CN114920958A - 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用 - Google Patents

一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用 Download PDF

Info

Publication number
CN114920958A
CN114920958A CN202210579388.XA CN202210579388A CN114920958A CN 114920958 A CN114920958 A CN 114920958A CN 202210579388 A CN202210579388 A CN 202210579388A CN 114920958 A CN114920958 A CN 114920958A
Authority
CN
China
Prior art keywords
hydrogel
agarose
polyvinyl alcohol
mixed solution
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210579388.XA
Other languages
English (en)
Inventor
张伟
李津铭
李姮
吴承伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210579388.XA priority Critical patent/CN114920958A/zh
Publication of CN114920958A publication Critical patent/CN114920958A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/10Materials or treatment for tissue regeneration for reconstruction of tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/30Materials or treatment for tissue regeneration for muscle reconstruction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/34Materials or treatment for tissue regeneration for soft tissue reconstruction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明属于人造组织/器官修复材料领域,提出一种具有方向性微结构的聚乙烯醇‑琼脂糖水凝胶的制备方法及应用。以聚乙烯醇和琼脂糖为基质材料,利用琼脂糖的交联特性,形成琼脂糖大分子糖链,依靠前驱液的流动引导琼脂糖大分子链在前驱液内产生方向性,在冷冻循环的过程中聚乙烯醇围绕琼脂糖的糖链进行结晶,形成具有方向性的纤维状微结构的水凝胶。该制备方法无需借助外加物理场的作用,制备水凝胶具有各向异性;而且制备流程简单,可重复性高,对设备要求低等优点。制备的水凝胶具有均匀的方向性的纤维状微结构,提升材料的抗拉伸性能,并通过注射器制得任意形状的具有方向性的水凝胶。得到的水凝胶有望应用于人造组织/器官修复材料领域。

Description

一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方 法及应用
技术领域
本发明属于生物材料领域,特别是人造韧带、肌肉、心血管等组织/器官修复材料领域,具体涉及一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用。
背景技术
水凝胶材料具有高含水率、低摩擦系数、良好的化学稳定性等特点,有望用于生物组织损伤的修复。各向同性的水凝胶材质均匀,但难以满足韧带、肌肉、心血管等组织/器官对力学强度、柔顺性等各向异性的要求。这种力学性能的生物不相容性,常导致移植的失败,不仅难以替代组织/器官的功能,甚至诱发严重的医疗事故。
各向异性的水凝胶可以通过非均质结构或成分在不同方向上显示出差异显著的力学、物理特性。如各向异性的水凝胶可以沿其结构的方向性表现出优异的抗拉伸和抗疲劳性能,有望作为人造韧带、肌肉、心血管等组织/器官的修复或替代材料。
Zhao等(Advanced Materials,2017,29(45):1703045)总结了具有高序结构的纳米复合水凝胶的主要制备策略,包括磁场引导磁性纳米颗粒、电场引导电响应纳米材料、机械应变诱导纳米材料沿变形方向形成内部结构顺序、温度场进行冷冻诱导的结构顺序。这些方法需要外加电、磁、温度场等物理场,通过外加场产生的力在材料内部形成有序结构,设备要求高、工艺复杂。利用纳米材料的自组装形成有序内部结构的纳米复合水凝胶是另一种策略(Advanced Materials,2017,29(45):1703045)。自组装纳米复合水凝胶使用单分散的0D胶体颗粒可以组装形成紧密排列的结构顺序,基于功能分子和纳米材料的超分子交互作用,这些自组装单元的1D聚集可以在水溶液中发生,在水凝胶内产生有序结构。该方法依赖纳米尺度对材料的处理,流程复杂、对操作技术要求高、制备成本高。此外,Chen等(Advanced Materials,2021,34(5):2102877)总结了通过3D打印特定结构的复合材料,从而得到各向异性的水凝胶。但受设备和制备工艺的约束,3D技术对材料的组成、物性等提出了苛刻的要求,适用范围有限。
本发明提出一种基于琼脂糖和聚乙烯醇的有方向性纤维状水凝胶的制备方法。已报导的有方向性结构的水凝胶的制备方法,主要依赖外加物理场对材料的方向性结构进行引导,或是提前对材料进行纳米尺度的结构预处理,使水凝胶材料组装为具有方向性的结构。而本发明主要依靠琼脂糖分子的交联特性,在前驱液中形成大分子糖链,依靠前驱液的流动引导琼脂糖大分子链在前驱液内产生方向性,在冷冻循环的过程中聚乙烯醇围绕琼脂糖的糖链进行结晶,形成了具有方向性的纤维状微结构的水凝胶。该方法具有制备流程简单,可重复性高,对设备要求低等优点,制备水凝胶具有各向异性的力学性能。
发明内容
针对各向异性水凝胶制备工艺复杂、设备要求高等问题,本发明提供一种聚乙烯醇-琼脂糖(PVA-AG)水凝胶的制备方法。采用聚乙烯醇和琼脂糖为材料,通过琼脂糖在静置时缓慢形成分子间氢键,在前驱液中交联为琼脂糖大分子链,同时前驱液保留流动性,在静置后,将前驱液倒进模具,聚乙烯醇在冷冻循环过程中围绕琼脂糖大分子链进行结晶,产生具有方向性微结构的水凝胶。该制备方法操作简单,成胶速度快,成胶后胶体抗拉伸的力学性能显著提升。而且,由于在水凝胶中引入天然多糖,制备的水凝胶表现出良好的生物相容性,有望作为人造韧带、肌肉、心血管等材料。
为了实现上述目的,本发明的技术方案为:
本发明提出的聚乙烯醇-琼脂糖水凝胶的成胶机理:在聚乙烯醇与琼脂糖加热溶解后,静置至室温的过程中,琼脂糖首先进行了较低程度的交联,形成了糖链间氢键,琼脂糖分子形成了比分子尺度大的琼脂糖网络,分布在前驱液中。此时前驱液仍具有流动性,在倒入模具的过程中,随前驱液整体的流动形成了与流动方向相同的琼脂糖链。在冷冻循环过程中,有方向性分布的琼脂糖链成为了聚乙烯醇结晶的晶核,引导聚乙烯醇分子围绕糖链进行结晶,最终形成了有方向性的纤维状分布。
一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法,该制备方法包括以下步骤:
第一步,将聚乙烯醇、琼脂糖按比例加入去离子水中,80-120℃恒温水浴加热,持续搅拌至聚乙烯醇完全溶解且其余物质均匀混合,得到混合液A;混合液A中的聚乙烯醇的质量分数为5~50wt.%,琼脂糖的质量分数为1~10wt.%;
第二步,将混合液A停止加热,静置10min~12h,温度降至20~80℃后,记为混合液B;
第三步,将混合液B倒入模具中定型,或将混合液B倒入注射器,用注射器制备成任意形状;对固定形状的水凝胶进行冷冻解冻循环,得到聚乙烯醇-琼脂糖水凝胶;一次冷冻解冻循环指混合液B冷冻成型后取出解冻,重复多次至形成PVA-AG水凝胶;冷冻温度为-18~-25℃,冷冻时间为12~20h,解冻温度为15~25℃,解冻时间为6~12h;循环2次以上。
一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的应用,该聚乙烯醇-琼脂糖水凝胶用于制备人造韧带、肌肉、心血管。
与现有技术相比,本发明的有益效果为:
本发明提出了一种具有各向异性微结构PVA-AG水凝胶的制备方法,借助琼脂糖的交联方式,利用前驱液的流动形成方向性。该制备方法无需借助外加物理场的作用,制备水凝胶具有各向异性的力学性能;而且制备流程简单,可重复性高,对设备要求低等优点。制备的水凝胶具有均匀的方向性的纤维状微结构,该结构可以提升材料的抗拉伸性能,并可以通过注射器制得任意形状的具有方向性的水凝胶。该方法制备的水凝胶有望应用于人造组织/器官修复材料领域。
附图说明
图1为PVA-AG水凝胶制备流程图;
图2为PVA-AG水凝胶的扫描电镜图;
图3为PVA-AG水凝胶正常制备和对比组的扫描电镜形貌图,其中图a按照专利所述方法制备,图b为一般方法“一锅法”所制备的水凝胶。;
图4为PVA-AG水凝胶的拉伸应力-应变图;
图5为PVA-AG水凝胶通过注射器书写汉字“力”;
图6为PVA-AG水凝胶书写汉字“力”的扫描电镜图,其中图(a)为竖笔划的局部放大图,图(b)为横笔划的局部放大图,图(c)为笔划拐弯时的局部放大图,图(d)是两笔划交叉位置的局部放大图。
具体实施方式
以下将结合技术实现方案和附图说明中的图3和图4,详细介绍本发明的具体实施方式。
实施例1
a)将5g PVA、1g琼脂糖加入94mL去离子水中,80℃恒温水浴加热,搅拌至PVA完全溶解,得到混合液A。
b)将混合液A停止加热,静置10min,温度降至20℃后得到混合液B。
c)将混合液B倒入模具中,进行循环冷冻解冻,冷冻温度为-18℃,冷冻时间为12h,解冻温度为15℃,解冻时间为6h。循环次数为2次,得到聚乙烯醇-丙烯酰胺水凝胶。
基于上述步骤制备的PVA-AG水凝胶,开展形貌观察、力学性能实验。具体步骤如下:
1)形貌观察:将制备的水凝胶用液氮冷冻后淬断,进行冷冻真空干燥处理,使用扫描电镜对其淬断面形貌进行观察。
2)力学性能实验:对按照GB/T528-92(杆截面:25mm×4mm×2mm)制备的杠铃形水凝胶样品进行单轴拉伸试验。每次测试均以300%/min的应变速率进行。为了准确测量应变,使用了光学方法,其中使用CCD相机跟踪拉伸测试期间两个标记点之间的距离变化直至试样拉断,并通过图像处理计算应变。注意高速摄像机的拍摄频率与应力的采样频率一致,这样便于数据分析。拉伸模量计算为0.1应变下的切线模量。
实施例2
a)将50g PVA、10g琼脂糖加入40mL去离子水中,120℃恒温水浴加热,搅拌至PVA完全溶解,得到混合液A。
b)将混合液A停止加热,静置12h,温度降至80℃后得到混合液B。
c)将混合液B倒入模具中,进行循环冷冻解冻,冷冻温度为-25℃,冷冻时间为20h,解冻温度为25℃,解冻时间为12h。循环次数为4次,得到聚乙烯醇-丙烯酰胺水凝胶。
基于上述步骤制备的PVA-AAm-AG水凝胶,开展形貌观察、力学性能实验,具体步骤如实施例1。
实施例3
a)将27.5g PVA、5.5g琼脂糖加入67mL去离子水中,100℃恒温水浴加热,搅拌至PVA完全溶解,得到混合液A。
b)将混合液A停止加热,静置6h,温度降至50℃后得到混合液B。
c)将混合液B倒入模具中,进行循环冷冻解冻,冷冻温度为-22℃,冷冻时间为16h,解冻温度为20℃,解冻时间为9h。循环次数为3次,得到聚乙烯醇-丙烯酰胺水凝胶。
基于上述步骤制备的PVA-AAm-AG水凝胶,开展形貌观察、力学性能实验,具体步骤如实施例1。
图1是PVA-AG水凝胶制备流程图,按照流程图操作可制备得到具有方向性纤维状微结构的PVA-AG水凝胶。
图2是为PVA-AG水凝胶的扫描电镜图,可以看到PVA-AG成功制备纤维状结构。
图3是为PVA-AG水凝胶正常制备和对比组的扫描电镜形貌图。比较专利所述制备方法与一般制备方式“一锅法”的水凝胶进行比对,通过扫描电镜观察微观结构。可以看出专利所述的流程成功制备出具有方向性的各向异性水凝胶,而相同材料的水凝胶则呈现为各向同性,不具有方向性。
图4是PVA-AG水凝胶的拉伸应力-应变图,拉伸模量计算为0.1应变下的切线模量。
拉伸实验的实验条件为:使用具有2kN加载单元的SANS万能试验机通过单轴拉伸实验测试水凝胶的力学性能。对按照GB/T528-92(杆截面:25mm×4mm×2mm)制备的杠铃形水凝胶样品进行单轴拉伸试验。每次测试均以300%/min的应变速率进行。为了准确测量应变,使用了光学方法,其中使用CCD相机跟踪拉伸测试期间两个标记点之间的距离变化直至试样拉断,并通过图像处理计算应变。注意高速摄像机的拍摄频率与应力的采样频率一致,这样便于数据分析。拉伸模量计算为0.1应变下的切线模量。
测试了纤维方向沿拉伸方向、纤维方向垂直于拉伸方向和无纤维结构的PVA-AG水凝胶的拉伸性能。由拉伸应力-应变曲线可以看出,无条纹的水凝胶表现出最弱的力学性能,具有0.209MPa的拉伸模量和0.89MPa的拉伸强度极限,拉伸断裂应变也为三组水凝胶中最短,为226%。条纹方向垂直拉伸方向的水凝胶表现出了比无条纹水凝胶更好的力学性能,模量提升为0.275MPa,强度极限提升为1.43MPa,拉伸断裂应变也提高至276%。条纹方向平行于拉伸方向的水凝胶表现出了最强的拉伸性能,具有0.356MPa的拉伸模量和2.04MPa的拉伸强度极限,相比无条纹水凝胶具有明显的提升,断裂应变也提升至302%。因此有方向性的纤维状微结构可以提升材料的抗拉伸性能。
图5为PVA-AG水凝胶通过注射器书写汉字“力”的示意图。图6是PVA-AG水凝胶书写汉字“力”的扫描电镜图。
实验方式为:在加热搅拌并静置冷却后,将水凝胶的前驱液倒入注射器后,再静置一段时间。注射器不使用针头,将前驱液注射至玻璃培养皿的表面,并尝试书写汉字“力”,以说明纤维状条纹结构的可控性。将书写的水凝胶冷冻循环3次后真空干燥,用扫描电镜观察水凝胶的形貌。
实验说明材料的方向性可以通过注射器引导形成,并与注射方向保持一致。该制备方法简单有效,并可以通过注射器制备任意形状的水凝胶,制备形貌不受限制,制备成功率高。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制。应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (2)

1.一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法,其特征在于,该制备方法包括以下步骤:
第一步,将聚乙烯醇、琼脂糖按比例加入去离子水中,80-120℃恒温水浴加热,持续搅拌至聚乙烯醇完全溶解且其余物质均匀混合,得到混合液A;混合液A中的聚乙烯醇的质量分数为5~50wt.%,琼脂糖的质量分数为1~10wt.%;
第二步,将混合液A停止加热,静置10min~12h,温度降至20~80℃后,记为混合液B;
第三步,将混合液B倒入模具中定型,或将混合液B倒入注射器,用注射器制备成任意形状;对固定形状的水凝胶进行冷冻解冻循环,得到聚乙烯醇-琼脂糖水凝胶;一次冷冻解冻循环指混合液B冷冻成型后取出解冻,重复多次至形成PVA-AG水凝胶;冷冻温度为-18~-25℃,冷冻时间为12~20h,解冻温度为15~25℃,解冻时间为6~12h;循环2次以上。
2.一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的应用,其特征在于,该聚乙烯醇-琼脂糖水凝胶用于制备人造韧带、肌肉、心血管。
CN202210579388.XA 2022-05-26 2022-05-26 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用 Pending CN114920958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210579388.XA CN114920958A (zh) 2022-05-26 2022-05-26 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210579388.XA CN114920958A (zh) 2022-05-26 2022-05-26 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用

Publications (1)

Publication Number Publication Date
CN114920958A true CN114920958A (zh) 2022-08-19

Family

ID=82811306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210579388.XA Pending CN114920958A (zh) 2022-05-26 2022-05-26 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114920958A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116059440A (zh) * 2023-02-14 2023-05-05 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808353A (en) * 1982-09-24 1989-02-28 Nippon Oil Co., Ltd. Process for preparing an artificial biological membrane
CN105949690A (zh) * 2016-06-20 2016-09-21 潘盈 一种快速成型高强度水凝胶及其制备方法
CN107185051A (zh) * 2017-05-27 2017-09-22 大连理工大学 聚乙烯醇水凝胶及其制备方法
CN110229374A (zh) * 2019-06-30 2019-09-13 北方民族大学 一种高强度取向型聚乙烯醇水凝胶的制备方法及应用
CN113788960A (zh) * 2021-08-27 2021-12-14 大连理工大学 一种高力学强度聚乙烯醇-丙烯酰胺-琼脂糖水凝胶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808353A (en) * 1982-09-24 1989-02-28 Nippon Oil Co., Ltd. Process for preparing an artificial biological membrane
CN105949690A (zh) * 2016-06-20 2016-09-21 潘盈 一种快速成型高强度水凝胶及其制备方法
CN107185051A (zh) * 2017-05-27 2017-09-22 大连理工大学 聚乙烯醇水凝胶及其制备方法
CN110229374A (zh) * 2019-06-30 2019-09-13 北方民族大学 一种高强度取向型聚乙烯醇水凝胶的制备方法及应用
CN113788960A (zh) * 2021-08-27 2021-12-14 大连理工大学 一种高力学强度聚乙烯醇-丙烯酰胺-琼脂糖水凝胶的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116059440A (zh) * 2023-02-14 2023-05-05 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法
CN116059440B (zh) * 2023-02-14 2023-12-19 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法

Similar Documents

Publication Publication Date Title
Lin et al. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels
Hermenegildo et al. Hydrogel-based magnetoelectric microenvironments for tissue stimulation
CN109762182B (zh) 一种高强度-多孔结构聚乙烯醇-单宁酸水凝胶的制备方法及应用
CN110124113B (zh) 取向导电胶原水凝胶、仿生导电神经支架材料及其制备方法
CN112321978B (zh) 一种各向异性的高强高韧有机水凝胶及其制备方法和应用
CN103877617B (zh) 可注射蚕丝素蛋白-海藻酸盐双交联水凝胶及其制备方法和使用方法
CN109749098B (zh) 一种物理/化学双交联网络高强度明胶水凝胶及其制备方法
Luo et al. Anisotropic tough poly (vinyl alcohol)/graphene oxide nanocomposite hydrogels for potential biomedical applications
CN114920958A (zh) 一种具有方向性微结构的聚乙烯醇-琼脂糖水凝胶的制备方法及应用
Hu et al. Biomimetic 3D aligned conductive tubular cryogel scaffolds with mechanical anisotropy for 3D cell alignment, differentiation and in vivo skeletal muscle regeneration
WO2023024055A1 (en) Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength
CN110078945A (zh) 一种明胶基高强度水凝胶的制备方法
CN111407924A (zh) 一种具有各向异性表面的复合补片及其制备方法和应用
CN114395142B (zh) 基于硼酸酯键制备各向异性可编程水凝胶的方法以及水凝胶
Miao et al. Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels
Wu et al. Study on the technology and properties of 3D bioprinting SF/GT/n-HA composite scaffolds
Kim et al. Free-form three-dimensional nanocellulose structure reinforced with poly (vinyl alcohol) using freeze-thaw process
CN106319688A (zh) 一种基于静电纺丝工艺的海藻酸钠纳米纤维制备方法
CN113563642A (zh) 一种生物分析采样用复合微针及其制备方法
Dobrovol’skaya et al. Structure and characteristics of chitosan-based fibers containing chrysotile and halloysite
CN111312433B (zh) 具有界面互锁结构的纤维复合材料导电薄膜及其制备方法
CN115364279A (zh) 一种正交各向异性结构的高分子复合材料的制备方法
CN112646203A (zh) 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法
CN115068687B (zh) 梯度纳/微纤维支架及其制备方法与应用
CN115068671B (zh) 一种海藻酸钠水凝胶敷料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination