后显微注射到单细胞期的斑马鱼胚胎中,注射时Cas9蛋白终浓度800ng/μL,gRNA终浓度100ng/μL,注射1nL。24h后取3组,5枚胚胎一组放入PCR小管中,利用碱裂法提取DNA:向每管中加入30μL 50mM NaOH溶液,95℃-10min后取出,在震荡仪上充分震碎组织后;继续95℃-10min;加入3μL 1M Tris-hCl(pH=8)后震荡混匀离心10000rpm-5min。
针对hoxa13a基因设计检测引物,序列如下:
F3:5’-TCAGCTTCTACAGGCGAAGA-3’(SEQ ID NO:7);
R3:5’-TGGCATACTCCCGTTCAAGC-3’(SEQ ID NO:8);
针对hoxa1a基因设计检测引物,序列如下:
F4:5’-TATCACTAGCGCCCGAACAC-3’(SEQ ID NO:9);
R4:5’-TCACAGACGATTCCACGTCC-3’(SEQ ID NO:10);
用F3/R3与F4/R4这两对引物对敲除位点进行PCR扩增,反应体系为:
Figure BDA0003724211320000071
PCR反应条件为:预变性94℃3min;变性94℃30s,退火58℃30s,延伸72℃40s进行35个循环,再72℃10min,最后保温在12℃;后用电泳检测,对不同gRNA序列的效率进行统计:hoxa13a T1:74.26%;hoxa13a T2:73.17%;hoxa1a T1:58.68%;hoxa13a T1比hoxa13aT2效率略高,因此选择hoxa13a T1和hoxa1a T1作为靶点组合进行后续片段删除。
(6)将hoxa13a T1和hoxa1a T1纯化后的gRNA和Cas9蛋白混合后显微注射到单细胞期的斑马鱼胚胎中,注射时Cas9蛋白终浓度800ng/μL,gRNA终浓度100ng/μL,注射1nL。24h后取3组,5枚胚胎一组放入PCR小管中,利用碱裂法提取DNA:向每管中加入30μL50mMNaOh溶液,95℃-10min后取出,在震荡仪上充分震碎组织后;继续95℃-10min;加入3μL 1MTris-hCl(pH=8)后震荡混匀离心10000rpm-5min。
用F3/R4这对引物对敲除位点进行PCR扩增,反应体系为:
Figure BDA0003724211320000072
PCR反应条件为:预变性94℃3min;变性94℃30s,退火58℃30s,延伸72℃40s进行35个循环,再72℃10min,最后保温在12℃;后用电泳检测,将敲除成功的那批注射组小鱼饲养长大,作为F0
(7)3-4个月后F0斑马鱼性成熟,将突变的斑马鱼与野生型的斑马鱼杂交,得到一定概率的杂合子,取胚胎按上述碱裂法进行DNA提取,并用F3/R4这对引物对敲除位点进行PCR扩增后,电泳检测,并送测序确认,将有突变的斑马鱼培养长大;作为F1
(8)3-4个月后F1斑马鱼性成熟,对其剪尾鉴定每条鱼的基因型,利用步骤(6)双外侧引物PCR鉴定,其结果中有条带鱼,即为杂合子(hoxaa+/-),没条带鱼即为野生型(WT)(图2,A),将突变的雌雄斑马鱼进行配对,将其后代养大作为F2。
(9)3-4个月后F2斑马鱼性成熟,将F2的鱼进行剪尾鉴定基因型,同样通过步骤(6)双外侧引物PCR鉴定,其结果中有条带的为杂合子,没有条带的可能是野生型也可能是纯合子;接着做一个单位点检测,将F3/R4引物进行PCR检测的阳性结果,用F3/R3或者F4/R4引物检测单个基因的完整性,反应体系为:
Figure BDA0003724211320000081
PCR反应条件为:预变性94℃3min;变性94℃30s,退火62℃30s,延伸72℃40s进行35个循环,再72℃10min,最后保温在12℃;电泳检测,其结果中没有条带的即纯合子突变体(图2,B、C),送公司测序验证正确(图2,D),成功筛选到hoxaa基因簇缺失纯合突变体。
(10)将实施例制备的hoxaa的纯合突变体自交得到纯合后代,使用心脏腔室分别特异性标记的vmhc、amhc、nppa、nppb四种探针进行原位杂交,发现斑马鱼hoxaa-/-纯合突变体相较于野生型:突变体的nppa和nppb基因在房室间隔区域异位表达,而正常野生型的nppa和nppb基因仅在心房和心室表达,不在房室间隔表达(图3),表明hoxaa突变影响心脏房室间隔的发育。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
序列表
<110> 上海海洋大学
<120> hoxaa基因簇缺失斑马鱼突变体的制备方法和应用
<141> 2022-06-30
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213> 人工序列()
<400> 1
gggcaatcac aaccagtgga 20
<210> 2
<211> 19
<212> DNA
<213> 人工序列()
<400> 2
gggcactttg tcaagcacc 19
<210> 3
<211> 57
<212> DNA
<213> 人工序列()
<400> 3
taatacgact cactataggg caatcacaac cagtggagtt ttagagctag aaatagc 57
<210> 4
<211> 25
<212> DNA
<213> 人工序列()
<400> 4
aaaaaaagca ccgactcggt gccac 25
<210> 5
<211> 56
<212> DNA
<213> 人工序列()
<400> 5
taatacgact cactataggg cactttgtca agcaccgttt tagagctaga aatagc 56
<210> 6
<211> 25
<212> DNA
<213> 人工序列()
<400> 6
aaaaaaagca ccgactcggt gccac 25
<210> 7
<211> 20
<212> DNA
<213> 人工序列()
<400> 7
tcagcttcta caggcgaaga 20
<210> 8
<211> 20
<212> DNA
<213> 人工序列()
<400> 8
tggcatactc ccgttcaagc 20
<210> 9
<211> 20
<212> DNA
<213> 人工序列()
<400> 9
tatcactagc gcccgaacac 20
<210> 10
<211> 20
<212> DNA
<213> 人工序列()
<400> 10
tcacagacga ttccacgtcc 20

Claims (8)

1.hoxaa基因簇缺失斑马鱼突变体的制备方法,其特征在于,通过CRISPR技术构建,依次包括设计gRNA位点—PCR扩增—gRNA的模板纯化—体外转录—gRNA纯化—显微注射—检测敲除效率—饲养至成鱼—与野生型交配—检测下一代胚胎是否携带突变位点—饲养成年后剪尾鉴定出杂合突变体—两杂合体交配得到纯合突变体的步骤,具体包括以下步骤:
(1)获取斑马鱼的hoxaa基因簇序列;
(2)在斑马鱼hoxa13a基因的第一个外显子上设计如SEQ ID NO:1所示的靶点gRNA序列,在hoxa1a基因的第一个外显子上设计如SEQ ID NO:2所示的靶点gRNA序列;
(3)设计并合成hoxa13a基因的gRNA引物F1和R1以及hoxa1a基因的gRNA引物F2和R2,序列分别如SEQ ID NO:3-6所示;
(4)设计并合成hoxa13a基因的检测引物F3和R3以及hoxa1a基因的检测引物F4和R4,序列分别如SEQ ID NO:7-10所示;
(5)以gRNA骨架质粒为模板使用步骤(3)的gRNA引物进行PCR扩增反应,电泳检测PCR产物,纯化;
(6)在RNase-Free条件下将上述PCR纯化产物分别进行体外转录得到gRNA,转录体系中加入T7聚合酶和NTP,37℃反应1.5h,纯化;
(7)将步骤(6)纯化后的两种gRNA和Cas9蛋白混合后显微注射到斑马鱼单细胞期胚胎中,24h后取胚胎并提取DNA,用上述F3/R4这一对引物对敲除位点进行PCR扩增,电泳检测PCR产物,将敲除成功的小鱼饲养长大,作为F0
(8)待F0斑马鱼性成熟后,与野生型的斑马鱼杂交得到一定概率的杂合子,取胚胎并提取DNA,用上述F3/R4这一对引物对敲除位点进行PCR扩增,电泳检测PCR产物并测序确认,将有突变的斑马鱼培养长大,作为F1
(9)待F1斑马鱼性成熟后,将雌鱼和雄鱼的鱼尾切除进行尾鳍DNA提取,按照上述方法进行PCR扩增确认是否突变并测序确认,将有突变的雌雄斑马鱼配对,取后代鱼卵进行检测,先用上述F3/R4这一对引物进行PCR检测,阳性结果的基因组用F3/R3或者F4/R4引物检测单个基因的完整性,阴性结果即纯合子,将其后代养大,作为F2
(10)待F2斑马鱼性成熟后,将F2所有的鱼剪尾提取DNA,按上述方法检测得到hoxaa基因簇缺失斑马鱼突变体。
2.根据权利要求1所述hoxaa基因簇缺失斑马鱼突变体的制备方法,其特征在于,步骤(5)中,PCR反应条件为:预变性94℃3min;变性94℃30s,退火65℃30s,延伸72℃30s进行35个循环,再72℃10min,最后保温在12℃。
3.根据权利要求1所述hoxaa基因簇缺失斑马鱼突变体的制备方法,其特征在于,步骤(7)中,PCR反应条件为:预变性94℃3min;变性94℃30s,退火58℃30s,延伸72℃40s进行35个循环,再72℃10min,最后保温在12℃。
4.根据权利要求1所述hoxaa基因簇缺失斑马鱼突变体的制备方法,其特征在于,步骤(7)中,hoxa13a和hoxa1a基因的gRNA终浓度均为100ng/μL,Cas9蛋白的终浓度为800ng/μL,注射量为1nL。
5.根据权利要求1所述hoxaa基因簇缺失斑马鱼突变体的制备方法,其特征在于,F0斑马鱼、F1斑马鱼和F2斑马鱼性成熟的时间均为3-4个月。
6.hoxaa基因簇缺失斑马鱼突变体,通过权利要求1至5任一项所述hoxaa基因簇缺失斑马鱼突变体的制备方法得到。
7.根据权利要求6所述的hoxaa基因簇缺失斑马鱼突变体,其特征在于,所述hoxaa基因簇缺失斑马鱼突变体中删除的hoxaa基因簇大小为56.6kb。
8.权利要求6或7所述的hoxaa基因簇缺失斑马鱼突变体在构建与hoxaa基因簇缺失相关疾病的动物模型和药物筛选中的应用。
CN202210760745.2A 2022-06-30 2022-06-30 hoxaa基因簇缺失斑马鱼突变体的制备方法和应用 Active CN114931128B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210760745.2A CN114931128B (zh) 2022-06-30 2022-06-30 hoxaa基因簇缺失斑马鱼突变体的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210760745.2A CN114931128B (zh) 2022-06-30 2022-06-30 hoxaa基因簇缺失斑马鱼突变体的制备方法和应用

Publications (2)

Publication Number Publication Date
CN114931128A true CN114931128A (zh) 2022-08-23
CN114931128B CN114931128B (zh) 2024-08-06

Family

ID=82868038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210760745.2A Active CN114931128B (zh) 2022-06-30 2022-06-30 hoxaa基因簇缺失斑马鱼突变体的制备方法和应用

Country Status (1)

Country Link
CN (1) CN114931128B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2293722A1 (en) * 1997-06-09 1998-12-17 Medical College Of Georgia Research Institute, Inc. Transgenic fish with tissue-specific expression
CA2646779A1 (en) * 2008-11-25 2010-05-25 Gerard Voon Bioscience ix
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2293722A1 (en) * 1997-06-09 1998-12-17 Medical College Of Georgia Research Institute, Inc. Transgenic fish with tissue-specific expression
CA2646779A1 (en) * 2008-11-25 2010-05-25 Gerard Voon Bioscience ix
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
CN108018316A (zh) * 2017-12-20 2018-05-11 湖南师范大学 一种基因敲除选育rmnd5b基因缺失型斑马鱼的方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
LI, T: "Downregulated long noncoding RNA LUCAT1 inhibited proliferation and promoted apoptosis of cardiomyocyte via miR-612/HOXA13 pathway in chronic heart failure", 《EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES》, vol. 24, no. 1, 4 February 2020 (2020-02-04), pages 385 - 395 *
MAKKI, N (MAKKI, NADJA) ; CAPECCHI, MR (CAPECCHI, MARIO R.): "Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development", 《DEVELOPMENTAL BIOLOGY》, vol. 357, no. 2, 15 September 2011 (2011-09-15), pages 295 - 304 *
张亚南;石仙;熊显荣;兰道亮;李键;: "牦牛HOXA1基因的时空表达及其对机体调控机制的研究", 中国畜牧兽医, no. 09, 20 September 2016 (2016-09-20), pages 2265 - 2271 *
张绪帅: "CRISPR/Cas9 系统介导的七鳃鳗和斑马 鱼基因组编辑方法的建立与优化", 《上海海洋大学》, 15 February 2017 (2017-02-15), pages 13 - 28 *
柳江燕: "HOXA1基因突变与先天性心脏病关系的研究", 《兰州大学》, 16 March 2013 (2013-03-16), pages 15 - 30 *
武秀知: "斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究", 《中国生物工程杂志》, 30 April 2021 (2021-04-30), pages 20 - 26 *
耿波孙效文: "鲤鱼同源框基因家族HoxA2b基因生物信息学分析", 《浙江农学学报》, 31 May 2012 (2012-05-31), pages 787 - 791 *
郭华荣;陶奕文;: "CRISPR/Cas9基因编辑技术在水生甲壳动物中的应用进展", 中国海洋大学学报(自然科学版), no. 09, 24 August 2020 (2020-08-24), pages 105 - 112 *

Also Published As

Publication number Publication date
CN114931128B (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
CN110551759B (zh) 一种提高转基因细胞重组效率的组合物及方法
CN109628454B (zh) 斑马鱼糖原贮积症gys1和gys2基因突变体的构建方法
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN110643636B (zh) 一种团头鲂MSTNa&amp;b基因敲除方法与应用
WO2022227692A1 (zh) 一种无肌间刺鲫品系及其培育方法
CN111154758A (zh) 敲除斑马鱼slc26a4基因的方法
CN113088521A (zh) 一种基于CRISPR/Cas9技术的Ahnak2基因敲除动物模型的构建方法
CN110894510A (zh) 一种基因敲除选育Lgr6基因缺失型斑马鱼的方法
CN108866102B (zh) 一种Adgrv1基因Y6236fsX1突变动物模型的构建方法
CN113817734A (zh) 一种hectd4基因敲除斑马鱼癫痫模型及其构建方法和应用
CN117384911A (zh) Asb15b基因和Asb14a基因的应用及减少鱼类肌间骨的方法
CN114934073B (zh) hoxa1a基因敲除斑马鱼突变体的构建方法和应用
CN115807037B (zh) 一种遗传可控的四倍体鱼的选育方法及三倍体鱼的制备方法
CN116515825A (zh) 一种敲除斑马鱼ddx18基因的sgRNA组合及其应用
CN114480497B (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法
CN114931128B (zh) hoxaa基因簇缺失斑马鱼突变体的制备方法和应用
CN115029352A (zh) 一种基因敲除选育adgrg1基因缺失型斑马鱼的方法
CN110438159B (zh) 一种引发肌原纤维肌病的基因突变小鼠模型的构建方法
CN113957070A (zh) 一种chd2基因敲除斑马鱼癫痫模型及其构建方法和应用
CN110643605B (zh) 一种团头鲂MSTNa&amp;b基因敲除的gRNA及其模板
CN111793653B (zh) 一种dpy19l1l基因缺失型斑马鱼的构建方法
CN114934076A (zh) 斑马鱼hoxba基因簇缺失突变体的制备方法和应用
CN111849977B (zh) 一种精子载体制备转基因动物的方法以及一种制备矮小型转基因鸡的sgRNA和制备方法
CN114908098A (zh) 斑马鱼hoxb1a基因缺失突变体的制备方法和应用
CN111118009A (zh) 敲除斑马鱼p2rx2基因的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant