CN113122568A - Method for improving corn biomass - Google Patents

Method for improving corn biomass Download PDF

Info

Publication number
CN113122568A
CN113122568A CN201911412003.5A CN201911412003A CN113122568A CN 113122568 A CN113122568 A CN 113122568A CN 201911412003 A CN201911412003 A CN 201911412003A CN 113122568 A CN113122568 A CN 113122568A
Authority
CN
China
Prior art keywords
gene
sequence
seq
corn
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911412003.5A
Other languages
Chinese (zh)
Other versions
CN113122568B (en
Inventor
沈志成
林朝阳
王东芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Ruifeng Biotechnology Ltd inc
Original Assignee
Hangzhou Ruifeng Biotechnology Ltd inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Ruifeng Biotechnology Ltd inc filed Critical Hangzhou Ruifeng Biotechnology Ltd inc
Priority to CN201911412003.5A priority Critical patent/CN113122568B/en
Publication of CN113122568A publication Critical patent/CN113122568A/en
Application granted granted Critical
Publication of CN113122568B publication Critical patent/CN113122568B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a method for improving corn biomass, which comprises the following steps: inserting a regulatory sequence into the upstream or downstream of a target gene of a corn genome at a fixed point, and screening to obtain corn with improved biological quantity; the target gene is PLA1 gene or TE1 gene, and the regulatory sequence is shown in SEQ ID NO. 3. Compared with the parental control, the improved corn greatly improves the whole plant dry weight, the dry ear weight and the hundred grain weight, particularly improves the single plant ear yield by more than 25 percent, and has application prospect in breeding new corn varieties.

Description

Method for improving corn biomass
(I) technical field
The invention relates to a technology for improving the yield and characters of corn by using a gene editing technology, belonging to the technical field of biology.
(II) background of the invention
Corn is a major food crop and also a good feed and industrial raw material. The corn has the characteristics of high heat, high straw yield, rich vitamins in the straw and the like. The corn planting cost is relatively low, and with the rapid development of animal husbandry, the demand of corn as feed is gradually increased. In recent years, the corn whole plant silage mode is popularized in various places. The corn used as silage not only pursues the corn kernel yield, but also pays attention to the yield of the non-kernel part of the corn, and the value of improving the overall biological yield of the corn in production application is higher and higher.
The existing research finds that the maize leaf primordium formation interval is a key factor influencing the growth and development of maize, and the key genes Plastochron1(PLA1) and Terminal ear1(TE1) influencing the leaf primordium formation interval are identified. Studies have shown that deletion of TE1 expression results in maize internode shrinkage, maize plants that are dwarf and leaf-diminished (Veit, Nature,1998,393: 166-168). The over-expression of the TE1 gene can obviously increase the biological yield and the seed number, and improve the harvest index and the grain weight (Zhang Xian, 2017100464476). Overexpression of PLA1 in maize can significantly improve maize yield while also enhancing maize stress tolerance (Sun, Nature communications,2017, 8: 14752; Shenshicheng, 2015102305475). High expression of PLA1 and TE1 genes in maize contributes to increased biological yield in maize. The current general method is to introduce an artificial expression frame for enhancing PLA1 or TE1 gene expression and T-DNA containing a selection marker gene into a plant by using a transgenic method to improve the expression level of the PLA1 or TE1 gene in corn. The use of transgenic approaches also typically requires the use of a selection marker gene that is tightly linked to the enhanced expression cassette of PLA1 or TE1 and cannot be isolated later by breeding programs. The introduction of the selection marker gene into corn may increase the ecological risk to the environment in the cultivation and production of corn and the safety risk in the edible feed. In addition, random insertion of expression cassettes containing PLA1 or TE1 into the maize genome may also affect the expression of genes around the insertion site, and thus may have unpredictable effects on maize traits.
The invention utilizes gene editing technology to introduce regulatory sequences into a corn genome at fixed points to improve the expression level of PLA1 or TE1 genes in corn, thereby obtaining corn with improved biological yield and enhanced growth potential. By backcross transformation, screening marker genes used in the process of gene editing and screening can be effectively removed, the breeding efficiency of new corn varieties is improved, and the planting and application risks of genetically modified corns are reduced.
Disclosure of the invention
The invention aims to provide a method for improving corn yield, and particularly relates to a method for improving the expression of a key gene PLA1 or TE1 gene in a corn leaf primordial phase by using a gene editing method, so that the corn biological yield is improved.
The technical scheme adopted by the invention is as follows:
the invention provides a method for improving corn biomass, which introduces a regulatory sequence to the upstream or downstream of a target gene in a corn genome to enhance the expression of the target gene, thereby improving the growth potential of corn and improving the agronomic traits of corn, and the specific method comprises the following steps: inserting a regulatory sequence into the upstream or downstream of a target gene of a corn genome at a fixed point to obtain corn with improved biological quantity; the target gene is PLA1 gene or TE1 gene, and the nucleotide of the regulatory sequence is shown in SEQ ID NO. 3.
Further, the PLA1 gene is a key gene of a leaf primordium formation interval period, and the nucleotide sequence of the PLA1 gene is shown in SEQ ID NO. 1; the upstream insertion site of the PLA1 gene is between the 247306010 and 247312010 bases of the No.1 chromosome of maize; the downstream insertion site of the PLA1 gene is between the bases of the maize No.1 chromosome 247314293 and 247317293.
Further, the TE1 gene is a key gene of a leaf primordium formation interval period, and the nucleotide sequence of the TE1 gene is shown in SEQ ID NO. 2; the upstream insertion site of the TE1 gene is between 167811126 and 167821126 bases of the maize chromosome 3; the downstream insertion site of the TE1 gene is between 167824995 and 167834995 bases of the maize chromosome 3.
Designing a gene editing vector containing a marker gene according to an insertion site, synthesizing a recombinant donor fragment containing a regulatory sequence, introducing the gene editing vector containing the marker gene and the recombinant donor fragment containing the regulatory sequence into young maize embryos by using a gene gun method, removing transgenic maize containing the marker gene, and screening to obtain the gene editing maize with improved biological quantity; the recombination donor sequence is formed by sequentially connecting an upstream homology arm of a target gene insertion site, a regulatory sequence and a downstream homology arm of the insertion site; the vector containing the marker gene comprises a Cas9 gene expression cassette, an upstream sgRNA coding sequence and a downstream sgRNA coding sequence.
The gene editing vector containing the marker gene takes pCambia1300(GenBank: AF234296.1) as a Plant transformation vector framework, takes a glyphosate-resistant gene expression frame as the marker gene, synthesizes a Cas expression frame and a target recognition expression frame according to the method described by Yongwei Sun et al (Molecular Plant,2016,9:628-631), constructs a gene editing vector P-G10-sgRNA-Cas 9-sgRNAB, and has the full sequence shown as SEQ ID NO. 4.
When the insertion site of the enhanced sequence is at the upstream of a PLA1 expression frame of a target gene, the insertion site is between 247306010-247312010 bases of a No.1 chromosome of corn (gene locus information is based on a whole genome sequence of B73 in a corn genomic database website www.maizegdb.org); designing an upstream homology arm (SEQ ID NO.5) and a downstream homology arm (SEQ ID NO.6) of the enhanced sequence according to the insertion site; sequentially connecting an upstream homologous arm of an insertion site shown in SEQ ID NO.5, a regulatory sequence shown in SEQ ID NO.3 and a downstream homologous arm of an insertion site shown in SEQ ID NO.6 to form a recombinant donor sequence; a sgRNA target is designed at 247310934 bases of a No.1 chromosome of corn, and is named as sgRNA1, and the sequence is as follows: acctccgcctcgcccgaccc, designing another target at 247310995bp, named sgRNA2 with sequence catcgcccaacctagggcgc; replacing a sgRNA sequence in a gene editing vector P-G10-sgRNA-cas 9-sgRNA shown in SEQ ID NO.4 with sgRNA1, and replacing the sgRNA sequence with sgRNA2 to obtain a PLA1 upstream gene editing vector P-G10-sgRNA1-cas9-sgRNA 2; adopting a gene gun bombardment method, and carrying out gene editing on a vector and a corresponding recombinant donor fragment according to the ratio of 1: 20 mol ratio, introducing into young embryo of corn, screening to obtain transgenic corn with inserted enhancement sequence, and separating and screening marker gene to obtain gene-edited corn.
When the insertion site of the enhancement sequence is downstream of the expression frame of the PLA1 gene, the site-specific insertion site is between the bases of the maize No.1 chromosome 247314293 and 247317293; designing a sgRNA target at the 247314496bp site of the No.1 chromosome of the corn, and naming the sgRNA target as 3 and gttcactaaagaacttaatc; 247315566bp sites are used for designing a target, namely sgRNA4, atcaattcaagcacttaaac; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.7, the downstream homology arm is SEQ ID NO. 8; the insertion method is the same as the insertion of the enhancement sequence upstream of the PLA1 gene expression cassette.
When the site-specific insertion site provided by the invention is upstream of a TE1 gene expression frame, the insertion site of a regulatory sequence is between 167811126 and 167821126 bases of a No.3 chromosome of corn, and the genetic locus information is according to a whole genome sequence of B73 in a corn genomic database website www.maizegdb.org; a sgRNA target is designed at 167822232bp of a maize 3 # chromosome, is named as sgRNA5, and has the sequence: aggtgttgtctaggcttggc, designing another target at 167812349bp, named sgRNA6 with sequence gtcggacgatccgcgcctat; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.9, and the nucleotide sequence of a downstream homology arm is SEQ ID NO. 10; the insertion method is the same as the insertion of the enhancement sequence upstream of the PLA1 gene expression cassette.
When the fixed point insertion site provided by the invention is downstream of a TE1 gene expression frame, the enhancement sequence insertion site is between 167824995-167834995 bases of a No.3 chromosome of maize; a sgRNA target is designed at 167825705bp of a maize 3 # chromosome, is named as sgRNA7, and has the sequence: ttcttataaataaatatttt, designing another target at 167825814bp, named sgRNA8 with sequence cttgaagtgagatcttaaat; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.11, the downstream homology arm is SEQ ID NO. 12; the insertion method is the same as the insertion of the enhancement sequence upstream of the PLA1 gene expression cassette.
Compared with the prior art, the invention has the following beneficial effects:
compared with the parental control, the improved corn greatly improves the whole plant dry weight, the dry ear weight and the hundred grain weight, particularly improves the single plant ear yield by more than 25 percent, and has application prospect in breeding new corn varieties.
(IV) description of the drawings
FIG. 1 is a diagram of a carrier frame.
FIG. 2 is a diagram of a recombinant donor fragment structure.
(V) detailed description of the preferred embodiments
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
example 1: preparation of Gene editing plasmids and Donor sequences
(1) Target design
The nucleotide sequence of the PLA1 gene is shown in SEQ ID NO. 1.
When the enhancement sequence is inserted into the upstream of the PLA1 gene expression cassette, the site-specific insertion site is between 247306010 and 247312010 bases of the No.1 corn chromosome, and the gene site information is based on the whole genome sequence of B73 in the corn genomic database website www.maizegdb.org. One sgRNA target was designed at 247310934 base of chromosome 1 in maize, designated sgRNA1, and the other target was designed at 247310995bp, designated sgRNA 2.
When the enhancement sequence is inserted into the downstream of the PLA1 gene expression frame, the site-specific insertion site is between the bases of the No.1 chromosome 247314293 and 247317293 of the maize; designing an sgRNA target in an 247314496bp design insertion segment of a maize chromosome 1, and naming the sgRNA 3; an 247315566bp site designed a target, designated sgRNA 4.
When the enhanced sequence is inserted into the upstream of the TE1 gene expression cassette, the site-specific insertion site is between 167811126 and 167821126 bases of the maize chromosome 3, and the gene site information is according to the whole genome sequence of B73 in the maize genomic database website www.maizegdb.org. One sgRNA target was designed at 167822232bp of maize chromosome 3 and designated sgRNA5, and the other target was designed at 167812349bp and designated sgRNA 6.
When the enhancement sequence is inserted into the downstream of the TE1 gene expression cassette, the site-specific insertion site is between 167824995-167834995 bases of the No.3 chromosome of maize; one sgRNA target was designed at 167825705bp of maize chromosome 3 and designated sgRNA7, and the other target was designed at 167825814bp and designated sgRNA 8. The sequences of the respective target sites are shown in Table 1.
TABLE 1 target sites and sequences
Figure BDA0002350212390000051
(2) Gene editing vector
pCambia1300(GenBank: AF234296.1) is used as a Plant transformation vector framework, Shanghai biology, Inc. is entrusted to synthesize a marker gene glyphosate-resistant gene expression frame, a Cas expression frame and a target recognition expression frame are synthesized according to a method described by Yongwei Sun et al (Molecular Plant,2016,9:628-631), a gene editing vector P-G10-sgRNAa-Cas9-sgRNAB is constructed, the whole sequence is shown as SEQ ID NO.4, and the vector structure schematic diagram is shown as FIG. 1. The 1 st to 3740 th basic groups in SEQ ID NO.4 are glyphosate-resistant gene expression frames which are used as screening marker genes of transgenic corn; the 3741-position 3832 base is a T-DNA left arm sequence, the 3833-position 10065 base is a vector framework sequence, the 10066-position 10091 base is a T-DNA right arm sequence, the 10066-position 10836 base is a U3 promoter, the 10837-position 10856 base is a target recognition sequence, and the coded sgRNA is marked as sgRNA; bases 10857-17417 are Cas9 expression frame, gene editing enzyme; 17418 and 17923 is the U3 promoter; 17924 and 17943 base as target recognizing sequence, and encodes sgRNA, which is marked as sgRNA B, 17944 and 18041 base as CMV35S terminator sequence.
Replacing the sgRNA sequence in the gene editing vector P-G10-sgRNA-cas 9-sgRNA with sgRNA 1; replacing the sgRNA2 with the sgRNA sequence to obtain a PLA1 upstream gene editing vector P-G10-sgRNA1-cas9-sgRNA 2;
replacement of the sgRNA sequence to sgRNA 3; replacing the sgRNA4 with the sgRNA sequence to obtain a PLA1 downstream gene editing vector P-G10-sgRNA3-cas9-sgRNA 4;
replacement of the sgRNA sequence to sgRNA 5; replacing the sgRNA-B sequence with sgRNA6 to obtain TE1 upstream gene editing vector P-G10-sgRNA5-cas9-sgRNA 6;
replacement of the sgRNA sequence to sgRNA 7; the sgRNA8 was substituted with the sgRNA sequence to obtain the TE1 downstream gene editing vector P-G10-sgRNA7-cas9-sgRNA 8.
(3) Recombinant donor sequences
The nucleotide sequence of the regulatory sequence is shown as SEQ ID NO.3, the donor fragment is obtained by sequentially connecting an upstream homology arm, the regulatory sequence and a downstream homology arm, the structural schematic diagram is shown as figure 2, and the specific sequence structure is as follows:
PLA1 upstream recombination donor sequence H1: the sequence from the 5 'end to the 3' end is SEQ ID NO.5, SEQ ID NO.3, SEQ ID NO. 6;
PLA1 downstream recombination donor sequence H2: the sequence from the 5 'end to the 3' end is SEQ ID NO.7, SEQ ID NO.3, SEQ ID NO. 8;
TE1 upstream recombination donor sequence H3: the sequence from the 5 'end to the 3' end is SEQ ID NO.9, SEQ ID NO.3, SEQ ID NO. 10;
TE1 downstream recombination donor sequence H4: the sequence from 5 'end to 3' end is SEQ ID NO.11, SEQ ID NO.3, SEQ ID NO. 12.
Example 2: obtaining Gene-edited maize
The exogenous gene introduction is carried out by adopting a gene gun bombardment method, and the operation method, the steps and the culture medium formula are described by Joshi et al (J Microbiol Biotechnol Food Sci, 2016,5: 335-.
Selecting and pollinating 10-12 days, collecting well-grown corn inbred line B104 cluster, collecting young embryo (with size of 1.0-1.5mm), and culturing on induction culture medium for 3-4 days. Before gene gun bombardment, the immature embryo tissue is inoculated into the middle part of a hypertonic culture medium containing 36.4g/L mannitol and 36.4g/L sorbitol, the diameter of the medium is about 2.5 cm, and the medium is subjected to osmotic treatment for 4 hours.
Gene editing plasmids and corresponding recombinant donor fragments were expressed according to 1: 20 molar ratios were mixed to form four gene-editing DNA combinations as follows:
PLA1 upstream editing DNA combinations: P-G10-sgRNA1-cas9-sgRNA2+ H1;
PLA1 downstream editing DNA combinations: P-G10-sgRNA3-cas9-sgRNA4+ H2;
TE1 upstream editing DNA combinations: P-G10-sgRNA5-cas9-sgRNA6+ H3;
TE1 downstream editing DNA combinations: P-G10-sgRNA7-cas9-sgRNA8+ H4.
The DNA editing combination is respectively mixed with gold powder, the concentration of the gold powder is 1.0mmol/L, the bombardment pressure is 1100psi, the bombardment distance is 6 cm, each culture dish is bombarded for 1 time, the vacuum degree is adjusted to 24-27 inchwg, and each combination is respectively and independently implanted into a maize immature embryo.
After bombardment of young maize embryos, the embryos are transferred to an induction medium for dark culture for 16 hours and then transferred to a screening medium containing 2mM glyphosate. Screening for 2-3 rounds, selecting the resistant callus with good activity, transferring the resistant callus to a differentiation culture medium for differentiation, transferring the maize differentiated into seedlings to a rooting culture medium, culturing by illumination until the roots are completely developed, and transplanting the maize seedlings to a greenhouse for molecular detection to detect whether a regulatory sequence is inserted.
Example 3: identification of Gene-edited maize
Extracting maize genome DNA to be detected, taking the genome DNA as a template, and adopting a primer 1F (ACTCTCGTCTACTCCAAGAA) and a primer 1R (CAATCCATTGCTGAAGA) to carry out PCR amplification, wherein a parental control can not generate a band, and a specific band with the size of 300bp is generated by gene editing with the insertion of a regulatory gene. Screening to obtain Gene-edited maize lines containing regulatory Gene insertions is shown in Table 2
TABLE 2
Figure BDA0002350212390000071
Example 4: gene editing maize marker gene isolation
The maize obtained in example 3 was used as a male parent and a maize inbred line B104 was used as a female parent, and the female ear and the male flower were bagged, respectively, and after flowering, the maize pollen edited by the gene was pollinated to the B104 female ear, and after maturation, the maize was sun-dried and sown for screening of the gene-edited maize containing no selection marker gene. Detecting the corn progeny plants by using a G10 gene detection test paper (Youlong bio-company), removing positive plants containing G10 gene, carrying out PCR molecular detection on the rest non-transgenic corn, carrying out PCR amplification by using a primer 1F (ACTCTCGTCTACTCCAAGAA) and a primer 1R (CAATCCACTTTGCTTTGAAGA), generating a specific strip with the size of 300bp, and carrying out sequencing analysis on the strip. Screening to obtain the gene-edited corn without the G10 screening marker, and using the corn for later-stage variety transformation.
Example 5: gene editing maize biological yield comparison
The yield comparison test was performed on the gene-edited maize selected in example 4 without the G10 selection marker, against parental inbred line B104. The method adopts a completely random block design, the corn planting area is 20 square meters, 5 rows are arranged, the row length is 6 meters, the row spacing is 0.67 meter, the plant spacing is 0.22 meter, 27 holes are sowed in each row, 2-3 seedlings are sowed in each hole, one seedling is left in the process of final singling, and the yield is measured by sampling in the middle 3 rows after the corn is matured. The yield results show that the individual biomass yield, ear weight and ear grain weight of the gene-edited maize were significantly higher than the control maize.
TABLE 3
Figure BDA0002350212390000072
Figure BDA0002350212390000081
Note: indicates that the difference was extremely significant.
Sequence listing
<110> Hangzhou Ruifeng Biotechnology Ltd
<120> a method for increasing corn biomass
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1834
<212> DNA
<213> Unknown (Unknown)
<400> 1
atggcgatgg cctccgcggc ttgctcatgc acggacggca cgtggtgggt gtacgcgctc 60
ccggcgctgc tcggctccga caccctgtgc gcccacccgg ccctcctggc tggcctgatc 120
tttctggcca ccgtctcggt ggctctgctg gcgtgggcca cgtcgccggg cggtccggcg 180
tggacgaacg gccgcggccg cctcggcgtc actcctatcg tgggaccccg tggtctgccc 240
gtgttcggca gcatcttcgc gctgtcccgc gggctgccgc accgcgccct cgccgagatg 300
gcccgcgccg cagggccccg ggccaaggag ctcatggcgt tctccgtcgg tgacacgccc 360
gcggtcgtgt cgtcctgccc ggccacggca cgtgaggtgc tcgcgcaccc gtcattcgcc 420
gaccgccctg tgaagcggtc ggcccgggag ctcatgttcg cgcgtgccat cgggttcgcg 480
cccaacggcg agtactggcg ccgcctccgc cgcgtcgcgt ccacgcacct attctccccg 540
cgccgggtcg cctcgcacga gccgggacgc caaggtgacg cggaggccat gctccgctcc 600
atcgccgccg aacagtcggc ctctggcgcc gtcgccctcc gcccgcacct ccaggccgcc 660
gctctcaaca acatcatggg cagcgtcttc ggcacgcggt acgacgtcac atcaggcgcc 720
ggcgccgcgg aggccgagca tctcaagagc atggtgcgcg aggggttcga gctcctcggc 780
gccttcaact ggtccgacca cctcccctgg ctcgcccacc tgtacgaccc aagcaacgtc 840
acccgccggt gcgccgcgct cgtgccgcgc gtccagacct tcgtccgtgg cgtcatcgac 900
gagcaccggc gccgccgcca aaactccgcc gccctcaacg acaatgctga cttcgtcgac 960
gtgctcctct ccctcgaggg tgacgagaag ctcggcgacg acgacatggt cgccatcctc 1020
tgggtaaagt tcaaatcgat cgctttccta gcttgtttaa ctgcgcatac ttctcagttc 1080
tcaactgcgc atacctgtcg gttctacagt tttgtgtcgg gctgtcggtt gttcccggaa 1140
gggaaaaaaa agaacaaagc tctgtcgctg aaaaaaacat actgtacatg catataattt 1200
gtttttgcag gagatggtct tccgcggtac ggacacgacg gcgcttctga ccgagtggtg 1260
catggcggag ctggtgcgcc acccggcggt gcaggcgagg gtgcgcgccg aggtcgacgc 1320
ggctgtcggt gccggaggtt gccccaccga cgccgacgtg gcgcgcatgc cgtacctgca 1380
ggcggttgtg aaggagacgc tgcgcgccca cccgcctggc ccgctgctga gctgggctcg 1440
cctcgccacc gccgacgtgc cactctgcaa cggcatggtg gtcccggctg gcaccacggc 1500
gatggtgaat atgtgggcca taacccacga tgccgccgtg tgggccgacc cggacgcgtt 1560
cgcgccggag cggttcctgc cctccgaggg cggcgccgac gtggacgtcc gcggcgtcga 1620
cctccgcctg gccccgttcg gcgccgggcg tcgcgtctgc cccggcaaga acctgggcct 1680
caccaccgtg ggcctctggg ttgcccgcct cgtgcacgcc ttccagtggg ccctgcctga 1740
cggcgcggcg gccgtttgcc tcgacgaggt cctcaagctc tccctggaga tgaagacgcc 1800
gctcgtcgcc gcagccatcc cccgcaccgc ctga 1834
<210> 2
<211> 3870
<212> DNA
<213> Unknown (Unknown)
<400> 2
gggtggggga gggagtggaa tgggtgggtt cccggaagcc acgggtaacc ttctcgatgc 60
cgcagctcag gagttccacc ctacggtctg tgccccctat cctctacagc cgcttccgca 120
acagctatac tgcccccacc catatccagc catgccggtg cctccgccgc cgcaaatagc 180
catgttacag ccagtgcctc cgatggcgat ggccatggcg ccgcagccgg ggtacacctt 240
gccaacgacg acgccggtgg tcaatggccc gtcgagccgc gtcgtggtgc tgggccttgt 300
cccgccgcac gcgcaggagg ccgacgtggc gcaggcgatg gcgccattcg gcgcgatccg 360
ctcggtcgac gcgtgcgcgg tggcgtccga gggcgtggcc accgtccatt tcttcgacat 420
ccgcgccgcc gagctcgcct tgacctgtgt ccgcgagcag cacatgcgcc agcagagccg 480
cctcgggcag ctctacgcgg cggccgccgt agccccggcg tgggctcctg caccgacgcc 540
ccaggcctgg gactggcccc accccaacga cgacggccgc ggcctcgtcc tcgggcacgc 600
cgtgtgggcc cacttcgcca ccggcgccga cgacggcgac aaccgcggct ccctggtggt 660
cctgagcccc ctgcccggcg tctcggtcgc tgacctccgc caagtcttcc aggccttcgg 720
tacgcgccac cgaccgagcc gaccaaccag gcatttcgtt ttcccacgct cgtttcttgt 780
gtttcccgca gcaattgtat tggcccgtcc tcgtgttcgc aggggacttg aaggatgtga 840
gggagtcggc gcagcggccc agccacaagt tcgtggactt cttcgacacg cgcgacgccg 900
cgcgcgcgct cgccgagctc aacggccagg agcttttcgg ccgccgcctc gtcgtcgagt 960
tcacgcgccc ttccggcccc gggccccgca ggtaaacaac aacgcaattt cagtcagcta 1020
gccttcccat caccctgtgg gcggctgaat ttttgccgtg tgcctgtcgg tcctaggcgc 1080
gggtacgcac cccaccagca ccggcccacc gcgccgactc cgccgaggct tcaagcgacg 1140
tggcgaccgt cccaaccgac gtcgtctcag ccgccggcat cctcgtcgtc gtccggttcc 1200
gtaagggcga gggaaggagt ggtgcttctg aggaggagct cctgtaagtc tagcgcgggc 1260
agcgaccagt cgtccaaggg aggcaatgcc ggaacgagcc atgagcgcaa gaccaagggc 1320
ggcaagatcg tggtggcggc ggcggcggca tcctcgtcga ccccgacagc gtccgggaag 1380
caaacccaga aaggcgtcgg gagcagcggc ggcgggagct ggaaaggacg aaagagcggg 1440
tgggaggcgc gcttcctgtt caaggagccc gaggccggcg gcggcgccga cacgcaagca 1500
acgccggctt cggagatgga tacgaggacc accgtcatga tcaggaacat accgaacaag 1560
tacaggtatc cctgccaatc tccacgtttg ttgcaacaat gctatatttc atgggcgacg 1620
cacagaattg cgattctgct agctgatgcc cgaggcgttt gggtcgcagc cagaagctgc 1680
tgctcaacat gctggacaac cactgcatcc aatccaacga gtggatcgtg gcgagcggcg 1740
aggagcagcc cttctccgcc tacgatttcg tctacctccc catagatttc aagtgagttg 1800
cgcgctcggc ttccttctca cataattgca tttagctgtt cgcattgact tatattttat 1860
ggtgcccaat gcaagaacac acacaagctt cccagcctga attcggttgt tttcctggga 1920
atttgttgcc ttgaataatg gttggagtgg gaaatgtggg cgggggggtg ggaggcgagg 1980
agctggctgt ggaagcgtga gcttcaggat cgaggtatct tatctttggg tgggtagagt 2040
acagtgcagc aggcatagat gggctatggc gttactagcc caaatggaaa taaatttggc 2100
agcggcaagc aagaccatgc cagatccttc tcgttttgat gcccccccat ggattctttg 2160
gttgcatgcg cgcatctgct ggctgctgct gccgctgccg atggcgaggg agccggcctg 2220
ccttcctttc tcgcggctgc tgccgcccct gggatcgcct ccctgcctgc ctttcttgct 2280
ttgcacagcc gtgcacttcc ataacgaggc caacacatac aaaaggtgcg gcaccgatgg 2340
ggttgtagtg ttgagactag acagtagaga tagacgctta gctatggaga tggagctgtg 2400
aaaaaaaaag agttgcatga gtatgaaaag ggggaaaaag tcagcacttt cgttctaaag 2460
agaaaatttg aacttcagat caaagtagtt ttctatatgc aaacaaaatg tatgctttca 2520
agtttgctta tttaaagcac ttgcttttat atataccgcc ggcagctttt ctcttgcacg 2580
aagcaagttt gagaaaagac ctatcaatgc ccaatgacga gaggacatta gtggctgtca 2640
aaaggcatgc agcttcaaac atactcatgt gtaaagcagc tgcagcataa tgccaaagtt 2700
tttttttgat tgcaagtctt tttagttatt gttcctccat gccattacca ttctgaattt 2760
cttgcccttg catgaaatga gaatttttct tccttatgca aaaatgaaaa aaaacaaaaa 2820
aatgcagcaa caagtgtaat gtgggctacg gcttcgtcaa cctgacatcg ccggaggctg 2880
ccgtgcggct gtacaaggcg ttccacaagc agccatggga ggtgtacaac tcgcgcaaga 2940
tctgccaagt gacatacgcg cgcgtacaag tacgtactcc actcctgcag ctgcccttct 3000
cctacatcta catccgtcga agacatttta atgctacgta cgtacttatt gctcacatgt 3060
caatgttaca attgtgcggc ggcgcagggc ctggaagcgc tgaaggagca cttcaagaac 3120
tccaagttcc cgtgcgacag cgacgagtac ctgcccgtgg cgttctcgcc ggcgcgcgac 3180
ggcaaggagc ttacggatcc agtgcccatc gtgggccgct cgcccgcggc gtcgtccgcg 3240
tcgtcgcctc ccaagagccg ggcggctagc gtggaccggc ttgggcagga gctgatgccg 3300
gcgccgtcgt catccgcgga cggcgcgtcg tcgaccacta cgtccaccca cgcgccgtcc 3360
gaacacgacg aggaggagga ggagggagac atcaggctcg caggcgagct gcggcggctt 3420
ggctacgacg actagctggc tccgatccta gctgcagcta ggcgggcgac gcctagctca 3480
gcaacgatcg gcatggcgtg gcgtcgcttc gagaagcgcg gaggcagtag tgacttcggc 3540
caagcttttc acagatccgt agcgctcgct cctgcacgcg caggcgaagc aagtgaagtg 3600
gactgggact tgactttgga gaagcaaaag tgagctgatg ttcgttggtt cgtagacgct 3660
gcgcacagca ggtgtggagt cgtgttcttt tggattttgg tttgaagttt cctactactt 3720
gtttctttga aacttggagc tatagctagc ttaggcttag ctaggactgc tgggagggga 3780
aagggcatgc aggggactat caattcgtgg ttcgtcatgc gctcgttctt tacattaaaa 3840
taagattgtt attagtacag ctttacaata 3870
<210> 3
<211> 172
<212> DNA
<213> Unknown (Unknown)
<400> 3
cggtgcgatg ccccccatcg taggtgaagg tggaaattaa tgatccatct tgagaccaca 60
ggcccacaac agctaccagt ttcctcaagg gtccaccaaa aacgtaagcg cttacgtaca 120
tggtcgataa gaaaaggcaa tttgtagatg ttaacatcca acgtcgcttt ca 172
<210> 4
<211> 18041
<212> DNA
<213> Unknown (Unknown)
<400> 4
ctcgacgcat gcctacagtg cagcgtgacc cggtcgtgcc cctctctaga gataatgagc 60
attgcatgtc taagttataa aaaattacca catatttttt ttgtcacact tgtttgaagt 120
gcagtttatc tatctttata catatattta aactttactc tacgaataat ataatctata 180
gtactacaat aatatcagtg ttttagagaa tcatataaat gaacagttag acatggtcta 240
aaggacaatt gagtattttg acaacaggac tctacagttt tatcttttta gtgtgcatgt 300
gttctccttt ttttttgcaa atagcttcac ctatataata cttcatccat tttattagta 360
catccattta gggtttaggg ttaatggttt ttatagacta atttttttag tacatctatt 420
ttattctatt ttagcctcta aattaagaaa actaaaactc tattttagtt tttttattta 480
ataatttaga tataaaatag aataaaataa agtgactaaa aattaaacaa atacccttta 540
agaaattaaa aaaactaagg aaacattttt cttgtttcga gtagataatg ccagcctgtt 600
aaacgccgtc gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc 660
aagcgaagca gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg 720
ctccaccgtt ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac 780
gtgagccggc acggcaggcg gcctcctcct cctctcacgg cacggcagct acgggggatt 840
cctttcccac cgctccttcg ctttcccttc ctcgcccgcc gtaataaata gacaccccct 900
ccacaccctc tttccccaac ctcgtgttgt tcggagcgca cacacacaca accagatctc 960
ccccaaatcc acccgtcggc acctccgctt caaggtacgc cgctcgtcct cccccccccc 1020
ccctctctac cttctctaga tcggcgttcc ggtccatggt tagggcccgg tagttctact 1080
tctgttcatg tttgtgttag atccgtgttt gtgttagatc cgtgctgcta gcgttcgtac 1140
acggatgcga cctgtacgtc agacacgttc tgattgctaa cttgccagtg tttctctttg 1200
gggaatcctg ggatggctct agccgttccg cagacgggat cgatttcatg attttttttg 1260
tttcgttgca tagggtttgg tttgcccttt tcctttattt caatatatgc cgtgcacttg 1320
tttgtcgggt catcttttca tgcttttttt tgtcttggtt gtgatgatgt ggtctggttg 1380
ggcggtcgtt ctagatcgga gtagaattct gtttcaaact acctggtgga tttattaatt 1440
ttggatctgt atgtgtgtgc catacatatt catagttacg aattgaagat gatggatgga 1500
aatatcgatc taggataggt atacatgttg atgcgggttt tactgatgca tatacagaga 1560
tgctttttgt tcgcttggtt gtgatgatgt ggtgtggttg ggcggtcgtt cattcgttct 1620
agatcggagt agaatactgt ttcaaactac ctggtgtatt tattaatttt ggaactgtat 1680
gtgtgtgtca tacatcttca tagttacgag tttaagatgg atggaaatat cgatctagga 1740
taggtataca tgttgatgtg ggttttactg atgcatatac atgatggcat atgcagcatc 1800
tattcatatg ctctaacctt gagtacctat ctattataat aaacaagtat gttttataat 1860
tattttgatc ttgatatact tggatgatgg catatgcagc agctatatgt ggattttttt 1920
agccctgcct tcatacgcta tttatttgct tggtactgtt tcttttgtcg atgctcaccc 1980
tgttgtttgg tgttacttct gcaggtcgac tctagaggat ctaccatggc caccgccgcc 2040
gccgcgtcta ccgcgctcac tggcgccact accgctgcgc ccaaggcgag gcgccgggcg 2100
cacctcctgg ccacccgccg cgccctcgcc gcgcccatca ggtgctcagc ggcgtcaccc 2160
gccatgccga tggctccccc ggccaccccg ctccggccgt ggggccccac cgatccccgc 2220
aagggatccg acgccctgcc cgccaccttc gacgtgatcg tgcatccagc tcgcgaactc 2280
cgcggcgagc ttcgcgctca gccatccaag aactacacca ctcgctacct cctcgccgct 2340
gccctcgctg agggcgagac ccgcgtggtg ggcgtggcta cctctgagga cgccgaggcc 2400
atgctccgct gcctccgcga ctggggcgct ggcgtggagc ttgtgggcga tgacgccgtg 2460
atccgcggtt tcggcgctcg cccacaggcc ggtgtgaccc tcaacccagg caacgctgcc 2520
gcggtggccc gcctcctcat gggcgtggcc gctctcacct ctggcaccac tttcgtgacc 2580
gactacccgg actccctcgg caagcgccct cagggcgacc tccttgaggc cctcgaacgc 2640
ctcggtgcct gggtgtcctc caacgacggt cgcctcccga tctccgtgtc cggcccagtg 2700
cgcggtggca ccgtggaggt gtccgccgag cgctcctccc agtacgcctc cgccctcatg 2760
ttcctcggcc ctctcctccc ggacggactc gaactccgcc tcaccggcga catcaagtcc 2820
cacgctccgc tccgccagac actcgacacc ctctctgact tcggcgtgcg cgccactgcc 2880
tccgacgacc tccgccgcat ctccatcccg ggtggccaga agtaccgccc aggccgcgtg 2940
ctcgtgccgg gcgactaccc gggctccgct gccatcctca ccgccgctgc cctcctccca 3000
ggcgaggtgc gcctctctaa cctccgcgag cacgacctcc agggcgagaa ggaggccgtg 3060
aacgtgctcc gcgagatggg cgctgacatc gtgcgcgagg gcgataccct caccgtgcgc 3120
ggtggccgcc ctctccacgc cgtgactcgc gacggcgatt ccttcaccga cgccgtgcaa 3180
gccctcaccg ccgctgctgc cttcgccgag ggcgacacca cctgggagaa cgtggccact 3240
ctccgcctca aggagtgcga ccgcatctct gacacccgcg ctgagcttga gcgcctcggc 3300
ctccgcgcac gcgagaccgc cgactctctc tccgtgactg gctctgctca cctcgctggt 3360
ggcatcaccg ccgacggcca cggcgaccac cgcatgatca tgctcctcac cctcctcggc 3420
ctccgcgcag acgctccact ccgcatcacc ggcgcacacc acatccgcaa gtcctaccct 3480
cagttcttcg ctcacctcga agccctcggc gctcgcttcg agtacgctga ggccaccgcc 3540
taataggagc tcgagtttct ccataataat gtgtgagtag ttcccagata agggaattag 3600
ggttcctata gggtttcgct catgtgttga gcatataaga aacccttagt atgtatttgt 3660
atttgtaaaa tacttctatc aataaaattt ctaattccta aaaccaaaat ccagtactaa 3720
aatccagatc ccccgaatta attcggcgtt aattcagtac attaaaaacg tccgcaatgt 3780
gttattaagt tgtctaagcg tcaatttgtt tacaccacaa tatatcctgc caccagccag 3840
ccaacagctc cccgaccggc agctcggcac aaaatcacca ctcgatacag gcagcccatc 3900
agtccgggac ggcgtcagcg ggagagccgt tgtaaggcgg cagactttgc tcatgttacc 3960
gatgctattc ggaagaacgg caactaagct gccgggtttg aaacacggat gatctcgcgg 4020
agggtagcat gttgattgta acgatgacag agcgttgctg cctgtgatca ccgcggtttc 4080
aaaatcggct ccgtcgatac tatgttatac gccaactttg aaaacaactt tgaaaaagct 4140
gttttctggt atttaaggtt ttagaatgca aggaacagtg aattggagtt cgtcttgtta 4200
taattagctt cttggggtat ctttaaatac tgtagaaaag aggaaggaaa taataaatgg 4260
ctaaaatgag aatatcaccg gaattgaaaa aactgatcga aaaataccgc tgcgtaaaag 4320
atacggaagg aatgtctcct gctaaggtat ataagctggt gggagaaaat gaaaacctat 4380
atttaaaaat gacggacagc cggtataaag ggaccaccta tgatgtggaa cgggaaaagg 4440
acatgatgct atggctggaa ggaaagctgc ctgttccaaa ggtcctgcac tttgaacggc 4500
atgatggctg gagcaatctg ctcatgagtg aggccgatgg cgtcctttgc tcggaagagt 4560
atgaagatga acaaagccct gaaaagatta tcgagctgta tgcggagtgc atcaggctct 4620
ttcactccat cgacatatcg gattgtccct atacgaatag cttagacagc cgcttagccg 4680
aattggatta cttactgaat aacgatctgg ccgatgtgga ttgcgaaaac tgggaagaag 4740
acactccatt taaagatccg cgcgagctgt atgatttttt aaagacggaa aagcccgaag 4800
aggaacttgt cttttcccac ggcgacctgg gagacagcaa catctttgtg aaagatggca 4860
aagtaagtgg ctttattgat cttgggagaa gcggcagggc ggacaagtgg tatgacattg 4920
ccttctgcgt ccggtcgatc agggaggata tcggggaaga acagtatgtc gagctatttt 4980
ttgacttact ggggatcaag cctgattggg agaaaataaa atattatatt ttactggatg 5040
aattgtttta gtacctagaa tgcatgacca aaatccctta acgtgagttt tcgttccact 5100
gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg 5160
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 5220
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata 5280
ctgtccttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 5340
catacctcgc tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc 5400
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 5460
ggggttcgtg cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac 5520
agcgtgagct atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg 5580
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 5640
atctttatag tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct 5700
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 5760
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 5820
accgtattac cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca 5880
gcgagtcagt gagcgaggaa gcggaagagc gcctgatgcg gtattttctc cttacgcatc 5940
tgtgcggtat ttcacaccgc atatggtgca ctctcagtac aatctgctct gatgccgcat 6000
agttaagcca gtatacactc cgctatcgct acgtgactgg gtcatggctg cgccccgaca 6060
cccgccaaca cccgctgacg cgccctgacg ggcttgtctg ctcccggcat ccgcttacag 6120
acaagctgtg accgtctccg ggagctgcat gtgtcagagg ttttcaccgt catcaccgaa 6180
acgcgcgagg cagggtgcct tgatgtgggc gccggcggtc gagtggcgac ggcgcggctt 6240
gtccgcgccc tggtagattg cctggccgta ggccagccat ttttgagcgg ccagcggccg 6300
cgataggccg acgcgaagcg gcggggcgta gggagcgcag cgaccgaagg gtaggcgctt 6360
tttgcagctc ttcggctgtg cgctggccag acagttatgc acaggccagg cgggttttaa 6420
gagttttaat aagttttaaa gagttttagg cggaaaaatc gccttttttc tcttttatat 6480
cagtcactta catgtgtgac cggttcccaa tgtacggctt tgggttccca atgtacgggt 6540
tccggttccc aatgtacggc tttgggttcc caatgtacgt gctatccaca ggaaagagac 6600
cttttcgacc tttttcccct gctagggcaa tttgccctag catctgctcc gtacattagg 6660
aaccggcgga tgcttcgccc tcgatcaggt tgcggtagcg catgactagg atcgggccag 6720
cctgccccgc ctcctccttc aaatcgtact ccggcaggtc atttgacccg atcagcttgc 6780
gcacggtgaa acagaacttc ttgaactctc cggcgctgcc actgcgttcg tagatcgtct 6840
tgaacaacca tctggcttct gccttgcctg cggcgcggcg tgccaggcgg tagagaaaac 6900
ggccgatgcc gggatcgatc aaaaagtaat cggggtgaac cgtcagcacg tccgggttct 6960
tgccttctgt gatctcgcgg tacatccaat cagctagctc gatctcgatg tactccggcc 7020
gcccggtttc gctctttacg atcttgtagc ggctaatcaa ggcttcaccc tcggataccg 7080
tcaccaggcg gccgttcttg gccttcttcg tacgctgcat ggcaacgtgc gtggtgttta 7140
accgaatgca ggtttctacc aggtcgtctt tctgctttcc gccatcggct cgccggcaga 7200
acttgagtac gtccgcaacg tgtggacgga acacgcggcc gggcttgtct cccttccctt 7260
cccggtatcg gttcatggat tcggttagat gggaaaccgc catcagtacc aggtcgtaat 7320
cccacacact ggccatgccg gccggccctg cggaaacctc tacgtgcccg tctggaagct 7380
cgtagcggat cacctcgcca gctcgtcggt cacgcttcga cagacggaaa acggccacgt 7440
ccatgatgct gcgactatcg cgggtgccca cgtcatagag catcggaacg aaaaaatctg 7500
gttgctcgtc gcccttgggc ggcttcctaa tcgacggcgc accggctgcc ggcggttgcc 7560
gggattcttt gcggattcga tcagcggccg cttgccacga ttcaccgggg cgtgcttctg 7620
cctcgatgcg ttgccgctgg gcggcctgcg cggccttcaa cttctccacc aggtcatcac 7680
ccagcgccgc gccgatttgt accgggccgg atggtttgcg accgtcacgc cgattcctcg 7740
ggcttggggg ttccagtgcc attgcagggc cggcagacaa cccagccgct tacgcctggc 7800
caaccgcccg ttcctccaca catggggcat tccacggcgt cggtgcctgg ttgttcttga 7860
ttttccatgc cgcctccttt agccgctaaa attcatctac tcatttattc atttgctcat 7920
ttactctggt agctgcgcga tgtattcaga tagcagctcg gtaatggtct tgccttggcg 7980
taccgcgtac atcttcagct tggtgtgatc ctccgccggc aactgaaagt tgacccgctt 8040
catggctggc gtgtctgcca ggctggccaa cgttgcagcc ttgctgctgc gtgcgctcgg 8100
acggccggca cttagcgtgt ttgtgctttt gctcattttc tctttacctc attaactcaa 8160
atgagttttg atttaatttc agcggccagc gcctggacct cgcgggcagc gtcgccctcg 8220
ggttctgatt caagaacggt tgtgccggcg gcggcagtgc ctgggtagct cacgcgctgc 8280
gtgatacggg actcaagaat gggcagctcg tacccggcca gcgcctcggc aacctcaccg 8340
ccgatgcgcg tgcctttgat cgcccgcgac acgacaaagg ccgcttgtag ccttccatcc 8400
gtgacctcaa tgcgctgctt aaccagctcc accaggtcgg cggtggccca tatgtcgtaa 8460
gggcttggct gcaccggaat cagcacgaag tcggctgcct tgatcgcgga cacagccaag 8520
tccgccgcct ggggcgctcc gtcgatcact acgaagtcgc gccggccgat ggccttcacg 8580
tcgcggtcaa tcgtcgggcg gtcgatgccg acaacggtta gcggttgatc ttcccgcacg 8640
gccgcccaat cgcgggcact gccctgggga tcggaatcga ctaacagaac atcggccccg 8700
gcgagttgca gggcgcgggc tagatgggtt gcgatggtcg tcttgcctga cccgcctttc 8760
tggttaagta cagcgataac cttcatgcgt tccccttgcg tatttgttta tttactcatc 8820
gcatcatata cgcagcgacc gcatgacgca agctgtttta ctcaaataca catcaccttt 8880
ttagacggcg gcgctcggtt tcttcagcgg ccaagctggc cggccaggcc gccagcttgg 8940
catcagacaa accggccagg atttcatgca gccgcacggt tgagacgtgc gcgggcggct 9000
cgaacacgta cccggccgcg atcatctccg cctcgatctc ttcggtaatg aaaaacggtt 9060
cgtcctggcc gtcctggtgc ggtttcatgc ttgttcctct tggcgttcat tctcggcggc 9120
cgccagggcg tcggcctcgg tcaatgcgtc ctcacggaag gcaccgcgcc gcctggcctc 9180
ggtgggcgtc acttcctcgc tgcgctcaag tgcgcggtac agggtcgagc gatgcacgcc 9240
aagcagtgca gccgcctctt tcacggtgcg gccttcctgg tcgatcagct cgcgggcgtg 9300
cgcgatctgt gccggggtga gggtagggcg ggggccaaac ttcacgcctc gggccttggc 9360
ggcctcgcgc ccgctccggg tgcggtcgat gattagggaa cgctcgaact cggcaatgcc 9420
ggcgaacacg gtcaacacca tgcggccggc cggcgtggtg gtgtcggccc acggctctgc 9480
caggctacgc aggcccgcgc cggcctcctg gatgcgctcg gcaatgtcca gtaggtcgcg 9540
ggtgctgcgg gccaggcggt ctagcctggt cactgtcaca acgtcgccag ggcgtaggtg 9600
gtcaagcatc ctggccagct ccgggcggtc gcgcctggtg ccggtgatct tctcggaaaa 9660
cagcttggtg cagccggccg cgtgcagttc ggcccgttgg ttggtcaagt cctggtcgtc 9720
ggtgctgacg cgggcatagc ccagcaggcc agcggcggcg ctcttgttca tggcgtaatg 9780
tctccggttc tagtcgcaag tattctactt tatgcgacta aaacacgcga caagaaaacg 9840
ccaggaaaag ggcagggcgg cagcctgtcg cgtaacttag gacttgtgcg acatgtcgtt 9900
ttcagaagac ggctgcactg aacgtcagaa gccgactgca ctatagcagc ggaggggttg 9960
gatcaaagta ctttgatccc gaggggaacc ctgtggttgg catgcacata caaatggacg 10020
aacggataaa ccttttcacg cccttttaaa tatccgttat tctaataaac gctcttttct 10080
cttaggttta cccgccaata tatcctgtca aacactgata gtttaaactg aaggcgggaa 10140
acgacaatct gatccaagct caagctgctc tagcattcgc cattcaggct gcgcaactgt 10200
tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt 10260
gctgcaaggc gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg 10320
acggccagtg ccaagcttcc cctgaatttc agtctctcta gctagtggct aaggccatct 10380
cttatttggt tcagatgaca gtaattcatc caggtctcca agttctagga ttttcagaac 10440
tgcaacttat tttatcaagg aatctttaaa catacgaaca gatcacttaa agttcttctg 10500
aagcaactta aagttatcag gcatgcatgg atcttggagg aatcagatgt gcagtcaggg 10560
accatagcac aagacaggcg tcttctactg gtgctaccag caaatgctgg aagccgggaa 10620
cactgggtac gttggaaacc acgtgatgtg aagaagtaag ataaactgta ggagaaaagc 10680
atttcgtagt gggccatgaa gcctttcagg acatgtattg cagtatgggc cggcccatta 10740
cgcaattgga cgacaacaaa gactagtatt agtaccacct cggctatcca catagatcaa 10800
agctgattta aaagagttgt gcagatgatc cgtggcacct ccgcctcgcc cgaccctttt 10860
agagctagaa atagcaagtt aaaataaggc tagtccgtta tcaacttgaa aaagtggcac 10920
cgagtcggtg ctttttttca agcttgccta cagtgcagcg tgacccggtc gtgcccctct 10980
ctagagataa tgagcattgc atgtctaagt tataaaaaat taccacatat tttttttgtc 11040
acacttgttt gaagtgcagt ttatctatct ttatacatat atttaaactt tactctacga 11100
ataatataat ctatagtact acaataatat cagtgtttta gagaatcata taaatgaaca 11160
gttagacatg gtctaaagga caattgagta ttttgacaac aggactctac agttttatct 11220
ttttagtgtg catgtgttct cctttttttt tgcaaatagc ttcacctata taatacttca 11280
tccattttat tagtacatcc atttagggtt tagggttaat ggtttttata gactaatttt 11340
tttagtacat ctattttatt ctattttagc ctctaaatta agaaaactaa aactctattt 11400
tagttttttt atttaataat ttagatataa aatagaataa aataaagtga ctaaaaatta 11460
aacaaatacc ctttaagaaa ttaaaaaaac taaggaaaca tttttcttgt ttcgagtaga 11520
taatgccagc ctgttaaacg ccgtcgacga gtctaacgga caccaaccag cgaaccagca 11580
gcgtcgcgtc gggccaagcg aagcagacgg cacggcatct ctgtcgctgc ctctggaccc 11640
ctctcgagag ttccgctcca ccgttggact tgctccgctg tcggcatcca gaaattgcgt 11700
ggcggagcgg cagacgtgag ccggcacggc aggcggcctc ctcctcctct cacggcacgg 11760
cagctacggg ggattccttt cccaccgctc cttcgctttc ccttcctcgc ccgccgtaat 11820
aaatagacac cccctccaca ccctctttcc ccaacctcgt gttgttcgga gcgcacacac 11880
acacaaccag atctccccca aatccacccg tcggcacctc cgcttcaagg tacgccgctc 11940
gtcctccccc cccccccctc tctaccttct ctagatcggc gttccggtcc atggttaggg 12000
cccggtagtt ctacttctgt tcatgtttgt gttagatccg tgtttgtgtt agatccgtgc 12060
tgctagcgtt cgtacacgga tgcgacctgt acgtcagaca cgttctgatt gctaacttgc 12120
cagtgtttct ctttggggaa tcctgggatg gctctagccg ttccgcagac gggatcgatt 12180
tcatgatttt ttttgtttcg ttgcataggg tttggtttgc ccttttcctt tatttcaata 12240
tatgccgtgc acttgtttgt cgggtcatct tttcatgctt ttttttgtct tggttgtgat 12300
gatgtggtct ggttgggcgg tcgttctaga tcggagtaga attctgtttc aaactacctg 12360
gtggatttat taattttgga tctgtatgtg tgtgccatac atattcatag ttacgaattg 12420
aagatgatgg atggaaatat cgatctagga taggtataca tgttgatgcg ggttttactg 12480
atgcatatac agagatgctt tttgttcgct tggttgtgat gatgtggtgt ggttgggcgg 12540
tcgttcattc gttctagatc ggagtagaat actgtttcaa actacctggt gtatttatta 12600
attttggaac tgtatgtgtg tgtcatacat cttcatagtt acgagtttaa gatggatgga 12660
aatatcgatc taggataggt atacatgttg atgtgggttt tactgatgca tatacatgat 12720
ggcatatgca gcatctattc atatgctcta accttgagta cctatctatt ataataaaca 12780
agtatgtttt ataattattt tgatcttgat atacttggat gatggcatat gcagcagcta 12840
tatgtggatt tttttagccc tgccttcata cgctatttat ttgctatgga ctacaaggac 12900
cacgacggcg actacaagga ccacgacatc gactacaagg acgacgacga caagatggcc 12960
ccgaagaaga agaggaaggt gggcatccac ggcgtgccgg ccgccgacaa gaagtacagc 13020
atcggcctgg acatcggcac caacagcgtg ggctgggccg tgatcaccga cgagtacaag 13080
gtgccgagca agaagttcaa ggtgctgggc aacaccgaca ggcacagcat caagaagaac 13140
ctgatcggcg ccctgctgtt cgacagcggc gagaccgccg aggccaccag gctgaagagg 13200
accgccagga ggaggtacac caggaggaag aacaggatct gctacctgca ggagatcttc 13260
agcaacgaga tggccaaggt ggacgacagc ttcttccaca ggctggagga gagcttcctg 13320
gtggaggagg acaagaagca cgagaggcac ccgatcttcg gcaacatcgt ggacgaggtg 13380
gcctaccacg agaagtaccc gaccatctac cacctgagga agaagctggt ggacagcacc 13440
gacaaggccg acctgaggct gatctacctg gccctggccc acatgatcaa gttcaggggc 13500
cacttcctga tcgagggcga cctgaacccg gacaacagcg acgtggacaa gctgttcatc 13560
cagctggtgc agacctacaa ccagctgttc gaggagaacc cgatcaacgc cagcggcgtg 13620
gacgccaagg ccatcctgag cgccaggctg agcaagagca ggaggctgga gaacctgatc 13680
gcccagctgc cgggcgagaa gaagaacggc ctgttcggca acctgatcgc cctgagcctg 13740
ggcctgaccc cgaacttcaa gagcaacttc gacctggccg aggacgccaa gctgcagctg 13800
agcaaggaca cctacgacga cgacctggac aacctgctgg cccagatcgg cgaccagtac 13860
gccgacctgt tcctggccgc caagaacctg agcgacgcca tcctgctgag cgacatcctg 13920
agggtgaaca ccgagatcac caaggccccg ctgagcgcca gcatgatcaa gaggtacgac 13980
gagcaccacc aggacctgac cctgctgaag gccctggtga ggcagcagct gccggagaag 14040
tacaaggaga tcttcttcga ccagagcaag aacggctacg ccggctacat cgacggcggc 14100
gccagccagg aggagttcta caagttcatc aagccgatcc tggagaagat ggacggcacc 14160
gaggagctgc tggtgaagct gaacagggag gacctgctga ggaagcagag gaccttcgac 14220
aacggcagca tcccgcacca gatccacctg ggcgagctgc acgccatcct gaggaggcag 14280
gaggacttct acccgttcct gaaggacaac agggagaaga tcgagaagat cctgaccttc 14340
aggatcccgt actacgtggg cccgctggcc aggggcaaca gcaggttcgc ctggatgacc 14400
aggaagagcg aggagaccat caccccgtgg aacttcgagg aggtggtgga caagggcgcc 14460
agcgcccaga gcttcatcga gaggatgacc aacttcgaca agaacctgcc gaacgagaag 14520
gtgctgccga agcacagcct gctgtacgag tacttcaccg tgtacaacga gctgaccaag 14580
gtgaagtacg tgaccgaggg catgaggaag ccggccttcc tgagcggcga gcagaagaag 14640
gccatcgtgg acctgctgtt caagaccaac aggaaggtga ccgtgaagca gctgaaggag 14700
gactacttca agaagatcga gtgcttcgac agcgtggaga tcagcggcgt ggaggacagg 14760
ttcaacgcca gcctgggcac ctaccacgac ctgctgaaga tcatcaagga caaggacttc 14820
ctggacaacg aggagaacga ggacatcctg gaggacatcg tgctgaccct gaccctgttc 14880
gaggacaggg agatgatcga ggagaggctg aagacctacg cccacctgtt cgacgacaag 14940
gtgatgaagc agctgaagag gaggaggtac accggctggg gcaggctgag caggaagctg 15000
atcaacggca tcagggacaa gcagagcggc aagaccatcc tggacttcct gaagagcgac 15060
ggcttcgcca acaggaactt catgcagctg atccacgacg acagcctgac cttcaaggag 15120
gacatccaga aggcccaggt gagcggccag ggcgacagcc tgcacgagca catcgccaac 15180
ctggccggca gcccggccat caagaagggc atcctgcaga ccgtgaaggt ggtggacgag 15240
ctggtgaagg tgatgggcag gcacaagccg gagaacatcg tgatcgagat ggccagggag 15300
aaccagacca cccagaaggg ccagaagaac agcagggaga ggatgaagag gatcgaggag 15360
ggcatcaagg agctgggcag ccagatcctg aaggagcacc cggtggagaa cacccagctg 15420
cagaacgaga agctgtacct gtactacctg cagaacggca gggacatgta cgtggaccag 15480
gagctggaca tcaacaggct gagcgactac gacgtggacc acatcgtgcc gcagagcttc 15540
ctgaaggacg acagcatcga caacaaggtg ctgaccagga gcgacaagaa caggggcaag 15600
agcgacaacg tgccgagcga ggaggtggtg aagaagatga agaactactg gaggcagctg 15660
ctgaacgcca agctgatcac ccagaggaag ttcgacaacc tgaccaaggc cgagaggggc 15720
ggcctgagcg agctggacaa ggccggcttc atcaagaggc agctggtgga gaccaggcag 15780
atcaccaagc acgtggccca gatcctggac agcaggatga acaccaagta cgacgagaac 15840
gacaagctga tcagggaggt gaaggtgatc accctgaaga gcaagctggt gagcgacttc 15900
aggaaggact tccagttcta caaggtgagg gagatcaaca actaccacca cgcccacgac 15960
gcctacctga acgccgtggt gggcaccgcc ctgatcaaga agtacccgaa gctggagagc 16020
gagttcgtgt acggcgacta caaggtgtac gacgtgagga agatgatcgc caagagcgag 16080
caggagatcg gcaaggccac cgccaagtac ttcttctaca gcaacatcat gaacttcttc 16140
aagaccgaga tcaccctggc caacggcgag atcaggaaga ggccgctgat cgagaccaac 16200
ggcgagaccg gcgagatcgt gtgggacaag ggcagggact tcgccaccgt gaggaaggtg 16260
ctgagcatgc cgcaggtgaa catcgtgaag aagaccgagg tgcagaccgg cggcttcagc 16320
aaggagagca tcctgccgaa gaggaacagc gacaagctga tcgccaggaa gaaggactgg 16380
gacccgaaga agtacggcgg cttcgacagc ccgaccgtgg cctacagcgt gctggtggtg 16440
gccaaggtgg agaagggcaa gagcaagaag ctgaagagcg tgaaggagct gctgggcatc 16500
accatcatgg agaggagcag cttcgagaag aacccgatcg acttcctgga ggccaagggc 16560
tacaaggagg tgaagaagga cctgatcatc aagctgccga agtacagcct gttcgagctg 16620
gagaacggca ggaagaggat gctggccagc gccggcgagc tgcagaaggg caacgagctg 16680
gccctgccga gcaagtacgt gaacttcctg tacctggcca gccactacga gaagctgaag 16740
ggcagcccgg aggacaacga gcagaagcag ctgttcgtgg agcagcacaa gcactacctg 16800
gacgagatca tcgagcagat cagcgagttc agcaagaggg tgatcctggc cgacgccaac 16860
ctggacaagg tgctgagcgc ctacaacaag cacagggaca agccgatcag ggagcaggcc 16920
gagaacatca tccacctgtt caccctgacc aacctgggcg ccccggccgc cttcaagtac 16980
ttcgacacca ccatcgacag gaagaggtac accagcacca aggaggtgct ggacgccacc 17040
ctgatccacc agagcatcac cggcctgtac gagaccagga tcgacctgag ccagctgggc 17100
ggcgacaggc cgaagaagaa gaggaaggtg ggcggctaac cgatcgttca aacatttggc 17160
aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc atataatttc 17220
tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta tttatgagat 17280
gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa aacaaaatat 17340
agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta gatcgggaat 17400
tgatcccccc tcgacagggt acctgcccct gaatttcagt ctctctagct agtggctaag 17460
gccatctctt atttggttca gatgacagta attcatccag gtctccaagt tctaggattt 17520
tcagaactgc aacttatttt atcaaggaat ctttaaacat acgaacagat cacttaaagt 17580
tcttctgaag caacttaaag ttatcaggca tgcatggatc ttggaggaat cagatgtgca 17640
gtcagggacc atagcacaag acaggcgtct tctactggtg ctaccagcaa atgctggaag 17700
ccgggaacac tgggtacgtt ggaaaccacg tgatgtgaag aagtaagata aactgtagga 17760
gaaaagcatt tcgtagtggg ccatgaagcc tttcaggaca tgtattgcag tatgggccgg 17820
cccattacgc aattggacga caacaaagac tagtattagt accacctcgg ctatccacat 17880
agatcaaagc tgatttaaaa gagttgtgca gatgatccgt ggccatcgcc caacctaggg 17940
cgcttttaga gctagaaata gcaagttaaa ataaggctag tccgttatca acttgaaaaa 18000
gtggcaccga gtcggtgctt ttttggtacc gagctcgaat t 18041
<210> 5
<211> 85
<212> DNA
<213> Unknown (Unknown)
<400> 5
tcggactcgg gctaagtcct agaagacgac gaactccgct tcgcccgacc ccagggctcg 60
gactccgccc tggcctcagc cgacg 85
<210> 6
<211> 60
<212> DNA
<213> Unknown (Unknown)
<400> 6
ccagccacgt caacaggagg cgccatcatc accctacccc gagctgactc gggccgcagg 60
<210> 7
<211> 70
<212> DNA
<213> Unknown (Unknown)
<400> 7
caagtcggtc gtcttaagaa atcaacgcac ttcaacagta ttgagccgtc tggtgtcaaa 60
tgagacttgc 70
<210> 8
<211> 80
<212> DNA
<213> Unknown (Unknown)
<400> 8
ttctttttca gtgcaacaag ggatgtagag gtgccatggt ttgggtaagc actcatttct 60
gtggtttata gttcgtgagt 80
<210> 9
<211> 80
<212> DNA
<213> Unknown (Unknown)
<400> 9
ctgcacaggc gcggacggtc cgcggccagg ggccggacgg tctgcgacct ggcgcagggc 60
ttagggtttc ctgcttgacg 80
<210> 10
<211> 80
<212> DNA
<213> Unknown (Unknown)
<400> 10
ccgacctaga ctcctatcga tatagagtcg aagagaagcg gagaatttgg ggattggaag 60
gctaaactag aactactcct 80
<210> 11
<211> 80
<212> DNA
<213> Unknown (Unknown)
<400> 11
gaatctattt tctctctcct caagttaagt tgagactcct gagtttattg tatctttcat 60
taactctagt tttttgtatt 80
<210> 12
<211> 80
<212> DNA
<213> Unknown (Unknown)
<400> 12
ggggtaattc aaacctcacg acaattttaa tatttgaagc ttataatgat caatttttta 60
ctctaaagta ttcttaaata 80

Claims (10)

1. A method for increasing corn biomass, characterized in that the method comprises: inserting a regulatory sequence into the upstream or downstream of a target gene of a corn genome at a fixed point to obtain corn with improved biological quantity; the target gene is PLA1 gene or TE1 gene, and the regulatory sequence is shown in SEQ ID NO. 3.
2. The method for improving the biomass of the corn as claimed in claim 1, characterized in that the nucleotide sequence of the PLA1 gene is shown as SEQ ID NO. 1; the upstream insertion site of the PLA1 gene is between 247306010 and 247312010 bases of the maize No.1 chromosome.
3. The method for increasing the biomass of maize as claimed in claim 1, wherein the downstream insertion site of PLA1 gene is between the bases 247314293 and 247317293 of chromosome 1 of maize.
4. The method for improving the biomass of the corn as claimed in claim 1, characterized in that the nucleotide sequence of the TE1 gene is shown as SEQ ID NO. 2; the upstream insertion site of the TE1 gene is between 167811126 and 167821126 bases of the maize chromosome 3.
5. The method of claim 1 wherein the downstream insertion site of the TE1 gene is between 167824995 and 167834995 bases of chromosome 3 in maize.
6. The method for increasing corn biomass according to claim 1, wherein the regulatory sequence is inserted by: introducing a recombinant donor sequence containing a regulatory sequence and a gene editing vector containing a marker gene into a maize immature embryo by adopting a gene gun method, and screening transgenic maize without the marker gene to obtain maize with improved biological quantity; the recombination donor sequence is formed by sequentially connecting an upstream homology arm of a target gene to-be-inserted site, a regulatory sequence and a downstream homology arm of the target gene to-be-inserted site; the gene editing vector containing the marker gene comprises a Cas9 gene expression cassette, an upstream sgRNA coding sequence and a downstream sgRNA coding sequence.
7. The method for increasing the biomass of the corn as claimed in claim 1, wherein when the insertion site of the regulatory sequence is upstream of the expression frame of the target gene PLA1, an upstream homology arm shown in SEQ ID No.5 and a downstream homology arm shown in SEQ ID No.6 are designed according to the insertion site; sequentially connecting an upstream homologous arm shown by SEQ ID NO.5, a regulatory sequence shown by SEQ ID NO.3 and a downstream homologous arm shown by SEQ ID NO.6 to form a recombinant donor sequence; a sgRNA target is designed at 247310934 bases of a No.1 chromosome of corn, and is named as sgRNA1, and the sequence is as follows: acctccgcctcgcccgaccc, designing another target at 247310995bp, named sgRNA2 with sequence catcgcccaacctagggcgc; the sgRNA sequence in the gene editing vector P-G10-sgRNA-cas 9-sgRNA shown in SEQ ID NO.4 is replaced by sgRNA1, and the sgRNA sequence is replaced by sgRNA2, so that the PLA1 upstream gene editing vector P-G10-sgRNA1-cas9-sgRNA2 is obtained.
8. The method for increasing corn biomass according to claim 1, characterized in that when the regulatory sequence insertion site is downstream of the PLA1 gene expression cassette, a sgRNA target is designed at a 247314496bp site of chromosome 1 of corn, and is named sgRNA3, gttcactaaagaacttaatc; 247315566bp sites are used for designing a target, namely sgRNA4, atcaattcaagcacttaaac; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.7, the downstream homology arm is SEQ ID NO. 8; and sequentially connecting an upstream homologous arm shown by SEQ ID NO.7, a regulatory sequence shown by SEQ ID NO.3 and a downstream homologous arm shown by SEQ ID NO.8 to form a recombinant donor sequence.
9. The method for increasing the biomass of the corn as claimed in claim 1, wherein when the insertion site is upstream of an expression cassette of a TE1 gene, an sgRNA target is designed at 167822232bp of a No.3 chromosome of the corn, and is named as sgRNA5, and the sequence is as follows: aggtgttgtctaggcttggc, designing another target at 167812349bp, named sgRNA6 with sequence gtcggacgatccgcgcctat; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.9, and the nucleotide sequence of a downstream homology arm is SEQ ID NO. 10; and sequentially connecting an upstream homologous arm shown by SEQ ID NO.9, a regulatory sequence shown by SEQ ID NO.3 and a downstream homologous arm shown by SEQ ID NO.10 to form a recombinant donor sequence.
10. The method for increasing the biomass of the corn as claimed in claim 1, wherein when the insertion site is downstream of an expression cassette of a TE1 gene, an sgRNA target is designed at 167825705bp of a No.3 chromosome of the corn, and is named as sgRNA7, and the sequence is as follows: ttcttataaataaatatttt, designing another target at 167825814bp, named sgRNA8 with sequence cttgaagtgagatcttaaat; designing an upstream homology arm according to the insertion site, wherein the nucleotide sequence is SEQ ID NO.11, the downstream homology arm is SEQ ID NO. 12; and sequentially connecting an upstream homologous arm shown by SEQ ID NO.11, a regulatory sequence shown by SEQ ID NO.3 and a downstream homologous arm shown by SEQ ID NO.12 to form a recombinant donor sequence.
CN201911412003.5A 2019-12-31 2019-12-31 Method for improving corn biomass Active CN113122568B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911412003.5A CN113122568B (en) 2019-12-31 2019-12-31 Method for improving corn biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911412003.5A CN113122568B (en) 2019-12-31 2019-12-31 Method for improving corn biomass

Publications (2)

Publication Number Publication Date
CN113122568A true CN113122568A (en) 2021-07-16
CN113122568B CN113122568B (en) 2022-07-19

Family

ID=76770623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911412003.5A Active CN113122568B (en) 2019-12-31 2019-12-31 Method for improving corn biomass

Country Status (1)

Country Link
CN (1) CN113122568B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518814A (en) * 2020-05-19 2020-08-11 西南大学 Application and method of brassica napus Bna.A05DAD1 gene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093840A (en) * 2011-12-23 2014-10-08 杭州瑞丰生物科技有限公司 Methods for improving crop yield
CN106191080A (en) * 2015-05-07 2016-12-07 杭州瑞丰生物科技有限公司 CYP78A gene is increasing Semen Maydis plant height and the application strengthened in plant growing way
CN106868037A (en) * 2017-01-21 2017-06-20 浙江大学 A kind of application of TEL genes in Agronomic Characters In Corn is regulated and controled
CN107794276A (en) * 2017-11-08 2018-03-13 中国农业科学院作物科学研究所 Fast and effectively crops pinpoint genetic fragment or allele replacement method and system for a kind of CRISPR mediations
CN110218810A (en) * 2019-05-05 2019-09-10 华南农业大学 Regulate and control promoter, molecular labeling and its application of maize male ears configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104093840A (en) * 2011-12-23 2014-10-08 杭州瑞丰生物科技有限公司 Methods for improving crop yield
CN106191080A (en) * 2015-05-07 2016-12-07 杭州瑞丰生物科技有限公司 CYP78A gene is increasing Semen Maydis plant height and the application strengthened in plant growing way
CN106868037A (en) * 2017-01-21 2017-06-20 浙江大学 A kind of application of TEL genes in Agronomic Characters In Corn is regulated and controled
CN107794276A (en) * 2017-11-08 2018-03-13 中国农业科学院作物科学研究所 Fast and effectively crops pinpoint genetic fragment or allele replacement method and system for a kind of CRISPR mediations
CN110218810A (en) * 2019-05-05 2019-09-10 华南农业大学 Regulate and control promoter, molecular labeling and its application of maize male ears configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN YONGWEI等: "Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase", 《MOLECULAR PLANT》 *
XIAOHUAN SUN等: "Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration", 《NATURE COMMUNICATIONS 》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518814A (en) * 2020-05-19 2020-08-11 西南大学 Application and method of brassica napus Bna.A05DAD1 gene
CN111518814B (en) * 2020-05-19 2022-07-01 西南大学 Application and method of brassica napus Bna.A05DAD1 gene

Also Published As

Publication number Publication date
CN113122568B (en) 2022-07-19

Similar Documents

Publication Publication Date Title
CN106755077A (en) Using CRISPR CAS9 technologies to the method for paddy rice CENH3 site-directed point mutations
CN111073904B (en) Genetic transformation, gene editing and analysis method of soybean main cultivar
CN112195186B (en) Application of SlBBX20 gene in regulation and control of tomato gray mold resistance
CN113122568B (en) Method for improving corn biomass
CN113637060B (en) Application of soybean GmSPA3a/3b protein and related biological materials thereof in regulating plant flowering and plant height
CN112694524B (en) Anti-fusarium wilt PHD transcription factor ClPHD23, gene, expression vector, transformant and application thereof
CN112522291B (en) Rice OsSH3P2 gene and application thereof
CN114591411B (en) OsGND5 protein, encoding gene and application thereof
CN113122567B (en) Method for controlling male sterility of corn by herbicide
CN112521475B (en) Wheat TaLAX1-A gene and application thereof in improving wheat immature embryo regeneration efficiency
CN110283238A (en) Paddy disease-resistant albumen RWR1 and its application
CN110616226B (en) specific molecular marker of pear PbE L F3b gene and application thereof
CN103665129B (en) One kind of plant associated protein TaMYB72 at heading stage and application thereof
CN113774043A (en) Related protein for controlling rice glume color character and coding gene thereof
CN112063651A (en) Method for directionally editing common head cabbage gene by using CRISPR/Cas9 and application
CN113774080A (en) Method for creating high-anthocyanidin horticultural ornamental poplar by using miR156
JP5515165B2 (en) Method for producing mutant plant using retrotransposon LORE1 derived from Lotus japonicus
CN116375835B (en) Application of Yan flower MYB4b protein in regulation and control of plant leaf morphology
CN114807174B (en) Genetic locus for reversely regulating resistance of rice to rice blast bacteria and application thereof
CN116143892B (en) Application of OsGN11 gene in improving rice grain number per ear character
CN117210488B (en) Application of arabidopsis AtFLZ13 gene in plant high temperature resistant breeding
CN106754992B (en) A kind of application, expression vector and its application of grape disease-resistant related gene VvPUB17
CN117678442A (en) Method for artificially regulating and controlling yellowing of transgenic tobacco leaves by using estradiol
CN115011631A (en) Protein for regulating drought resistance of corn in seedling stage, and coding gene and application thereof
CN116622725A (en) Hybrid tulip tree LhMFT2 gene and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant