CN114908104B - Application of rice OsHAK1 protein gene in improving rice blast resistance of rice - Google Patents

Application of rice OsHAK1 protein gene in improving rice blast resistance of rice Download PDF

Info

Publication number
CN114908104B
CN114908104B CN202210566985.9A CN202210566985A CN114908104B CN 114908104 B CN114908104 B CN 114908104B CN 202210566985 A CN202210566985 A CN 202210566985A CN 114908104 B CN114908104 B CN 114908104B
Authority
CN
China
Prior art keywords
rice
oshak1
leu
val
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210566985.9A
Other languages
Chinese (zh)
Other versions
CN114908104A (en
Inventor
宁约瑟
郝泽芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plant Protection of Chinese Academy of Agricultural Sciences filed Critical Institute of Plant Protection of Chinese Academy of Agricultural Sciences
Priority to CN202210566985.9A priority Critical patent/CN114908104B/en
Publication of CN114908104A publication Critical patent/CN114908104A/en
Application granted granted Critical
Publication of CN114908104B publication Critical patent/CN114908104B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The application discloses application of a paddy potassium ion transport protein gene OsHAK1 in improving rice blast resistance, wherein a CDS nucleotide sequence of the paddy potassium ion transport protein gene OsHAK1 is shown as SEQ ID No. 1. Transgenic experiments prove that the over-expression of the gene improves the resistance of rice to rice blast germ. Therefore, the gene can be used as a target gene to be introduced into plants to improve the disease resistance of the plants so as to improve the plant varieties. The transferred potassium ion transport protein can also effectively improve the plant defensive ability by improving the potassium ion content of rice.

Description

Application of rice OsHAK1 protein gene in improving rice blast resistance of rice
Technical Field
The application belongs to the field of genetic engineering, and in particular relates to application of a rice OsHAK1 protein gene in improving rice blast resistance of rice.
Background
Potassium (K) + ) Is the most abundant cation in the plant body, and is one of three nutritional elements (nitrogen, phosphorus and potassium) necessary for plant growth and development. The content of potassium in the plant body is next to nitrogen and accounts for 2% -10% of the dry weight of the plant. Although K + Is not involved in the composition of organic matters in plants, but is involved in various physiological and biochemical reactions in plants, including the regulation of cell osmotic pressure, the balance of intracellular and extracellular charges, the activation of enzyme activity, the synthesis of proteins, the generation of light and actions, and the like. Research shows that insufficient potassium nutrition can affect the growth and development of crops and the yield and quality of crops.
The plant mainly absorbs potassium from the soil through the root system to meet the self requirement, and the concentration of potassium in the soil is only 0.1-1 mM in general, so that the plant absorbs potassium from the soil in the process of reverse concentration gradient, and in the process, the plant needs to rely on a potassium transport system formed by potassium ion channels, potassium ion transport proteins and the like on the surface of the root system. Whereas plants also need to rely on potassium transport systems to transfer potassium from root to stem and further to different tissues and cells after uptake of potassium nutrition from the soil. In this system, the potassium ion transporter family is able to cope with low potassium stress, at H + Reverse cell membrane electrochemical potential gradient under the condition of providing energy for ATPase hydrolysis ATP, and make extracellular K + And (3) transporting the cell into the cell.
Plants can regulate the transcription level of the gene of the potassium ion transporter protein and then regulate the absorption and transport of potassium. For example, KT/HAK/KUP-type transporters have been demonstrated to have high affinity potassium transport functions in plants, and low potassium stress can induce an increase in the expression level of genes encoding HAK1 transporters in various plants. In rice, osHAK1 can mediate both high-affinity potassium transport system and low-affinity potassium transport system, and its expression level can be induced by low potassium. Knockout of OsHAK1 in rice reduces potassium ion absorption and transport by rice, and overexpression of OsHAK1 enhances potassium ion absorption and transport by rice. Therefore, the plant potassium ion transporter OsHAK1 plays an indispensable role in regulating and controlling the potassium ion absorption and transport process of rice.
Based on the research of potassium ion biological functions and potassium ion absorption and transport systems, people also pay attention to important roles of potassium ions in plants in the disease-resistant process of the plants.
It is widely believed in agricultural production that high potassium conditions contribute to reduced incidence of plant disease and insect pests. Statistical data shows that the effect of potassium is different in different crops and different pests. Based on the statistics, potassium is significant in alleviating fungal diseases, while bacterial, insect, viral and nematode diseases are secondary. For example, spraying potassium chloride on wheat can effectively inhibit the germination of the leaf blight and powdery mildew spores so as to inhibit the development of diseases; the harm degree of the rice stem blight and leaf sheath spot can be reduced by applying the potash fertilizer in the soil. These studies indicate that potassium ions play an important role in plant innate immunity.
However, potassium ion transporters in rice have little research in regulating plant disease resistance response.
Disclosure of Invention
The technical problems to be solved by the application are as follows: provides a new application of a rice potassium ion transporter gene.
The technical scheme of the application is as follows: the application of the paddy potassium ion transporter gene OsHAK1 in improving the rice blast resistance of paddy rice is that the CDS nucleotide sequence of the paddy potassium ion transporter gene OsHAK1 is shown as SEQ ID No.1, and the nucleotide sequence coding the same protein as the nucleotide sequence shown as SEQ ID No.1 has the same application due to the degeneracy of codons.
Application of polypeptide coded by paddy potassium ion transporter gene OsHAK1 in improving paddy rice blast resistance is provided, and the amino acid sequence of the polypeptide is shown as SEQ ID No. 2.
An expression vector comprising a nucleic acid fragment encoding a polypeptide as set forth in SEQ ID No. 2. Further, the nucleic acid fragment is shown as SEQ ID No. 1.
A method for improving rice blast resistance of rice includes cloning potassium ion transport protein gene OsHAK1 of rice, constructing plant expression carrier, transferring said carrier into agrobacterium, inoculating to rice, selecting over-expression strain with resistance to rice blast and its offspring, and the CDS nucleotide sequence of potassium ion transport protein gene OsHAK1 of rice is shown in SEQ ID No.1 or the nucleotide sequence coding same protein as that of SEQ ID No. 1.
And (3) carrying out qRT-PCR verification on the obtained transgenic plant, and then carrying out disease resistance evaluation on rice. Transgenic rice plants grown to 5-8 weeks old were inoculated with the wells and the disease was investigated for 10-14 days. Consistent results indicate that transgenic plants show significant resistance to Pyricularia oryzae compared to the control.
Compared with the prior art, the application has the following beneficial effects:
transgenic experiments prove that the over-expression of the gene improves the resistance of rice to rice blast germ. Therefore, the gene can be used as a target gene to be introduced into plants to improve the disease resistance of the plants so as to improve the plant varieties. The transferred potassium ion transport protein can also effectively improve the plant defensive ability by improving the potassium ion content of rice.
Drawings
FIG. 1 is a map of pRHVcGFP expression vector;
FIG. 2 shows the analysis of the expression level of OsHAK1 in transgenic rice. WT represents wild type, osHAK1-OX-7-8, osHAK1-OX-13-1 and OsHAK1-OX-2-4 represent three overexpressing strains;
FIG. 3 shows that OsHAK1-OX transgenic plants enhanced disease resistance to physiological race RO1-1 of Pyricularia oryzae;
FIG. 4 shows that OsHAK1-OX transgenic plants enhanced disease resistance to physiological race RB22 of Pyricularia oryzae;
FIG. 5 shows that the area of lesions generated after inoculation of a physiological race RO1-1 of Pyricularia oryzae with OsHAK1-OX transgenic plants is significantly reduced;
FIG. 6 shows that the area of lesions generated after inoculation of a physiological race RB22 of Pyricularia oryzae with OsHAK1-OX transgenic plants is significantly reduced;
FIG. 7 shows that fungal biomass in the plaque area is significantly reduced after inoculation of a physiological race RO1-1 of Pyricularia oryzae with OsHAK1-OX transgenic plants;
FIG. 8 shows that the fungal biomass in the plaque area was significantly reduced after inoculation of the OsHAK1-OX transgenic plants with a physiological race of Pyricularia oryzae RB 22.
Detailed Description
The biological material used in the application:
the physiological species RO1-1 and RB22 of Nipponbare are conventional materials in the prior art, and are preserved in the laboratory.
pRHVcGFP vector: the laboratory is created, the plasmid map is shown in figure 1, and the vector sequence is shown in SEQ ID No. 5.
Example 1
1) Extraction of Total RNA
Selecting japonica rice variety Nipponbare, immediately taking leaf liquid nitrogen for freezing when seedling grows to about two weeks, and storing in-80deg.C refrigerator. Taking part of the leaves, grinding by using a mortar, transferring into a 1.5ml EP tube containing Trizol lysate, fully oscillating, extracting total RNA, and identifying the total RNA quality by electrophoresis.
2) Cloning of rice potassium ion transporter gene OsHAK1 and construction of plant expression vector
Designing two-end primers:
P1:5-ATAGGATCCATGTCGTCGGCGCTGGAGGT-3(SEQ ID No.3)
P2:5-CGCACTAGTGATTTCATACGTGATCCCAAC-3(SEQ ID No.4)
reverse transcription of the total RNA obtained in step 1) into a cDNA first strand, and PCR amplification with high-fidelity KOD enzyme using the cDNA first strand as a template, wherein the PCR procedure is as follows: the target fragment was recovered by pre-denaturing at 96℃for 3min, denaturing at 96℃for 30s, renaturation at 57℃for 30s, elongation at 68℃for 1min, and elongation at 68℃for 10min after 32 cycles. Meanwhile, pRHVcGFP vector was digested with restriction enzymes BamHI and SpeI, and then the digested vector fragment was recovered, osHAK1 was further cloned into expression vector pRHVcGFP (FIG. 1), and sequencing identification was performed to ensure correct reading frame of coding region in the expression vector.
3) Obtaining transgenic plants
Transferring the expression vector pRHVcGFP-OsHAK1 obtained in the step 2) into an agrobacterium strain EHA105, further transferring into a japonica rice variety Nipponbare, and performing qRT-PCR verification on the obtained transgenic plant to evaluate the disease resistance of the rice (figure 2).
Example 2
Identification of disease resistance of OsHAK1-OX transgenic lines:
punching and inoculating: when the transgenic rice grows to 5-8 weeks old, selecting two inverted leaves to perform punching inoculation on rice blast fungi (physiological rice blast fungi micro-seeds RO1-1 and RB 22), then placing the rice in a plant growth box to be dark-cultured for 24 hours, transferring the rice to 12 hours of illumination, and growing for 10-14 days under the condition of 12 hours of darkness; observing the disease spot expansion condition, investigating the disease condition, and counting the disease spot area and biomass, compared with the control, the transgenic rice plant with obvious resistance is the obtained rice blast resistant transgenic plant.
As a result, it was found that the OsHAK1 overexpressing transgenic plants had enhanced disease resistance against Pyricularia oryzae (FIG. 3, FIG. 4) as compared with the wild-type plants (Table 1, table 2) and relative fungal biomass (Table 3, table 4) were counted, and it was found that the disease area after the OsHAK1 overexpressing transgenic plants were inoculated with Pyricularia oryzae was only about 50% of the control (FIG. 5, FIG. 6), and the fungal biomass in the disease area was reduced to about 50% of the control (FIG. 7, FIG. 8).
TABLE 1 relative plaque area of transgenic lines and wild-type post-seed for the inoculation of physiological race RO1-1 of Pyricularia oryzae
TABLE 2 relative plaque area of leaves following inoculation of a physiological microspecies RB22 of Pyricularia oryzae by transgenic lines and wild type
TABLE 3 relative fungal biomass of transgenic lines and wild-type post-inoculation Pyricularia oryzae physiological race RO1-1 postemergent leaves
TABLE 4 relative fungal biomass of transgenic lines and wild type post-inoculation Pyricularia oryzae physiological race RB22 post-emergence leaves
The above examples merely illustrate specific embodiments of the application, which are described in more detail and are not to be construed as limiting the scope of the application. It should be noted that it is possible for a person skilled in the art to make several variants and modifications without departing from the technical idea of the application, which fall within the scope of protection of the application.
Sequence listing
<110> institute of plant protection of national academy of agricultural sciences
Application of <120> rice OsHAK1 protein gene in improving rice blast resistance of rice
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2379
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
atgtcgtcgg cgctggaggt ggagggctcg ggctcgccgg gcgtcgagcc ggcggcgacg 60
gcgacggcga gcaggctgaa gcggcacgac tcgctgttcg gagacgcgga gaaggtgagc 120
ggcgggaagc accacggggg gtcggcggtg agctgggcgg tgacgctgca cctggcgttc 180
cagagcgtgg gcatcatcta cggcgacatc ggcacgtcgc cgctgtacgt ctactccagc 240
acgttcccgg acggcatcgg ccaccgcgac gacctcgtcg gcgtcctctc cctcatcctc 300
tacaccctca tcatcatccc catgctcaag tacgtcttca tcgtcctcta cgccaacgac 360
aatggcgacg gtggcacgtt cgcgctctac tcgctgatct cccggtacgc caagatcagg 420
atgatcccga accagcaggc ggaggacgcc atggtgtcca actacagcat cgaggcgccc 480
agctcgcagc tgaggagggc gcagtgggtg aagcacaagc tcgagagcag ccgtgccgcc 540
aagatggcgc tcttcttcct caccatcctc ggcacctcca tggtcatggg cgacggcacc 600
ttgacccccg ccatctccgt gctctctgcg gtgagcggga tcagggagaa agctccaaac 660
ttgactcaga cgcaagtcgt gctgatctcg gtggccatcc tgttcatgct cttctccgtc 720
cagcggttcg gcaccgacaa ggtcggctac accttcgccc cgatcatctc ggtgtggttc 780
ctcctcatcg ccggcatcgg gctgtacaac ctcgtcgtcc acgagatcac catcctcaag 840
gccttcaatc cgtggtacat cgtgcagtac ttcaggagga acggcaagaa gggttgggtg 900
tctctcggtg gcgtcgtcct ctgtgtcaca ggcacagagg gaatgtttgc cgacctgggc 960
catttcaaca tcagggccgt gcagatcagc ttcaactgca tcctgttccc atcggtggcg 1020
ctctgctaca tcgggcaggc agcgtacctg aggaaattcc ctgagaatgt cagtgacacc 1080
ttctacaaat ccatcccagg gccgctgttc tggccgacgt tcatcgtcgc gatcctcgcc 1140
gccatcatcg ccagccaggc catgctctcc ggcgcgtttg ccatcctctc caaggcgctg 1200
tccctcgggt gcttgcccag ggtccgggtg atccacacct ctaagaagta cgaggggcag 1260
gtgtacatcc ccgaggtgaa cttcatgatg ggtctcgcca gcatcatcgt caccatcgcc 1320
ttcaggacca ccaccagcat cggcaacgcc tacgggatct gtgtggtgac gacgttcatg 1380
gtgacgacgc acctgatgac ggtggtgatg ctgctgatat ggaagaagca cctggtgttc 1440
atcctgctct tctactgcgt gttcgggttc acggaggtgg tgtacctgtc gtcgatcctg 1500
tccaagttcg tggacggcgg gtacctcccc ttctgcttcg ccatggtgct gatgacgatg 1560
atggcgacgt ggcactacgt ccacgtgcgg cgctactggt acgagctgga ccacatcgtc 1620
cccacggcgg agctggcgtc gctgctggag gagaacggcg gcgtgcggcg ggtccccggc 1680
gtgggcctcc tctacacgga gctcgtccag ggcatcccgc cgctgttccc gcgcctcgtc 1740
cgcaagatcc cctcggtcca cgccgtcttc gtcttcatct ccatcaagca cctccccatc 1800
ccgcacgtcg ccgccgccga gcgcttcctg ttccgccagg tcggcccccg cgcccgccgc 1860
gtcttccgct gcgtcgcccg ctacggctac accgacgccc tcgaggagcc ccgggagttc 1920
gccgccttcc tcgtcgacgg cctcaagatg ttcatccagg aggagtccgc cttcgctcct 1980
catcaagaga tgatcgatgc cgccgccgac gacgacgacg aggcggcggc gaggccgagg 2040
cggtcgacga gctcggccgt gcacagcgag gaggcgatcc aggcggcgtc gtcggggagg 2100
acgacggcca gcagcgtcca gctccaggcg ggcggcgagc cgccggcggc gatggacgtg 2160
gaggaggaga agcggctgat cgacagggag gtgggccgcg gcgtggtgta cctgatgggc 2220
gaggccaacg tgtcggcggg gcccaactcg tccatcctca agaggatcgc ggtgaactac 2280
atctacacct tcctgaggaa gaacctgaca gaagggcaca gggcactggc gattccaaac 2340
gatcagctgc tcaaggttgg gatcacgtat gaaatctag 2379
<210> 2
<211> 792
<212> PRT
<213> Artificial sequence (Artificial Sequence)
<400> 2
Met Ser Ser Ala Leu Glu Val Glu Gly Ser Gly Ser Pro Gly Val Glu
1 5 10 15
Pro Ala Ala Thr Ala Thr Ala Ser Arg Leu Lys Arg His Asp Ser Leu
20 25 30
Phe Gly Asp Ala Glu Lys Val Ser Gly Gly Lys His His Gly Gly Ser
35 40 45
Ala Val Ser Trp Ala Val Thr Leu His Leu Ala Phe Gln Ser Val Gly
50 55 60
Ile Ile Tyr Gly Asp Ile Gly Thr Ser Pro Leu Tyr Val Tyr Ser Ser
65 70 75 80
Thr Phe Pro Asp Gly Ile Gly His Arg Asp Asp Leu Val Gly Val Leu
85 90 95
Ser Leu Ile Leu Tyr Thr Leu Ile Ile Ile Pro Met Leu Lys Tyr Val
100 105 110
Phe Ile Val Leu Tyr Ala Asn Asp Asn Gly Asp Gly Gly Thr Phe Ala
115 120 125
Leu Tyr Ser Leu Ile Ser Arg Tyr Ala Lys Ile Arg Met Ile Pro Asn
130 135 140
Gln Gln Ala Glu Asp Ala Met Val Ser Asn Tyr Ser Ile Glu Ala Pro
145 150 155 160
Ser Ser Gln Leu Arg Arg Ala Gln Trp Val Lys His Lys Leu Glu Ser
165 170 175
Ser Arg Ala Ala Lys Met Ala Leu Phe Phe Leu Thr Ile Leu Gly Thr
180 185 190
Ser Met Val Met Gly Asp Gly Thr Leu Thr Pro Ala Ile Ser Val Leu
195 200 205
Ser Ala Val Ser Gly Ile Arg Glu Lys Ala Pro Asn Leu Thr Gln Thr
210 215 220
Gln Val Val Leu Ile Ser Val Ala Ile Leu Phe Met Leu Phe Ser Val
225 230 235 240
Gln Arg Phe Gly Thr Asp Lys Val Gly Tyr Thr Phe Ala Pro Ile Ile
245 250 255
Ser Val Trp Phe Leu Leu Ile Ala Gly Ile Gly Leu Tyr Asn Leu Val
260 265 270
Val His Glu Ile Thr Ile Leu Lys Ala Phe Asn Pro Trp Tyr Ile Val
275 280 285
Gln Tyr Phe Arg Arg Asn Gly Lys Lys Gly Trp Val Ser Leu Gly Gly
290 295 300
Val Val Leu Cys Val Thr Gly Thr Glu Gly Met Phe Ala Asp Leu Gly
305 310 315 320
His Phe Asn Ile Arg Ala Val Gln Ile Ser Phe Asn Cys Ile Leu Phe
325 330 335
Pro Ser Val Ala Leu Cys Tyr Ile Gly Gln Ala Ala Tyr Leu Arg Lys
340 345 350
Phe Pro Glu Asn Val Ser Asp Thr Phe Tyr Lys Ser Ile Pro Gly Pro
355 360 365
Leu Phe Trp Pro Thr Phe Ile Val Ala Ile Leu Ala Ala Ile Ile Ala
370 375 380
Ser Gln Ala Met Leu Ser Gly Ala Phe Ala Ile Leu Ser Lys Ala Leu
385 390 395 400
Ser Leu Gly Cys Leu Pro Arg Val Arg Val Ile His Thr Ser Lys Lys
405 410 415
Tyr Glu Gly Gln Val Tyr Ile Pro Glu Val Asn Phe Met Met Gly Leu
420 425 430
Ala Ser Ile Ile Val Thr Ile Ala Phe Arg Thr Thr Thr Ser Ile Gly
435 440 445
Asn Ala Tyr Gly Ile Cys Val Val Thr Thr Phe Met Val Thr Thr His
450 455 460
Leu Met Thr Val Val Met Leu Leu Ile Trp Lys Lys His Leu Val Phe
465 470 475 480
Ile Leu Leu Phe Tyr Cys Val Phe Gly Phe Thr Glu Val Val Tyr Leu
485 490 495
Ser Ser Ile Leu Ser Lys Phe Val Asp Gly Gly Tyr Leu Pro Phe Cys
500 505 510
Phe Ala Met Val Leu Met Thr Met Met Ala Thr Trp His Tyr Val His
515 520 525
Val Arg Arg Tyr Trp Tyr Glu Leu Asp His Ile Val Pro Thr Ala Glu
530 535 540
Leu Ala Ser Leu Leu Glu Glu Asn Gly Gly Val Arg Arg Val Pro Gly
545 550 555 560
Val Gly Leu Leu Tyr Thr Glu Leu Val Gln Gly Ile Pro Pro Leu Phe
565 570 575
Pro Arg Leu Val Arg Lys Ile Pro Ser Val His Ala Val Phe Val Phe
580 585 590
Ile Ser Ile Lys His Leu Pro Ile Pro His Val Ala Ala Ala Glu Arg
595 600 605
Phe Leu Phe Arg Gln Val Gly Pro Arg Ala Arg Arg Val Phe Arg Cys
610 615 620
Val Ala Arg Tyr Gly Tyr Thr Asp Ala Leu Glu Glu Pro Arg Glu Phe
625 630 635 640
Ala Ala Phe Leu Val Asp Gly Leu Lys Met Phe Ile Gln Glu Glu Ser
645 650 655
Ala Phe Ala Pro His Gln Glu Met Ile Asp Ala Ala Ala Asp Asp Asp
660 665 670
Asp Glu Ala Ala Ala Arg Pro Arg Arg Ser Thr Ser Ser Ala Val His
675 680 685
Ser Glu Glu Ala Ile Gln Ala Ala Ser Ser Gly Arg Thr Thr Ala Ser
690 695 700
Ser Val Gln Leu Gln Ala Gly Gly Glu Pro Pro Ala Ala Met Asp Val
705 710 715 720
Glu Glu Glu Lys Arg Leu Ile Asp Arg Glu Val Gly Arg Gly Val Val
725 730 735
Tyr Leu Met Gly Glu Ala Asn Val Ser Ala Gly Pro Asn Ser Ser Ile
740 745 750
Leu Lys Arg Ile Ala Val Asn Tyr Ile Tyr Thr Phe Leu Arg Lys Asn
755 760 765
Leu Thr Glu Gly His Arg Ala Leu Ala Ile Pro Asn Asp Gln Leu Leu
770 775 780
Lys Val Gly Ile Thr Tyr Glu Ile
785 790
<210> 3
<211> 29
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
ataggatcca tgtcgtcggc gctggaggt 29
<210> 4
<211> 30
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
cgcactagtg atttcatacg tgatcccaac 30
<210> 5
<211> 9381
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
atgcaggtgt ctcaaaatct ctgatgttac attgcacaag ataaaaatat atcatcatga 60
acaataaaac tgtctgctta cataaacagt aatacaaggg gtgttatgag ccatattcaa 120
cgggaaacgt cgaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa 180
tgggctcgcg ataatgtcgg gcaatcaggt gcgacaatct atcgcttgta tgggaagccc 240
gatgcgccag agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat 300
gagatggtca gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt 360
atccgtactc ctgatgatgc atggttactc accactgcga tccccggaaa aacagcattc 420
caggtattag aagaatatcc tgattcaggt gaaaatattg ttgatgcgct ggcagtgttc 480
ctgcgccggt tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt 540
cgtctcgctc aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat 600
gacgagcgta atggctggcc tgttgaacaa gtctggaaag aaatgcataa acttttgcca 660
ttctcaccgg attcagtcgt cactcatggt gatttctcac ttgataacct tatttttgac 720
gaggggaaat taataggttg tattgatgtt ggacgagtcg gaatcgcaga ccgataccag 780
gatcttgcca tcctatggaa ctgcctcggt gagttttctc cttcattaca gaaacggctt 840
tttcaaaaat atggtattga taatcctgat atgaataaat tgcagtttca tttgatgctc 900
gatgagtttt tctaatcaga attggttaat tggttgtaac actggcagag cattacgctg 960
acttgacggg acggcgcaag ctcatgacca aaatccctta acgtgagttt tcgttccact 1020
gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg 1080
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 1140
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata 1200
ctgttcttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 1260
catacctcgc tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc 1320
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 1380
ggggttcgtg cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac 1440
agcgtgagct atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg 1500
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 1560
atctttatag tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct 1620
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 1680
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 1740
accgtattac cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca 1800
gcgagtcagt gagcgaggaa gcggaagagc gcccggcgcg ccgaatgaac gccaagagga 1860
acaagcatga aaccgcacca ggacggccag gacgaaccgt ttttcattac cgaagagatc 1920
gaggcggaga tgatcgcggc cgggtacgtg ttcgagccgc ccgcgcacgt ctcaaccgtg 1980
cggctgcatg aaatcctggc cggtttgtct gatgccaagc tggcggcctg gccggccagc 2040
ttggccgctg aagaaaccga gcgccgccgt ctaaaaaggt gatgtgtatt tgagtaaaac 2100
agcttgcgtc atgcggtcgc tgcgtatatg atgcgatgag taaataaaca aatacgcaag 2160
gggaacgcat gaaggttatc gctgtactta accagaaagg cgggtcaggc aagacgacca 2220
tcgcaaccca tctagcccgc gccctgcaac tcgccggggc cgatgttctg ttagtcgatt 2280
ccgatcccca gggcagtgcc cgcgattggg cggccgtgcg ggaagatcaa ccgctaaccg 2340
ttgtcggcat cgaccgcccg acgattgacc gcgacgtgaa ggccatcggc cggcgcgact 2400
tcgtagtgat cgacggagcg ccccaggcgg cggacttggc tgtgtccgcg atcaaggcag 2460
ccgacttcgt gctgattccg gtgcagccaa gcccttacga catatgggcc accgccgacc 2520
tggtggagct ggttaagcag cgcattgagg tcacggatgg aaggctacaa gcggcctttg 2580
tcgtgtcgcg ggcgatcaaa ggcacgcgca tcggcggtga ggttgccgag gcgctggccg 2640
ggtacgagct gcccattctt gagtcccgta tcacgcagcg cgtgagctac ccaggcactg 2700
ccgccgccgg cacaaccgtt cttgaatcag aacccgaggg cgacgctgcc cgcgaggtcc 2760
aggcgctggc cgctgaaatt aaatcaaaac tcatttgagt taatgaggta aagagaaaat 2820
gagcaaaagc acaaacacgc taagtgccgg ccgtccgagc gcacgcagca gcaaggctgc 2880
aacgttggcc agcctggcag acacgccagc catgaagcgg gtcaactttc agttgccggc 2940
ggaggatcac accaagctga agatgtacgc ggtacgccaa ggcaagacca ttaccgagct 3000
gctatctgaa tacatcgcgc agctaccaga gtaaatgagc aaatgaataa atgagtagat 3060
gaattttagc ggctaaagga ggcggcatgg aaaatcaaga acaaccaggc accgacgccg 3120
tggaatgccc catgtgtgga ggaacgggcg gttggccagg cgtaagcggc tgggttgcct 3180
gccggccctg caatggcact ggaaccccca agcccgagga atcggcgtga gcggtcgcaa 3240
accatccggc ccggtacaaa tcggcgcggc gctgggtgat gacctggtgg agaagttgaa 3300
ggccgcgcag gccgcccagc ggcaacgcat cgaggcagaa gcacgccccg gtgaatcgtg 3360
gcaagcgtcc gctgatcgaa tccgcaaaga atcccggcaa ccgccggcag ccggtgcgcc 3420
gtcgattagg aagccgccca agggcgacga gcaaccagat tttttcgttc cgatgctcta 3480
tgacgtgggc acccgcgata gtcgcagcat catggacgtg gccgttttcc gtctgtcgaa 3540
gcgtgaccga cgagctggcg aggtgatccg ctacgagctt ccagacgggc acgtagaggt 3600
ttccgcaggg ccggccggca tggccagtgt gtgggattac gacctggtac tgatggcggt 3660
ttcccatcta accgaatcca tgaaccgata ccgggaaggg aagggagaca agcccggccg 3720
cgtgttccgt ccacacgttg cggacgtact caagttctgc cggcgagccg atggcggaaa 3780
gcagaaagac gacctggtag aaacctgcat tcggttaaac accacgcacg ttgccatgca 3840
gcgtacgaag aaggccaaga acggccgcct ggtgacggta tccgagggtg aagccttgat 3900
tagccgctac aagatcgtaa agagcgaaac cgggcggccg gagtacatcg agatcgagct 3960
agctgattgg atgtaccgcg agatcacaga aggcaagaac ccggacgtgc tgacggttca 4020
ccccgattac tttttgatcg atcccggcat cggccgtttt ctctaccgcc tggcacgccg 4080
cgccgcaggc aaggcagaag ccagatggtt gttcaagacg atctacgaac gcagtggcag 4140
cgccggagag ttcaagaagt tctgtttcac cgtgcgcaag ctgatcgggt caaatgacct 4200
gccggagtac gatttgaagg aggaggcggg gcaggctggc ccgatcctag tcatgcgcta 4260
ccgcaacctg atcgagggcg aagcatccgc cggttcctaa tgtacggagc agatgctagg 4320
gcaaattgcc ctagcagggg aaaaaggtcg aaaaggtctc tttcctgtgg atagcacgta 4380
cattgggaac ccaaagccgt acattgggaa ccggaacccg tacattggga acccaaagcc 4440
gtacattggg aaccggtcac acatgtaagt gactgatata aaagagaaaa aaggcgattt 4500
ttccgcctaa aactctttaa aacttattaa aactcttaaa acccgcctgg cctgtgcata 4560
actgtctggc cagcgcacag ccgaagagct gcaaaaagcg cctagtttac ccgccaatat 4620
atcctgtcag gcgcgccccg atctagtaac atagatgaca ccgcgcgcga taatttatcc 4680
tagtttgcgc gctatatttt gttttctatc gcgtattaaa tgtataattg cgggactcta 4740
atcataaaaa cccatctcat aaataacgtc atgcattaca tgttaattat tacatgctta 4800
acgtaattca acagaaatta tatgataatc atcgcaagac cggcaacagg attcaatctt 4860
aagaaacttt attgccaaat gtttgaacga tctactcact tagcggccgt tacttgtaca 4920
gctcgtccat gccgagagtg atcccggcgg cggtcacgaa ctccagcagg accatgtgat 4980
cgcgcttctc gttggggtct ttgctcaggg cggactgggt gctcaggtag tggttgtcgg 5040
gcagcagcac ggggccgtcg ccgatggggg tgttctgctg gtagtggtcg gcgagctgca 5100
cgctgccgtc ctcgatgttg tggcggatct tgaagttcac cttgatgccg ttcttctgct 5160
tgtcggccat gatatagacg ttgtggctgt tgtagttgta ctccagcttg tgccccagga 5220
tgttgccgtc ctccttgaag tcgatgccct tcagctcgat gcggttcacc agggtgtcgc 5280
cctcgaactt cacctcggcg cgggtcttgt agttgccgtc gtccttgaag aagatggtgc 5340
gctcctggac gtagccttcg ggcatggcgg acttgaagaa gtcgtgctgc ttcatgtggt 5400
cggggtagcg gctgaagcac tgcacgccgt aggtcagggt ggtcacgagg gtgggccagg 5460
gcacgggcag cttgccggtg gtgcagatga acttcagggt cagcttgccg taggtggcat 5520
cgccctcgcc ctcgccggac acgctgaact tgtggccgtt tacgtcgccg tccagctcga 5580
ccaggatggg caccaccccg gtgaacagct cctcgccctt gctcaccata gcggccgcac 5640
tagtaagctt ggtaccgagc tcacccgggg atcccactgg atctggatat cctgcataag 5700
taacaccaaa caacagggtg agcatcgaca aaagaaacag taccaagcaa ataaatagcg 5760
tatgaaggca gggctaaaaa aatccacata tagctgctgc atatgccatc atccaagtat 5820
atcaagatca aaataattat aaaacatact tgtttattat aatagatagg tactcaaggt 5880
tagagcatat gaatagatgc tgcatatgcc atcatgtata tgcatcagta aaacccacat 5940
caacatgtat acctatccta gatcgatatt tccatccatc ttaaactcgt aactatgaag 6000
atgtatgaca cacacataca gttccaaaat taataaatac accaggtagt ttgaaacagt 6060
attctactcc gatctagaac gaatgaacga ccgcccaacc acaccacatc atcacaacca 6120
agcgaacaaa aagcatctct gtatatgcat cagtaaaacc cgcatcaaca tgtataccta 6180
tcctagatcg atatttccat ccatcatctt caattcgtaa ctatgaatat gtatggcaca 6240
cacatacaga tccaaaatta ataaatccac caggtagttt gaaacagaat tctactccga 6300
tctagaacga ccgcccaacc agaccacatc atcacaacca agacaaaaaa aagcatgaaa 6360
agatgacccg acaaacaagt gcacggcata tattgaaata aaggaaaagg gcaaaccaaa 6420
ccctatgcaa cgaaacaaaa aaaatcatga aatcgatccc gtctgcggaa cggctagagc 6480
catcccagga ttccccaaag agaaacactg gcaagttagc aatcagaacg tgtctgacgt 6540
acaggtcgca tccgtgtacg aacgctagca gcacggatct aacacaaaca cggatctaac 6600
acaaacatga acagaagtag aactaccggg ccctaaccat ggaccggaac gccgatctag 6660
agaaggtaga gagggggggg gggggaggac gagcggcgta ccttgaagcg gaggtgccga 6720
cgggtggatt tgggggagat ctggttgtgt gtgtgtgcgc tccgaacaac acgaggttgg 6780
ggaaagaggg tgtggagggg gtgtctattt attacggcgg gcgaggaagg gaaagcgaag 6840
gagcggtggg aaaggaatcc cccgtagctg ccggtgccgt gagaggagga ggaggccgcc 6900
tgccgtgccg gctcacgtct gccgctccgc cacgcaattt ctggatgccg acagcggagc 6960
aagtccaacg gtggagcgga actctcgaga ggggtccaga ggcagcgaca gagatgccgt 7020
gccgtctgct tcgcttggcc cgacgcgacg ctgctggttc gctggttggt gtccgttaga 7080
ctcgtcgacg gcgtttaaca ggctggcatt atctactcga aacaagaaaa atgtttcctt 7140
agttttttta atttcttaaa gggtatttgt ttaattttta gtcactttat tttattctat 7200
tttatatcta aattattaaa taaaaaaact aaaatagagt tttagttttc ttaatttaga 7260
ggctaaaata gaataaaata gatgtactaa aaaaattagt ctataaaaac cattaaccct 7320
aaaccctaaa tggatgtact aataaaatgg atgaagtatt atataggtga agctatttgc 7380
aaaaaaaaag gagaacacat gcacactaaa aagataaaac tgtagagtcc tgttgtcaaa 7440
atactcaatt gtcctttaga ccatgtctaa ctgttcattt atatgattct ctaaaacact 7500
gatattattg tagtactata gattatatta ttcgtagagt aaagtttaaa tatatgtata 7560
aagatagata aactgcactt caaacaagtg tgacaaaaaa aatatgtggt aattttttat 7620
aacttagaca tgcaatgctc attatctcta gagaggggca cgaccgggtc acgctgcact 7680
gcagtaattc gggggatctg gattttagta ctggattttg gttttaggaa ttagaaattt 7740
tattgataga agtattttac aaatacaaat acatactaag ggtttcttat atgctcaaca 7800
catgagcgaa accctatagg aaccctaatt cccttatctg ggaactactc acacattatt 7860
atggagaaac tcgagcttgt cgatcgacag atcccggtcg gcatctactc tatttctttg 7920
ccctcggacg agtgctgggg cgtcggtttc cactatcggc gagtacttct acacagccat 7980
cggtccagac ggccgcgctt ctgcgggcga tttgtgtacg cccgacagtc ccggctccgg 8040
atcggacgat tgcgtcgcat cgaccctgcg cccaagctgc atcatcgaaa ttgccgtcaa 8100
ccaagctctg atagagttgg tcaagaccaa tgcggagcat atacgcccgg agtcgtggcg 8160
atcctgcaag ctccggatgc ctccgctcga agtagcgcgt ctgctgctcc atacaagcca 8220
accacggcct ccagaagaag atgttggcga cctcgtattg ggaatccccg aacatcgcct 8280
cgctccagtc aatgaccgct gttatgcggc cattgtccgt caggacattg ttggagccga 8340
aatccgcgtg cacgaggtgc cggacttcgg ggcagtcctc ggcccaaagc atcagctcat 8400
cgagagcctg cgcgacggac gcactgacgg tgtcgtccat cacagtttgc cagtgataca 8460
catggggatc agcaatcgcg catatgaaat cacgccatgt agtgtattga ccgattcctt 8520
gcggtccgaa tgggccgaac ccgctcgtct ggctaagatc ggccgcagcg atcgcatcca 8580
tagcctccgc gaccggttgt agaacagcgg gcagttcggt ttcaggcagg tcttgcaacg 8640
tgacaccctg tgtacggcgg gagatgcaat aggtcaggct ctcgctaaac tccccaatgt 8700
caagcacttc cggaatcggg agcgcggccg atgcaaagtg ccgataaaca taacgatctt 8760
tgtagaaacc atcggcgcag ctatttaccc gcaggacata tccacgccct cctacatcga 8820
agctgaaagc acgagattct tcgccctccg agagctgcat caggtcggag acgctgtcga 8880
acttttcgat cagaaacttc tcgacagacg tcgcggtgag ttcaggcttt ttcattgtcc 8940
tctccaaatg aaatgaactt ccttatatag aggaagggtc ttgcgaagga tagtgggatt 9000
gtgcgtcatc ccttacgtca gtggagatgt cacatcaatc cacttgcttt gaagacgtgg 9060
ttggaacgtc ttctttttcc acgatgctcc tcgtgggtgg gggtccatct ttgggaccac 9120
tgtcggcaga gagatcttga atgatagcct ttcctttatc gcaatgatgg catttgtagg 9180
agccaccttc cttttctact gtcctttcga tgaagtgaca gatagctggg caatggaatc 9240
cgaggaggtt tcccgaaatt atcctttgtt gaaaagtctc aatagccctt tggtcttctg 9300
agactgtatc tttgacattt ttggagtaga ccagagtgtc gtgctccacc atgtttgttt 9360
acaccacaat atatcctgcc a 9381

Claims (3)

1. Rice potassium ion transporter geneOsHAK1Application of potassium ion transfer in improving rice blast resistance of riceProtein transporting geneOsHAK1The CDS nucleotide sequence of (C) is shown as SEQ ID No.1 or the sequence of the same protein encoded by the nucleotide sequence shown as SEQ ID No. 1.
2. Rice potassium ion transporter geneOsHAK1The coded polypeptide has the amino acid sequence shown in SEQ ID No.2 and is applied to improving rice blast resistance of rice.
3. A method for improving rice blast resistance of rice is characterized by comprising the following steps of
OsHAK1
Cloning and constructing a plant expression vector, transferring the expression vector into agrobacterium, inoculating to rice, and selecting a super-expression strain with rice blast resistance and a progeny thereof, wherein the rice potassium ion transporter gene
OsHAK1
The CDS nucleotide sequence of (C) is shown as SEQ ID No.1 or the sequence of the same protein encoded by the nucleotide sequence shown as SEQ ID No. 1.
CN202210566985.9A 2022-05-18 2022-05-18 Application of rice OsHAK1 protein gene in improving rice blast resistance of rice Active CN114908104B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210566985.9A CN114908104B (en) 2022-05-18 2022-05-18 Application of rice OsHAK1 protein gene in improving rice blast resistance of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210566985.9A CN114908104B (en) 2022-05-18 2022-05-18 Application of rice OsHAK1 protein gene in improving rice blast resistance of rice

Publications (2)

Publication Number Publication Date
CN114908104A CN114908104A (en) 2022-08-16
CN114908104B true CN114908104B (en) 2023-09-12

Family

ID=82768118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210566985.9A Active CN114908104B (en) 2022-05-18 2022-05-18 Application of rice OsHAK1 protein gene in improving rice blast resistance of rice

Country Status (1)

Country Link
CN (1) CN114908104B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116790630B (en) * 2023-08-18 2023-11-07 中国农业科学院植物保护研究所 Application of rice OsTZF1 protein gene in improving rice blast resistance
CN117051015B (en) * 2023-10-11 2023-12-12 中国农业科学院植物保护研究所 Application of rice OsFbx156 gene in improving rice blast resistance of rice

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018033326A (en) * 2016-08-29 2018-03-08 公立大学法人秋田県立大学 Gene that controls cesium absorption, and cesium low-absorptive plant
CN108017699A (en) * 2018-01-26 2018-05-11 中国农业大学 Rice Os NBL1 albumen relevant with plant senescence and its encoding gene and application
CN108517333A (en) * 2018-04-16 2018-09-11 中国农业科学院植物保护研究所 Application of the rice Os BBTI4 protein gene on improving rice anti-rice blast

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018033326A (en) * 2016-08-29 2018-03-08 公立大学法人秋田県立大学 Gene that controls cesium absorption, and cesium low-absorptive plant
CN108017699A (en) * 2018-01-26 2018-05-11 中国农业大学 Rice Os NBL1 albumen relevant with plant senescence and its encoding gene and application
CN108517333A (en) * 2018-04-16 2018-09-11 中国农业科学院植物保护研究所 Application of the rice Os BBTI4 protein gene on improving rice anti-rice blast

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecular evolution and functional divergence of HAK potassium transporter gene family in rice(Oryza sativa L.);遗传学报(03);161-172 *

Also Published As

Publication number Publication date
CN114908104A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
CN114908104B (en) Application of rice OsHAK1 protein gene in improving rice blast resistance of rice
Chen et al. Molecular mechanisms of salinity tolerance in rice
CN110577957B (en) Application of straw mushroom manganese superoxide dismutase VMn-SOD in improving stress tolerance of microorganisms
CN105602911B (en) Soybean PUB E3 ubiquitin ligase GmPUB8 and coding gene and application thereof
CN107299102A (en) The positive regulatory factor OsWRKY53 genes of paddy rice BR signals and its encoding proteins
CN109880829B (en) Barley HvPAA1 gene and application thereof
CN112694524A (en) Anti-fusarium wilt PHD transcription factor ClPHD23, gene, expression vector, transformant and application thereof
CN114591411B (en) OsGND5 protein, encoding gene and application thereof
WO2024078038A1 (en) Wheat leaf rust resistance protein, and encoding gene and use thereof
CN114853860B (en) Protein related to shortening larch breeding cycle and application thereof
CN114940996B (en) Application of tomato SlULT1 gene in improving drought resistance of tomatoes
CN101532005B (en) Soybean PLP enzyme, encoding gene and application thereof
CN114350672B (en) Wheat transcription factor TaCBF1d and application thereof
CN111718944B (en) Peanut salt-tolerant gene and application thereof
CN113122568A (en) Method for improving corn biomass
CN113493794A (en) Gene GmGRX4 with resistance to soybean mosaic virus and application thereof
CN114656533B (en) Novel watermelon sugar transporter, encoding gene ClVST1 and application thereof
CN114349831A (en) aspA gene mutant, recombinant bacterium and method for preparing L-valine
CN112708603A (en) Application of rice ARE2 gene in plant nitrogen metabolism regulation
CN114853858B (en) Insect-resistant threo-ferritin gene, expression vector and application
CN112779271A (en) Rice gene OsFd2 and application thereof in rice blast resistance
CN103665129A (en) Plant heading period associated protein TaMYB72 and application thereof
CN117777263B (en) Application of wheat disease resistance related protein TaMTase in regulation and control of wheat stem basal rot resistance
CN109369786A (en) A kind of tobacco KUP8 albumen and its encoding gene and application
CN114164291B (en) Application of rice grain length gene GL10 allele

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant