CN114914095B - 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用 - Google Patents

一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用 Download PDF

Info

Publication number
CN114914095B
CN114914095B CN202210498128.XA CN202210498128A CN114914095B CN 114914095 B CN114914095 B CN 114914095B CN 202210498128 A CN202210498128 A CN 202210498128A CN 114914095 B CN114914095 B CN 114914095B
Authority
CN
China
Prior art keywords
mil
blend
electrode material
polylactic acid
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210498128.XA
Other languages
English (en)
Other versions
CN114914095A (zh
Inventor
李照磊
王晓东
郭伟杰
周海骏
高勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202210498128.XA priority Critical patent/CN114914095B/zh
Publication of CN114914095A publication Critical patent/CN114914095A/zh
Application granted granted Critical
Publication of CN114914095B publication Critical patent/CN114914095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种聚乳酸外消旋共混物掺杂NH2‑MIL‑88电极材料及其制备方法和应用,所述复合电极材料的原料包括:聚左旋乳酸(5~25%)、聚右旋乳酸(5~25%)和NH2‑MIL‑88(50~90%);其制备方法为先将九水硝酸铁和2‑氨基对苯二甲酸分别溶于DMF中,加热水合后制备得NH2‑MIL‑88,再将NH2‑MIL‑88加入PLLA/PDLA外消旋共混物中,室温下混合搅拌,离心洗涤得到所述电极材料。本发明将高分子聚合物复合进MOF材料碳化后表现出优异的比电容性能,可应用于超级电容器领域。本发明可为MOFs材料中加入聚合物并获优异电化学性能提供参考。

Description

一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料及其制备 方法和应用
技术领域
本发明涉及一种电极材料及其制备方法和应用,尤其涉及一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料及其制备方法和应用。
背景技术
风能、太阳能等可再生能源的快速储存和利用,关系到未来能源体系结构的调整。超级电容器快速充放电的特点,对绿色能源的发展具有推动作用。近年来,金属-有机骨架(MOF)以其具有高比表面积、可调的化学和物理性质活性位点多等特点的纳米多孔结构而闻名,在能源存储和转化、环境修复和催化等诸多应用领域引起了人们的极大兴趣。尤其是将聚合物掺杂进入MOF材料之后所得复合材料在超级电容器领域表现出了突出的应用潜能。但大部分MOFs因导电性及稳定性较差,在电化学领域的应用受到限制。现有研究表明,MOFs在惰性气氛(如Ar、N2)中进行热解,可以得到具有良好导电性、高比表面积及孔道结构均匀分布的纳米多孔碳材料C-MOFs,作为超级电容器时可以获得更优异的电化学性能和较长的循环寿命。相较于将MOFs材料直接碳化,将高分子聚合物与MOF复合后,衍生碳化所得的电极材料也引起了业内研究人员的关注。例如,CN108010732A公开了一种应用于超级电容器的新纳米复合材料的制备,解决了以往出现的铁钴双金属氧化物导电性能差的缺陷,以获得良好的储能特性的超级电容器材料,电极材料表现出优异的比电容性能,以及良好的倍率特性,要优于以往报道中铁酸钴纳米复合材料的比电容性能。CN112735838A公开了一种氮磷共掺杂多孔碳P@ZIF-8及其制备方法和应用。该复合材料以1,3,5-三(4-氨苯基)苯,对苯二甲醛和DOPO合成的聚合物微球作为内核,在室温条件下,用甲醇做溶剂,采用直接沉淀法合成金属有机框架ZIF-8作为外壳,形成的复合材料经过高温段煅烧后,可以作为超级电容器的电极材料使用。
但是,以上发明当聚合物掺杂进入MOF材料作为超级电容器电极材料使用时,均存在对聚合物种类要求过高、工艺复杂、成本高昂等问题。
发明内容
发明目的:本发明旨在提供一种生产成本低且电化学性能良好的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料;本发明的另一目的在于提供一种工艺简单、成本较低的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料及其制备方法;本发明的另一目的在于提供一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料在超级电容器中的应用。
技术方案:本发明通过向具有有序多孔结构的NH2-MIL-88中复合加入能够形成立构复合晶的聚乳酸外消旋共混物,并进行碳化,得到性能优异的超级电容用电极材料,其原理在于,当NH2-MIL-88中引入聚乳酸外消旋共混物后,NH2-MIL-88的结构与性能会发生变化。首先,聚乳酸外消旋共混物的引入增加了NH2-MIL-88孔道内的比表面积;其次,NH2-MIL-88孔道内的聚乳酸外消旋共混物更容易形成立构复合晶,使得聚乳酸分子链间的排列更为紧密;再次,聚乳酸分子链能与NH2-MIL-88配体上的氨基产生相互作用,保证了后续碳化过程中复合材料结构的稳定性。鉴于以上原因,NH2-MIL-88/PLLA/PDLA碳化后,分层微孔结构将提供更多的电子和离子传输通道,电极中发生氧化还原反应的活性中心也将增多,从而表现出优异的比电容性能。
具体方案如下:
一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比包括:
聚左旋乳酸 5~25%;
聚右旋乳酸 5~25%;
NH2-MIL-88 50~90%;
所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到。
进一步地,所述聚左旋乳酸和聚右旋乳酸的数均分子量均为20~25kg/mol。
更进一步地,所述聚乳酸外消旋共混物与NH2-MIL-88的质量比为0.2~1:1。
上述一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料的制备方法,包括以下步骤:
(1)将九水硝酸铁和2-氨基对苯二甲酸分别溶于N,N-二甲基甲酰胺中,然后在室温环境下均匀搅拌至溶液澄清;
(2)将上述两种溶液加入反应釜中加热,进行水合反应;待自然冷却,用DMF离心洗涤得到的红棕色沉淀物,干燥,得到含有金属铁的多孔有机金属框架材料NH2-MIL-88;
(3)称取聚左旋乳酸和聚右旋乳酸分别溶解在有机溶剂中,随后将二者混合并搅拌,得到PLLA/PDLA外消旋共混物溶液,最后将NH2-MIL-88缓慢加入到PLLA/PDLA溶液中,搅拌离心,去掉上清液,得到沉淀物;
(4)用氯仿将得到的沉淀物离心洗涤,最终沉淀物在干燥后得到复合材料NH2-MIL-88/PLLA/PDLA;
(5)将复合材料NH2-MIL-88/PLLA/PDLA加热烧结5~8h;
(6)自然冷却,得到NH2-MIL-88/PLLA/PDLA的碳化粉末。
进一步地,步骤(2)中,所述水合反应温度为120~150℃,时间为20~24h;所述DMF离心洗涤次数为3~5次;干燥温度为80~100℃,干燥时间为24~30h。
进一步地,步骤(3)中,所述有机溶剂为二氯甲烷、三氯甲烷和丙酮中的一种,所述搅拌速度为300~500rpm,搅拌时间为50~70min;所述离心转速为6000~8000rpm,离心时间为5~10min。
进一步地,步骤(4)中,所述离心洗涤次数为3~5次,离心转度为6000~8000rpm,离心时间为5~10min,干燥温度为60~80℃。
所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料可应用于超级电容器中。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)本发明的电极材料生产成本低,聚乳酸为可降解生物材料,可以来自于玉米、小麦等植物原料,对环境危害低,符合绿色环保理念;(2)电化学性能优异,本发明中对比碳化NH2-MIL-88和聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料的电化学性能,发现掺杂碳化后的比电容明显优于二者,电流密度为3A/g时,比电容最高可达63.57F/g;(3)循环稳定性好,本发明中利用双电层(EDLC)机制存储电荷,而不是MOFs的赝电容行为,故而作为超级电容器材料时,可获得更好的电化学性能;(4)本发明保持了原本纳米多孔材料的优良特性,在外加碳源可控的情况下提高了电极材料的电容性能;(5)本发明中复合材料的的制备方法较为灵活简单,且制备过程中所使用的设备仪器均易实现。
附图说明
图1为不同电流密度下NM1P1(NH2-MIL-88:PLA=1:1,PLLA:PDLA=1:1)和NM5P1(NH2-MIL-88:PLA=1:1,PLLA:PDLA=1:1)碳化前后比电容的对比;其中材料制备过程中PLLA和PDLA数均分子量均为20kg/mol,有机溶剂选取三氯甲烷,搅拌速度300rpm,搅拌时间60min。
图2为1mol/L NaCl溶液下,C-NM1P1(NH2-MIL-88:PLA=1:1,PLLA:PDLA=1:1)的CV和GCD曲线;其中材料制备过程中PLLA和PDLA数均分子量均为20kg/mol,有机溶剂选取三氯甲烷,搅拌速度300rpm,搅拌时间60min。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸25%,聚右旋乳酸25%,NH2-MIL-88 50%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以300rpm室温搅拌混合约60min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM1P1
该电极材料所表现出的电化学电容性能最为优异,当电流密度为3A/g时,比电容达到了63.57F/g。
实施例2
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸8.5%,聚右旋乳酸8.5%,NH2-MIL-88 83%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以300rpm室温搅拌混合约60min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM5P1
该电极材料所表现出的电化学电容性能相较一般,当电流密度为3A/g时,比电容达到了15.43F/g。
实施例3
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸25%,聚右旋乳酸25%,NH2-MIL-88 50%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以400rpm室温搅拌混合约50min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM1P1
该电极材料所表现出的电化学电容性能较为优异,当电流密度为3A/g时,比电容达到了57.82F/g。
实施例4
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸8.5%,聚右旋乳酸8.5%,NH2-MIL-88 83%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以500rpm室温搅拌混合约70min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM1P1”。
该电极材料所表现出的电化学电容性能较为优异,当电流密度为3A/g时,比电容达到了62.14F/g。
实施例5
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸20%,聚右旋乳酸20%,NH2-MIL-88 60%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以300rpm室温搅拌混合约60min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM3P2
该电极材料所表现出的电化学电容性能较为优异,当电流密度为3A/g时,比电容达到了54.78F/g。
实施例6
一种用于超级电容的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,原料按质量百分比为:聚左旋乳酸10%,聚右旋乳酸10%,NH2-MIL-88 80%。
其中所述NH2-MIL-88为由九水硝酸铁和2-氨基对苯二甲酸水合制备得到;外消旋聚乳酸中聚左旋乳酸和聚右旋乳酸的质量比为1:1;复合体系合成过程中溶剂为三氯甲烷,以300rpm室温搅拌混合约60min后,6000rpm 10min离心洗涤沉淀物3次,最终沉淀物在80℃干燥后得到复合材料NH2-MIL-88/PLLA/PDLA在N2气氛下烧结5h,得到的材料标记为C-NM4P1
该电极材料所表现出的电化学电容性能相较普通,当电流密度为3A/g时,比电容达到了40.67F/g。
对比例1
将实例1中NH2-MIL-88/PLLA/PDLA未经过烧结处理得到的复合材料标记为NM1P1
对比例2
将实例2中NH2-MIL-88/PLLA/PDLA未经过烧结处理得到的复合材料标记为NM5P1
如图1所示,观察到C-NM1P1的电化学电容显著高于其它三者,当电流密度为3A/g时,NM1P1、NM5P1和C-NM5P1样品的比电容分别为:6.00、12.86和15.43F/g,而C-NM1P1的比电容达到了63.57F/g。对比NM1P1和NM5P1发现,随着聚乳酸外消旋共混物含量的增加,比电容逐渐减小,说明在NH2-MIL-88中引入PLLA/PDLA后,可能是由于限制了载流子的跳跃、空间穿越和能带传输等原因导致的。重要的是,随着聚乳酸外消旋共混物含量的增加,C-NM1P1比电容却反而显著高于C-NM5P1,表明了C-NM1P1的分层微孔结构更适合离子的快速传输,提高了材料的电容性能。
如图2所示分别为C-NM1P1材料循环伏安法所得CV曲线和相同电压窗口下恒电流充放电测试所得GCD曲线。因为MOFs多孔结构扩散导致CV曲线的轮廓呈现扭曲的矩形形状,发现当将扫描速率从5mV/s升高到50mV/s时,C-NM1P1的曲线可以观察到较完整的矩形形状,这表明制备的复合材料NM1P1具备一定的电容性能,且稳定性良好。从GCD曲线发现随着电流密度的减小,该材料的电压降也随之减小。图2(b)中典型的三角形证实了NH2-MIL-88/PLLA/PDLA碳化前后的样品具有一定的电化学电容性能,印证了C-NM1P1材料所呈现的电容性能明显优于其它试样。

Claims (10)

1.一种聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:原料按质量百分比包括:
聚左旋乳酸 5~25%;
聚右旋乳酸 5~25%;
NH2-MIL-88 50~90%;
该材料的制备方法包括以下步骤:
(1)将九水硝酸铁和2-氨基对苯二甲酸分别溶于N,N-二甲基甲酰胺中,然后在室温环境下均匀搅拌至溶液澄清;
(2)将上述两种溶液加入反应釜中加热,进行水合反应;待自然冷却,用DMF离心洗涤得到的红棕色沉淀物,干燥,得到含有金属铁的多孔有机金属框架材料NH2-MIL-88;
(3)称取聚左旋乳酸和聚右旋乳酸分别溶解在有机溶剂中,随后将二者混合并搅拌,得到PLLA/PDLA外消旋共混物溶液,最后将NH2-MIL-88缓慢加入到PLLA/PDLA溶液中,搅拌离心,去掉上清液,得到沉淀物;
(4)用氯仿将得到的沉淀物离心洗涤,最终沉淀物在干燥后得到复合材料NH2-MIL-88/PLLA/PDLA;
(5)将复合材料NH2-MIL-88/PLLA/PDLA加热烧结5~8 h;
(6)自然冷却,得到NH2-MIL-88/PLLA/PDLA的碳化粉末。
2. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:所述聚左旋乳酸和聚右旋乳酸的数均分子量均为20~25 kg/mol。
3.根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:所述聚乳酸外消旋共混物与NH2-MIL-88的质量比为0.2~1:1。
4.一种权利要求1-3任一所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料的制备方法,其特征在于:包括以下步骤:
(1)将九水硝酸铁和2-氨基对苯二甲酸分别溶于N,N-二甲基甲酰胺中,然后在室温环境下均匀搅拌至溶液澄清;
(2)将上述两种溶液加入反应釜中加热,进行水合反应;待自然冷却,用DMF离心洗涤得到的红棕色沉淀物,干燥,得到含有金属铁的多孔有机金属框架材料NH2-MIL-88;
(3)称取聚左旋乳酸和聚右旋乳酸分别溶解在有机溶剂中,随后将二者混合并搅拌,得到PLLA/PDLA外消旋共混物溶液,最后将NH2-MIL-88缓慢加入到PLLA/PDLA溶液中,搅拌离心,去掉上清液,得到沉淀物;
(4)用氯仿将得到的沉淀物离心洗涤,最终沉淀物在干燥后得到复合材料NH2-MIL-88/PLLA/PDLA;
(5)将复合材料NH2-MIL-88/PLLA/PDLA加热烧结5~8 h;
(6)自然冷却,得到NH2-MIL-88/PLLA/PDLA的碳化粉末。
5. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:步骤(2)中,所述水合反应温度为120~150 ℃,时间为20~24 h。
6. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:步骤(2)中,所述DMF离心洗涤次数为3~5次;干燥温度为80~100 ℃,干燥时间为24~30 h。
7. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:步骤(3)中,所述有机溶剂为二氯甲烷、三氯甲烷和丙酮中的一种,所述搅拌速度为300~500rpm,搅拌时间为50~70 min。
8. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:步骤(3)中,所述离心转速为6000~8000 rpm,离心时间为5~10 min。
9. 根据权利要求1所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料,其特征在于:步骤(4)中,所述离心洗涤次数为3~5次,离心速度为6000~8000 rpm,离心时间为5~10 min,干燥温度为60~80 ℃。
10.一种权利要求1-3任一所述的聚乳酸外消旋共混物掺杂NH2-MIL-88电极材料在超级电容器中的应用。
CN202210498128.XA 2022-05-09 2022-05-09 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用 Active CN114914095B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210498128.XA CN114914095B (zh) 2022-05-09 2022-05-09 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210498128.XA CN114914095B (zh) 2022-05-09 2022-05-09 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114914095A CN114914095A (zh) 2022-08-16
CN114914095B true CN114914095B (zh) 2023-07-21

Family

ID=82767722

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210498128.XA Active CN114914095B (zh) 2022-05-09 2022-05-09 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114914095B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110875151A (zh) * 2018-09-04 2020-03-10 南京工业大学 一种超级电容器电极用含氮金属氧化物/碳的纳米复合材料的制备方法
CN111508724B (zh) * 2020-06-11 2021-09-21 电子科技大学 一种超级电容器用MOFs复合电极材料及制备方法与工作电极
CN114015215B (zh) * 2021-11-26 2023-03-24 江苏科技大学 聚乳酸外消旋共混物/mil-88复合材料及制备方法

Also Published As

Publication number Publication date
CN114914095A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Pan et al. Synthesis and electrochemical performance of polyaniline@ MnO2/graphene ternary composites for electrochemical supercapacitors
Chen et al. General formation of MxCo3− xS4 (M= Ni, Mn, Zn) hollow tubular structures for hybrid supercapacitors
Punnoose et al. Preparation and electrochemical performances of NiS with PEDOT: PSS chrysanthemum petal like nanostructure for high performance supercapacitors
CN111675208B (zh) 一种硫-氮掺杂空心碳纳米管复合材料及其制备方法和应用
Garcia-Torres et al. Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT: PSS fibres
CN111268734B (zh) 一种过渡金属硫化物纳米片及其制备方法和应用
CN109637827B (zh) 一种含氮多孔碳/二氧化锰纳米线复合电极的制备方法
Zhang et al. Manganese hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: facile synthesis, characterization and application to high performance supercapacitors
KR20160110649A (ko) 질소와 금속이 도핑된 다공성 탄소 소재 및 그 제조방법
CN108807001B (zh) 多级结构的球形钴酸镍-二氧化铈复合电极材料及其制备方法
Hussain et al. Enhanced electrochemical performance via PPy encapsulated 3D flower-like bismuth molybdate nanoplates for high-performance supercapacitors
CN112357900B (zh) 一种高密度氮氧氯共掺杂碳颗粒材料、以及制备方法与应用
Dhibar et al. Copper chloride‐doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications
Wu et al. A ternary composite with manganese dioxide nanorods and graphene nanoribbons embedded in a polyaniline matrix for high-performance supercapacitors
Mu et al. Efficient conversion of lignin waste and self-assembly synthesis of C@ MnCo2O4 for asymmetric supercapacitors with high energy density
CN114914095B (zh) 一种聚乳酸外消旋共混物掺杂nh2-mil-88电极材料及其制备方法和应用
Li et al. Nitrogen/sulfur-codoped carbon materials from chitosan for supercapacitors
KR102012106B1 (ko) 금속산화물 및 유기리간드를 포함하는 금속-유기 복합체, 이를 이용한 슈퍼커패시터용 전극, 및 이의 제조방법
Huang et al. Poly (3, 4-ethylenedioxythiophene) engineered hollow Bi2O3 core-shell architectures for long cycle performance of flexible supercapacitors
KR101478139B1 (ko) 활성탄소의 제조방법
Majumdar Application of microbes in synthesis of electrode materials for supercapacitors
Li et al. Cobalt-nickel coordinated polyaniline as electrodes for high performance flexible asymmetric supercapacitor
CN104795246A (zh) 一种储电性能优良的复合电极材料及其制备方法
CN113782346B (zh) 一种聚3,4-乙撑二氧噻吩/钴酸镍/碳布柔性电极
Liu et al. A novel synthesis of controllable nitrogen-doped SnOx-ZnO supercapacitors to enhance electrochemical performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant