CN114907143A - 一种表面陶瓷膜膨胀石墨材料及其制备方法 - Google Patents

一种表面陶瓷膜膨胀石墨材料及其制备方法 Download PDF

Info

Publication number
CN114907143A
CN114907143A CN202210387496.7A CN202210387496A CN114907143A CN 114907143 A CN114907143 A CN 114907143A CN 202210387496 A CN202210387496 A CN 202210387496A CN 114907143 A CN114907143 A CN 114907143A
Authority
CN
China
Prior art keywords
expanded graphite
ceramic membrane
surface ceramic
preparation
membrane expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210387496.7A
Other languages
English (en)
Other versions
CN114907143B (zh
Inventor
袁奕琳
洪侃
徐丹丹
金龙飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Xinyuan Carbon Material Co ltd
Original Assignee
Ningbo Xinyuan Carbon Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Xinyuan Carbon Material Co ltd filed Critical Ningbo Xinyuan Carbon Material Co ltd
Priority to CN202210387496.7A priority Critical patent/CN114907143B/zh
Publication of CN114907143A publication Critical patent/CN114907143A/zh
Application granted granted Critical
Publication of CN114907143B publication Critical patent/CN114907143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种表面陶瓷膜膨胀石墨材料及其制备方法,属于功能材料及其制备方法领域,该制备方法具体包括:采用可膨胀石墨制备膨胀石墨后,使用乙酸石竹烯酯对聚硅氧烷进行改性,然后将改性聚硅氧烷喷涂在膨胀石墨表面,经过高温预陶瓷化、铺料、轧制、完整陶瓷化,制得表面陶瓷膜膨胀石墨。该方法制备的表面陶瓷膜膨胀石墨具有良好的力学性能、耐磨性能及抗氧化性能,且具有更优的热导率。

Description

一种表面陶瓷膜膨胀石墨材料及其制备方法
技术领域
本发明属于功能材料及其制备方法领域,具体涉及一种表面陶瓷膜膨胀石墨材料及其制备方法。
背景技术
碳化硅在自然界中并不天然存在,它是一种人造材料,由美国人艾奇逊在1891年偶然发现,他在做电熔金刚石试验时合成了某种物质,当时将其命名为金刚砂。碳化硅陶瓷具备碳化物陶瓷中最好的抗氧化性。同时由于其强共价键,化学性质稳定,机械强度高,导热性能佳,膨胀系数小,在工业各个领域都有广泛应用。
膨胀石墨是在19世纪60年代初由Brodie发现的,经石墨插层氧化、高温膨胀得到。膨胀石墨呈疏松多孔蠕虫状结构,具有耐高温、自润滑等优异性能,与天然石墨相比,具有良好的抗压回弹性、导电性和耐腐蚀性。膨胀石墨孔径大部分为中孔,特别易于非极性大分子被吸附,制备的材料具有柔软、轻质、多孔、吸附性强的性能,并且膨胀石墨拥有极低的渗透性,极好的导电和导热等性能,耐高温性强,被广泛用于特殊材料制备领域。
通过在可膨胀石墨粒子中添加P,B,Al等的氧化物,在高温膨胀过程中,氧化物气化,在膨胀后的石墨粒子(简称蠕虫)表面能生成表面薄膜,但是这些氧化物沉积过程难以受控,不均匀性严重,同时高温膨胀过程时间短,温度低(一般800-950℃),无法气化更高蒸发温度的耐高温氧化物;包覆层本身耐高温性能差,并且多种氧化物包覆层不均匀,有局部裸露。本发明采用SiC作为包覆层,SiC是脆性材料,通过高分子有机硅化合物预陶瓷化、及时机械加工处理,再完整陶瓷化,并通过控制量,保证最后SiC薄层的厚度在微米级,保持了SiC材料的弹性和最大可能避免了蠕虫轧制成板材工艺过程中的破碎可能。
发明内容
本发明的目的在于提供一种表面陶瓷膜膨胀石墨材料及其制备方法。该方法制备的陶瓷膜膨胀石墨力学性能好,且具有更优的耐磨性能、抗氧化性能,热导率也显著提升。
本发明为实现上述目的所采取的技术方案为:
一种表面陶瓷膜膨胀石墨,包括陶瓷膜和膨胀石墨;上述陶瓷膜至少包括碳化硅陶瓷膜;上述碳化硅陶瓷膜由有机硅高分子材料预陶瓷化后再高温完整陶瓷化形成。
本发明还公开了一种表面陶瓷膜膨胀石墨制备方法,包括以下步骤:将预浸料喷涂在膨胀石墨表面,经650-750℃下烧结预陶瓷化,再通过铺料、轧制,在900-1100℃下完整陶瓷化,制得表面陶瓷膜膨胀石墨;上述预浸料包括有机硅高分子聚合物。
本发明提供了一种表面陶瓷膜膨胀石墨的制备方法,该方法采用可膨胀石墨制得膨胀石墨,然后使用有机硅高分子聚合物喷涂在膨胀石墨表面,再经高温预陶瓷化、铺料、轧制、完整陶瓷化,使得膨胀石墨材料微粒晶体表面生长有碳化硅薄层,且形成的薄层均匀性好,从而具有特殊性能的新材料诞生,制得的表面陶瓷膜膨胀石墨具有良好的力学性能、耐磨性能、抗氧化性能以及热导率。
优选地,上述轧制条件为:压力30-40MPa,时间3-5min。
优选地,上述预陶瓷化时间为25-35min;完整陶瓷化时间为1-1.5h。
优选地,上述预浸料与膨胀石墨的质量比为0.07-0.1:1。
优选地,上述有机硅高分子聚合物包括聚硅氧烷。
优选地,上述有机硅高分子聚合物包括乙酸石竹烯酯改性聚硅氧烷。本发明提供了一种表面陶瓷膜膨胀石墨的制备方法,该方法采用可膨胀石墨制得膨胀石墨,然后使用乙酸石竹烯酯对聚硅氧烷进行改性,将改性后的聚硅氧烷喷涂在膨胀石墨表面,经高温预陶瓷化、铺料、轧制、完整陶瓷化,使得膨胀石墨材料微粒晶体表面生长有碳化硅薄层,且形成的薄层均匀性更高,保护层更加紧密,使得制备的表面陶瓷膜膨胀石墨具有更优的力学性能、耐磨性能、抗氧化性能以及热导率。
优选地,上述表面陶瓷膜膨胀石墨的磨耗比≤2.3%;更优选地,表面陶瓷膜膨胀石墨的磨耗比≤1.2%。
本发明还公开了一种改性聚硅氧烷的制备方法,包括:采用乙酸石竹烯酯通过加成反应对聚甲基氢硅氧烷进行化学修饰得到改性聚硅氧烷。
具体地,上述改性聚硅氧烷的制备方法为:将聚甲基氢硅氧烷加入甲苯中,配制浓度0.01-0.03g/mL,以氯铂酸为催化剂,通氮气5-8min后,加热搅拌,待温度上升到75-85℃时,滴加0.03-0.05g/mL乙酸石竹烯酯的乙醇溶液,滴加时间1-1.5h,140-150℃条件下加热回流4-5h,减压蒸馏,以三氯甲烷、丙酮溶解-沉淀,将沉淀溶于正己烷,离心,减压蒸馏,得改性聚硅氧烷。
优选地,上述聚甲基氢硅氧烷与氯铂酸的质量比为1-1.2:5×10-5;聚甲基氢硅氧烷与乙酸石竹烯酯的质量比为1:0.7-0.8。
本发明还公开了一种膨胀石墨的制备方法,包括:
将可膨胀石墨均匀的涂于坩埚的底部,将坩埚置于900-950℃电阻炉中,保温60-90s后取出,自然冷却,即制得膨胀石墨。
更优选地,在上述表面陶瓷膜膨胀石墨制备过程中,使用改性膨胀石墨替代膨胀石墨;其中改性膨胀石墨所用改性剂包括柳酸叶醇酯。
本发明使用柳酸叶醇酯通过自由基乳液聚合方法对膨胀石墨进行改性,再对其表面进行陶瓷化处理,使得表面陶瓷膜膨胀石墨具有更优的力学性能及耐磨性能。此外当乙酸石竹烯酯作用于聚硅氧烷,同时柳酸叶醇酯作用于膨胀石墨时,两者复配协同作用,制备的表面陶瓷膜膨胀石墨的力学性能、耐磨性能、抗氧化性能以及热导率显著增强。
具体地,改性膨胀石墨的制备方法,包括:将十二烷基磺酸钠溶于蒸馏水中,浓度0.01-0.03g/mL,加入膨胀石墨,超声,通氮15-20min后加入柳酸叶醇酯,搅拌使单体乳化,升温至60-80℃时加入浓度为0.01-0.03g/mL的过硫酸钾溶液,反应3-4h结束,破乳,过滤,干燥,得改性膨胀石墨。
优选地,上述膨胀石墨与十二烷基磺酸钠的质量比为1:2-3;膨胀石墨与柳酸叶醇酯的质量比为1:7-10;膨胀石墨与过硫酸钾的质量比为1:0.1-0.2。
本发明还公开了上述表面陶瓷膜膨胀石墨在制备耐磨器材、光致发光材料方面的用途。
本发明的有益效果包括:
本发明提供了一种表面陶瓷膜膨胀石墨的制备方法,利用乙酸石竹烯酯对聚硅氧烷进行改性后,通过改性聚硅氧烷预陶瓷化、及时机械加工处理,再完整陶瓷化,使得表面陶瓷膜膨胀石墨具有更好的力学性能、耐磨性能、抗氧化性能及电导率。此外,利用柳酸叶醇酯对膨胀石墨进行改性后,制得的表面陶瓷膜膨胀石墨的力学性能和耐磨性能明显提升;同时再将改性聚硅氧烷喷涂在改性膨胀石墨表面,使得制备的碳化硅陶瓷膜膨胀石墨的力学性能、耐磨性能、抗氧化性能及热导率显著提升。
因此,本发明提供了一种表面陶瓷膜膨胀石墨材料及其制备方法,该方法制备的陶瓷膜膨胀石墨力学性能好,且具有更优的耐磨性能、抗氧化性能,热导率也显著提升。
附图说明
图1为聚甲基氢硅氧烷与改性聚硅氧烷的红外光谱图;
图2为膨胀石墨与改性膨胀石墨的红外光谱图;
图3为不同表面陶瓷膜膨胀石墨对冲击强度的影响;
图4为不同表面陶瓷膜膨胀石墨对弯曲强度的影响;
图5为不同表面陶瓷膜膨胀石墨对磨耗比的影响;
图6为不同表面陶瓷膜膨胀石墨对热导率的影响;
图7为不同表面陶瓷膜膨胀石墨对抗氧化性的影响。
具体实施方式
以下结合具体实施方式和附图对本发明的技术方案作进一步详细描述:
实施例1:
一种表面陶瓷膜膨胀石墨制备方法,包括以下步骤:
将可膨胀石墨均匀的涂于坩埚的底部,将坩埚置于900℃电阻炉中,保温60s后取出,自然冷却,即制得膨胀石墨;
将聚甲基氢硅氧烷加入甲苯中,配制浓度0.01g/mL,以氯铂酸为催化剂,通氮气8min后,加热搅拌,待温度上升到80℃时,滴加0.03g/mL乙酸石竹烯酯的乙醇溶液,滴加时间1h,140℃条件下加热回流4h,减压蒸馏,以三氯甲烷、丙酮溶解-沉淀,将沉淀溶于正己烷,离心,减压蒸馏,得改性聚硅氧烷;其中,聚甲基氢硅氧烷与氯铂酸的质量比为1:5×10-5;聚甲基氢硅氧烷与乙酸石竹烯酯的质量比为1:0.7;
将改性聚硅氧烷作为预浸料喷涂在膨胀石墨表面,经700℃高温烧结预陶瓷化30min,再通过铺料、轧制,然后在1000℃下完整陶瓷化1h,制得表面陶瓷膜膨胀石墨;其中,预浸料与膨胀石墨的质量比为0.1:1;轧制条件为:压力30MPa,时间5min。
实施例2:
一种表面陶瓷膜膨胀石墨制备方法,与实施例1的区别:
聚甲基氢硅氧烷与氯铂酸的质量比为1.1:5×10-5;聚甲基氢硅氧烷与乙酸石竹烯酯的质量比为1:0.72;预浸料与膨胀石墨的质量比为0.09:1。
实施例3:
一种表面陶瓷膜膨胀石墨制备方法,与实施例1的区别:
聚甲基氢硅氧烷与氯铂酸的质量比为1.2:5×10-5;聚甲基氢硅氧烷与乙酸石竹烯酯的质量比为1:0.75;预浸料与膨胀石墨的质量比为0.08:1。
实施例4:
一种表面陶瓷膜膨胀石墨制备方法,与实施例1的区别:表面陶瓷膜膨胀石墨制备过程中采用改性膨胀石墨替代膨胀石墨;
改性膨胀石墨制备方法,包括:将十二烷基磺酸钠溶于蒸馏水中,浓度0.01g/mL,加入膨胀石墨,超声,通氮15min后加入柳酸叶醇酯,搅拌使单体乳化,升温至70℃时加入浓度为0.01g/mL的过硫酸钾溶液,反应3h结束,破乳,过滤,干燥,得改性膨胀石墨。其中,膨胀石墨与十二烷基磺酸钠的质量比为1:2;膨胀石墨与柳酸叶醇酯的质量比为1:7;膨胀石墨与过硫酸钾的质量比为1:0.1。
实施例5:
一种表面陶瓷膜膨胀石墨制备方法,与实施例4的区别:表面陶瓷膜膨胀石墨制备过程中采用聚甲基氢硅氧烷替代改性聚硅氧烷。
对比例1:
一种表面陶瓷膜膨胀石墨制备方法,与实施例1的区别:表面陶瓷膜膨胀石墨制备过程中采用聚甲基氢硅氧烷替代改性聚硅氧烷。
试验例1:
1.红外光谱
采用KBr压片法,在Prostar LC240型FT-IR仪(美国)上测试样品的FTIR谱图,测试波数范围4000~500cm-1,扫描次数32。
对实施例1制备的改性聚硅氧烷、对比例1中的聚甲基氢硅氧烷进行上述测试,测试结果如图1所示。由图1可知,1730cm-1处存在C=O的特征吸收峰;1000~1300cm-1处存在C-O的特征吸收峰;3082cm-1处存在C-H的吸收加强峰;说明改性聚硅氧烷上存在乙酸石竹烯酯。
对实施例4制备的改性膨胀石墨、实施例1制备的膨胀石墨进行上述测试,测试结果如图2所示。由图2可知,1400~1600cm-1处存在苯环的多个特征吸收峰;1000~1300cm-1处存在酯基C-O的特征吸收峰;证明柳酸叶醇酯参与了改性膨胀石墨的生成反应。
2.力学性能
按照GB/T1043标准采用XJJ-40型冲击性能实验机测试冲击强度。按照GB/T9341标准采用KQL微机控制电子万能试验机测试弯曲强度,试验速度为2mm/min。
对实施例1~5、对比例1制备的表面陶瓷膜膨胀石墨进行上述测试,测试结果如图3、图4所示。由图3、图4可知,实施例1与对比例1相比冲击强度、弯曲强度均有所增加,说明采用乙酸石竹烯酯改性的聚硅氧烷对表面陶瓷膜膨胀石墨的力学性能起到积极效果;实施例5的冲击强度、弯曲强度相比于对比例1均有所提升,说明采用柳酸叶醇酯对膨胀石墨改性后对表面陶瓷膜膨胀石墨的力学性能起到促进作用;实施例4的冲击强度、弯曲强度均明显高于实施例1、实施例5,说明乙酸石竹烯酯改性聚硅氧烷、柳酸叶醇酯同时作用于表面陶瓷膜膨胀石墨时,使表面陶瓷膜膨胀石墨具有更优的力学性能。
3.耐磨性能
按照GB/T1689标准,采用阿克隆磨耗试验机对复合材料的磨耗比进行测试。
磨耗比=(m磨损前-m磨损后)/m磨损前×100%
对实施例1~5、对比例1制备的表面陶瓷膜膨胀石墨进行上述测试,测试结果如图5所示。由图5可知,实施例5、实施例1的磨耗比均明显比对比例1低,说明分别使用乙酸石竹烯酯、柳酸叶醇酯均对表面陶瓷膜膨胀石墨的耐磨性有积极效果;实施例4相比于实施例1、实施例5磨耗比明显减小,说明同时使用乙酸石竹烯酯、柳酸叶醇酯时,对表面陶瓷膜膨胀石墨的耐磨性具有明显的促进作用。
4.热导率测试
采用德国LAF447导热测量仪,根据激光闪光法测量试样在25℃~300℃条件下的热扩散率α及比热容cp。热导率k可以用公式计算:
k=ραcp
其中,ρ为试样体积密度g/cm3;α为热扩散率cm2/s;cp为比热容J/(kg·K)。
对实施例1~5、对比例1制备的表面陶瓷膜膨胀石墨进行上述测试,测试结果如图6所示。由图6可知,实施例5与对比例1相比差别不大,实施例4效果与实施例1相当,说明柳酸叶醇酯的加入对表面陶瓷膜膨胀石墨的热导率无消极影响;实施例4相比于实施例5、实施例1相比于对比例1均明显增加,说明乙酸石竹烯酯的加入对表面陶瓷膜膨胀石墨的热导率具有明显的促进作用。
5.抗氧化测试
称取表面陶瓷膜膨胀石墨试样在110℃条件下干燥处理1.5h,称量。然后将试样放入增锅中,再放入700℃电阻炉中灼烧,每隔20min取出冷却2min,然后移入干燥器中冷却30min,再次称量。氧化失重率计算公式如下:
m=(m1-m2)/m1×100%
其中,m1为灼烧前质量;m2为灼烧后质量。
对实施例1~5、对比例1制备的表面陶瓷膜膨胀石墨进行上述测试,测试结果如图7所示。由图7可知,实施例5与对比例1比相差不大,且实施例4效果与实施例1相当,说明柳酸叶醇酯的加入对表面陶瓷膜膨胀石墨的抗氧化性无消极影响;实施例4相比于实施例5、实施例1相比于对比例1氧化失重率均明显降低,说明乙酸石竹烯酯的加入使表面陶瓷膜膨胀石墨具有更优的抗氧化性。
上述实施例中的常规技术为本领域技术人员所知晓的现有技术,故在此不再详细赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

1.一种表面陶瓷膜膨胀石墨,其特征在于,包括陶瓷膜和膨胀石墨;所述陶瓷膜至少包括碳化硅陶瓷膜;所述碳化硅陶瓷膜由有机硅高分子材料预陶瓷化后再高温完整陶瓷化形成。
2.权利要求1所述的一种表面陶瓷膜膨胀石墨制备方法,包括以下步骤:将预浸料喷涂在膨胀石墨表面,经650-750℃下烧结预陶瓷化,再通过铺料、轧制,在900-1100℃下完整陶瓷化,制得表面陶瓷膜膨胀石墨;所述预浸料包括有机硅高分子聚合物。
3.根据权利要求2所述的一种表面陶瓷膜膨胀石墨制备方法,其特征在于:所述预浸料与膨胀石墨的质量比为0.07-0.1:1。
4.根据权利要求2所述的一种表面陶瓷膜膨胀石墨制备方法,其特征在于:所述有机硅高分子聚合物包括聚硅氧烷。
5.根据权利要求2所述的一种表面陶瓷膜膨胀石墨制备方法,其特征在于:所述有机硅高分子聚合物包括乙酸石竹烯酯改性聚硅氧烷。
6.根据权利要求2所述的一种表面陶瓷膜膨胀石墨制备方法,其特征在于:所述碳化硅陶瓷膜膨胀石墨的磨耗比≤2.3%。
7.权利要求5中所述改性聚硅氧烷的制备方法,包括:采用乙酸石竹烯酯通过加成反应对聚甲基氢硅氧烷进行化学修饰得到改性聚硅氧烷。
8.根据权利要7所述的改性聚硅氧烷的制备方法,其特征在于:所述聚甲基氢硅氧烷与乙酸石竹烯酯的质量比为1:0.7-0.8。
9.权利要求1所述表面陶瓷膜膨胀石墨在制备耐磨器材、光致发光材料方面的用途。
CN202210387496.7A 2022-04-13 2022-04-13 一种表面陶瓷膜膨胀石墨材料及其制备方法 Active CN114907143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210387496.7A CN114907143B (zh) 2022-04-13 2022-04-13 一种表面陶瓷膜膨胀石墨材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210387496.7A CN114907143B (zh) 2022-04-13 2022-04-13 一种表面陶瓷膜膨胀石墨材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114907143A true CN114907143A (zh) 2022-08-16
CN114907143B CN114907143B (zh) 2023-05-05

Family

ID=82765380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210387496.7A Active CN114907143B (zh) 2022-04-13 2022-04-13 一种表面陶瓷膜膨胀石墨材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114907143B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226821A (en) * 1977-12-28 1980-10-07 Nippon Carbon Co., Ltd. Process for producing flexible graphite
CN101134675A (zh) * 2007-08-07 2008-03-05 哈尔滨工程大学 一种石墨基复合材料的制备方法
CN102516952A (zh) * 2011-11-14 2012-06-27 苏州市达昇电子材料有限公司 一种采用有机硅和石墨制备复合膜片材料的方法
CN103319521A (zh) * 2003-12-19 2013-09-25 通用电气公司 用于活性成分释放的环硅氧烷合成物
CN109246977A (zh) * 2018-08-01 2019-01-18 天津大学 一种高导热石墨复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226821A (en) * 1977-12-28 1980-10-07 Nippon Carbon Co., Ltd. Process for producing flexible graphite
CN103319521A (zh) * 2003-12-19 2013-09-25 通用电气公司 用于活性成分释放的环硅氧烷合成物
CN101134675A (zh) * 2007-08-07 2008-03-05 哈尔滨工程大学 一种石墨基复合材料的制备方法
CN102516952A (zh) * 2011-11-14 2012-06-27 苏州市达昇电子材料有限公司 一种采用有机硅和石墨制备复合膜片材料的方法
CN109246977A (zh) * 2018-08-01 2019-01-18 天津大学 一种高导热石墨复合材料的制备方法

Also Published As

Publication number Publication date
CN114907143B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
Luo et al. Oxidation behavior and protection of carbon/carbon composites prepared using rapid directional diffused CVI techniques
CN109824381B (zh) 一种碳化硅陶瓷膜及其制备方法和用途
CN103508437A (zh) 一种酚醛树脂基玻璃碳微球的制备方法
JP4438964B2 (ja) 黒鉛−炭化珪素複合体の製造方法
CN108017404A (zh) 一种莫来石结合碳化硅复相陶瓷材料的制备方法
CN113773119B (zh) 一种高性能的碳碳坩埚表面涂层及其制备方法
CN106565272B (zh) 一种碳化硅陶瓷泡沫的制备方法
CN114907143A (zh) 一种表面陶瓷膜膨胀石墨材料及其制备方法
NO145468B (no) Fremgangsmaate for aa nedsette tilboeyeligheten for en siliciumbasert keramisk komposittgjenstand til aa reagere med metalliske overflater ved forhoeyet temperatur
CN106090081A (zh) 一种复合碳陶材料刹车盘的制备方法
CN105130439A (zh) 一种高强度碳化硅棚板及其制备方法
CN116496103A (zh) 一种高强度、低密度碳化硅及其制备方法和应用
JPS605523B2 (ja) 耐酸化被覆用黒鉛基材の製造法
Zhang et al. Effect of Sm2O3 on microstructure and high-temperature stability of MgAl2O4-Si3N4 ceramic for solar thermal absorber
KR20070102561A (ko) 양성자 전도성 막을 제조하기 위한 초기 재료로서의벤즈이미다졸 치환된 폴리벤즈이미다졸
CN112717726B (zh) 一种原位掺杂碳化氮的混合基质碳分子筛膜的制备方法及应用
CN101696119B (zh) 一种高温陶瓷材料的制备方法
CN111659880B (zh) 一种用于高精度粉末冶金零件的材料配方
CN114804670A (zh) 钢渣在制备铁路道砟集料中的应用
Kozekanan et al. The effect of nano-B4C additive on microstructure and mechanical properties of pressureless sintering SiC bodies
CN113896538A (zh) 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料
JP2002018267A (ja) 半導体ダイヤモンド合成用黒鉛材及びそれを用いて製造される半導体ダイヤモンド
JP5203920B2 (ja) 無機質成形体および焼結体
CN101323527B (zh) 陶瓷热保护管的制备方法
CN110156446A (zh) 用于铸造空心涡轮叶片的陶瓷模具的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant