CN114891821B - 一种Bacillomycin D高活性菌株及其构建方法和应用 - Google Patents

一种Bacillomycin D高活性菌株及其构建方法和应用 Download PDF

Info

Publication number
CN114891821B
CN114891821B CN202210686953.2A CN202210686953A CN114891821B CN 114891821 B CN114891821 B CN 114891821B CN 202210686953 A CN202210686953 A CN 202210686953A CN 114891821 B CN114891821 B CN 114891821B
Authority
CN
China
Prior art keywords
bacillus
pks2
fmbj
bacillus amyloliquefaciens
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210686953.2A
Other languages
English (en)
Other versions
CN114891821A (zh
Inventor
别小妹
张平
陆兆新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202210686953.2A priority Critical patent/CN114891821B/zh
Publication of CN114891821A publication Critical patent/CN114891821A/zh
Application granted granted Critical
Publication of CN114891821B publication Critical patent/CN114891821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3526Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/02Thioester hydrolases (3.1.2)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明属于分子生物学和微生物发酵领域,提供一种Bacillomycin D高活性菌株及其构建方法和应用。该菌株构建方法包括如下步骤:同源臂的扩增、目的基因的扩增、融合片段扩增、线性载体扩增、重组整合质粒获得、转化子获得及检测。本发明利用温敏型质粒pKS2介导的同源重组双交换的方法,将Iturin A合成酶操纵子中的硫酯酶结构域IA‑TE替换至Bacillomycin D合成酶系中,获得高活性菌株fmbJ‑IA‑TE,Bacillomycin D产量为野生菌株的1.31倍,对黄曲霉菌的抑制效果也优于野生菌株。

Description

一种Bacillomycin D高活性菌株及其构建方法和应用
技术领域
本发明属于分子生物学和微生物发酵领域,具体涉及一种Bacillomycin D高活性菌株及其构建方法和应用。
背景技术
Bacillomycin D是由解淀粉芽孢杆菌(Bacillus amyloliquefaciens)等芽孢杆菌属微生物合成的一类次级代谢产物,是抗菌脂肽Iturins家族的重要成员。BacillomycinD属于非核糖体肽,其合成途径为聚酮体合成酶系和非核糖体肽合成酶系杂合途径,其合成酶操纵子由4个ORFs构成,分别为bamD、bamA、bamB和bamC,编码BamD、BamA、BamB和BamC亚基。BamC亚基C末端含有一个硫酯酶结构域(Thioesterase,TE),属于ɑ/β水解酶家族,能断裂肽基载体蛋白(PCP)和酰基分子之间的共价硫脂键,负责环脂肽中间体的环化和水解。此外TE结构域还具有寡聚化、差向异构化等其他功能。近年来,硫酯酶结构域的区域特异性、化学特异性和立体特异性被广泛研究,研究者已经阐明了多种硫酯酶的蛋白晶体结构与作用机理,有望可通过酶催化结合化学合成获得特定的产物。
Bacillomycin D由亲油的β-氨基脂肪酸链(C14-C17)和亲水的肽链(Asn-Tyr-Asn-Pro-Glu-Ser-Thr)构成,两部分通过苏氨酰-β-氨基键连接成环。Bacillomycin D具有两亲性,能有效抑制黄曲霉菌、赭曲霉菌等病原真菌,破坏其脂质双分子层,导致细胞膜的通透性、流动性和完整性发生变化,从而使细胞质成分外泄,最终导致细胞死亡。因此未来有潜力将Bacillomycin D开发成高效的食品防腐剂,应用于食品和粮食安全,然而野生菌株合成Bacillomycin D的能力有限,产量难以达到工业化要求。
因此需要寻找更加有效的提高Bacillomycin D产量的菌株。
发明内容
为了克服野生菌株成Bacillomycin D的能力有限的问题,本发明提供一种Bacillomycin D高活性菌株及其构建方法和应用。本发明获得的产Bacillomycin D的高活性菌株,产量为野生菌株的1.31倍。
本发明目的通过如下手段获得:
第一方面,本发明保护一种重组质粒pKS2-IA-TE,包含解淀粉芽孢杆中IturinA合成酶操纵子硫酯酶(TE)基因。
优选的,所述解淀粉芽孢杆菌为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)LZ-5。
其中,所述重组质粒pKS2-IA-TE的构建方法如下:
(1)设计引物对IA-U-F和IA-U-R、IA-D-F和IA-D-R、IA-TE-F和IA-TE-R;以解淀粉芽孢杆菌fmbJ基因组DNA为模板,PCR扩增上游同源臂IA-U、下游同源臂IA-D;以解淀粉芽孢杆菌LZ-5基因组DNA为模板,PCR扩增Iturin A合成酶操纵子中的硫酯酶结构域IA-TE;
(2)以IA-U-F和IA-TE-R为引物,上述(1)中获得的IA-U和IA-TE为模板,通过重叠延伸PCR获得融合片段IA-U-TE;
(3)以IA-U-F和IA-D-R为引物,上述(1)中获得的IA-D和(2)中获得的IA-U-TE为模板,再次重叠延伸PCR获得融合片段IA-U-TE-D;
(4)设计引物对Linear-pKS2-F和Linear-pKS2-R,以消除BamHI限制性酶切位点的温敏型质粒pKS2-ΔBamHI为模板,PCR扩增获得线性载体Linear-pKS2;
(5)用ClonExpress II One Step Cloning Kit中的重组酶将融合片段IA-U-TE-D和线性载体Linear-pKS2连接成重组整合质粒pKS2-IA-TE。
优选的,步骤(1)所述的引物对序列如下:
IA-U-F:TATAGGGCGAATTGGGTACCGACGAGGGCAGAAGCAACAT;
IA-U-R:TCGAAAACGGCCGCTTGAATGGCGCGTGCCATTGT;
IA-D-F:ACGGATTGAAGAACGGCATCATCACGGACT;
IA-D-R:GCTTATCGATACCGTCGACCTGCCGGATCAAAAAGCCA;
IA-TE-F:ATTCAAGCGGCCGTTTTCGAA;
IA-TE-R:GATGCCGTTCTTCAATCCGTTTAATAATAGATCGAAT。
优选的,步骤(4)所述的引物对序列如下:
Linear-pKS2-F:GGTCGACGGTATCGATAAGCTT;
Linear-pKS2-R:GGTACCCAATTCGCCCTATAGTG。
优选的,步骤(4)所用的消除BamHI限制性酶切位点的质粒pKS2-ΔBamHI是对原始的质粒pKS2进行定点突变获得。
第二方面,本发明保护一种重组菌,所述重组菌为提高解淀粉芽孢杆菌的抗菌脂肽Bacillomycin D产量得到的重组菌,所述重组菌包含解淀粉芽孢杆中IturinA合成酶操纵子硫酯酶(TE)基因。
优选的,出发菌株为解淀粉芽孢杆菌fmbJ,所述芽孢杆菌为枯草芽孢杆菌(Bacillus subtilis)fmbJ,由南京农业大学酶工程实验室自主筛选所得,菌种保藏号为CGMCC No.0943。
其中,因鉴定技术的进步,枯草芽孢杆菌(Bacillus subtilis)fmbJ后更名为解淀粉芽孢杆菌(B.amyloliquefaciens)fmbJ,因此在本申请中,无论是枯草芽孢杆菌fmbJ还是解淀粉芽孢杆菌fmbJ,都实为保藏号CGMCC No.0943的这株菌。
优选的,提高解淀粉芽孢杆菌的抗菌脂肽Bacillomycin D产量的方法如下:将Bacillomycin D合成酶操纵子中的硫酯酶结构域替换成Iturin A合成酶操纵子中的硫酯酶结构域。
优选的,所述替换通过同源重组实现。
第三方面,本发明保护一种前述重组菌的构建方法,该方法包括如下步骤:
(1)设计引物对IA-U-F和IA-U-R、IA-D-F和IA-D-R、IA-TE-F和IA-TE-R;以解淀粉芽孢杆菌fmbJ基因组DNA为模板,PCR扩增上游同源臂IA-U、下游同源臂IA-D;以解淀粉芽孢杆菌LZ-5基因组DNA为模板,PCR扩增Iturin A合成酶操纵子中的硫酯酶结构域IA-TE;
(2)以IA-U-F和IA-TE-R为引物,上述(1)中获得的IA-U和IA-TE为模板,通过重叠延伸PCR获得融合片段IA-U-TE;
(3)以IA-U-F和IA-D-R为引物,上述(1)中获得的IA-D和(2)中获得的IA-U-TE为模板,再次重叠延伸PCR获得融合片段IA-U-TE-D;
(4)设计引物对Linear-pKS2-F和Linear-pKS2-R,以消除BamHI限制性酶切位点的温敏型质粒pKS2-ΔBamHI为模板,PCR扩增获得线性载体Linear-pKS2;
(5)用ClonExpress II One Step Cloning Kit中的重组酶将融合片段IA-U-TE-D和线性载体Linear-pKS2连接成重组整合质粒pKS2-IA-TE;
(6)将重组整合质粒pKS2-IA-TE转入解淀粉芽孢杆菌fmbJ中,通过温度诱导同源重组双交换,将目的基因IA-TE整合至基因组中,抗性筛选和测序验证,获得产Bacillomycin D的高活性菌株,命名为解淀粉芽孢杆菌fmbJ-IA-TE。
优选的,步骤(1)所述的引物对序列如下:
IA-U-F:TATAGGGCGAATTGGGTACCGACGAGGGCAGAAGCAACAT;
IA-U-R:TCGAAAACGGCCGCTTGAATGGCGCGTGCCATTGT;
IA-D-F:ACGGATTGAAGAACGGCATCATCACGGACT;
IA-D-R:GCTTATCGATACCGTCGACCTGCCGGATCAAAAAGCCA;
IA-TE-F:ATTCAAGCGGCCGTTTTCGAA;
IA-TE-R:GATGCCGTTCTTCAATCCGTTTAATAATAGATCGAAT。
优选的,步骤(4)所述的引物对序列如下:
Linear-pKS2-F:GGTCGACGGTATCGATAAGCTT;
Linear-pKS2-R:GGTACCCAATTCGCCCTATAGTG。
优选的,步骤(4)所用的消除BamHI限制性酶切位点的质粒pKS2-ΔBamHI是对原始的质粒pKS2进行定点突变获得。
本发明还保护前述方法获得的解淀粉芽孢杆菌。
第四方面,本发明还保护前文所述的重组质粒pKS2-IA-TE、前文所述的重组菌、前文所述的解淀粉芽孢杆菌在抑制黄曲霉菌中的应用。
有益效果
本发明利用温敏型质粒pKS2介导的同源重组,将Bacillomycin D合成酶操纵子中的硫酯酶结构域替换成Iturin A合成酶操纵子中的硫酯酶结构域,获得产Bacillomycin D的高活性菌株fmbJ-IA-TE,产量为野生菌株的1.31倍,为提高抗菌脂肽Bacillomycin D的产量提供了一种可行思路,不仅加深了对NRPS硫酯酶TE结构域的认识和利用,还丰富了对Bacillomycin D合成酶系的组合生物学研究,为丰富抗菌脂肽Bacillomycin D衍生物类型和挖掘应用于食品工业的新型抗菌脂肽提供指导。
本发明获得的高活性解淀粉芽孢杆菌fmbJ-IA-TE的发酵产物对黄曲霉菌的抑制作用显著优于野生菌株,为Bacillomyin D在抗真菌方面的广泛应用提供了前提条件。
附图说明
图1为重组整合质粒pKS2-IA-TE示意图;
图2为同源重组原理示意图;
图3为抗生素敏感菌株PCR验证电泳图和测序结果;其中,图A抗生素敏感菌株PCR验证电泳图;图B抗生素敏感菌株的测序结果(SEQ ID NO:1);
图4为重组菌解淀粉芽孢杆菌fmbJ-IA-TE产Bacillomycin D的HPLC图谱;
图5为重组菌解淀粉芽孢杆菌fmbJ-IA-TE产Bacillomycin D的LC-MS图谱;其中,自上至下四张图依次为C14、C15、C16和C17的Bacillomycin D同系物;
图6为重组菌解淀粉芽孢杆菌fmbJ-IA-TE产Bacillomycin D的抑菌图;其中,左图为对照组,右图为突变菌株组。
具体实施方式
下面结合实施例对本发明做进一步说明,下列实施例中未注明具体条件的实验方法,通常按照本领域的公知手段,或按照制造厂商的建议条件,实施例中涉及的菌株均属于现有技术,本领域的技术人员可以很容易地从公开商业渠道获得。
实施例1
1.材料与方法
1.1菌株和质粒
解淀粉芽孢杆菌(B.amyloliquefaciens)fmbJ、解淀粉芽孢杆菌(B.amyloliquefaciens)LZ-5、大肠杆菌(Escherichia coli)JM109、黄曲霉(Aspergillusflavus)CICC40770以及pKS2质粒均由南京农业大学酶工程实验室保藏。Escherichia coliJM110购买自南京金沙生物科技有限公司。
1.2主要试剂
细菌基因组提取试剂盒购自美国OMEGA公司。红霉素、卡纳霉素及低熔点琼脂购自上海生工生物工程公司。DNA凝胶回收试剂盒、质粒提取试剂盒、定点突变试剂盒以及一步克隆试剂盒购自南京诺唯赞生物科技股份有限公司。DNA标准分子量Marker购自上海翊圣生物科技有限公司。其他化学试剂均为分析纯购自国药集团公司。
1.3培养基
LB培养基:胰蛋白胨10.0g,酵母提取物5.0g,氯化钠10.0g,1000mL去离子水;
LBS培养基:在LB培养基中加入山梨醇91.0g;
种子培养基:牛肉浸膏3.0g,蛋白胨10.0g,NaCl 5.0g,1000mL去离子水,pH 7.0-7.2;
发酵培养基:葡萄糖20.0g,L-谷氨酸5.0g,酵母浸膏1.0g,KH2PO4 0.5g,MgSO4·7H2O 0.5g,KCl 0.5g,CuSO4·5H2O 0.15mg,FeSO4·7H2O 1.2mg,MnSO4 5mg,1000mL去离子水,pH 7.0;
PDA培养基:马铃薯200.0g,葡萄糖20.0g,琼脂20g,1000mL去离子水;电转化液:0.5M海藻糖,0.5M山梨醇,0.5M甘露醇,10%的甘油。
红霉素(Erythromycin,Erm)溶液:取0.05g Erm溶解于10mL无水乙醇中,配成浓度为5mg·mL-1的母液,0.22μm滤膜过滤后,分装于1.5mL离心管中,-20℃℃保存使用。
卡那霉素(Kanamycin,Kan)溶液:0.1g Kan溶解于1mL无菌水中,配成100mg·mL-1的母液,0.22μm无菌滤膜过滤除菌后,分装于1.5mL离心管中,-20℃℃保存使用。
50×TAE电泳缓冲液:Tris 242.0g,冰乙酸57.1mL,0.5mol/L EDTA(pH 8.0)100mL,定容至1000mL。
1.4主要仪器
PTC-100TM PCR仪(MJ Research公司);
PowPacTM HC164-5052高电流电泳仪(Bio-Rad生命医学产品有限公司);
JS-380C全自动数码凝胶成像分析仪(上海培清科技有限公司);
YXQ.SG41.280手提式压力蒸汽灭菌锅(上海医用核子仪器厂);
SW-CJ-IBU超净工作台(江苏安泰空气技术有限公司);
Orion 3 STAR pH计(美国Thermo公司);
PYX-DHS-50X65隔水式电热恒温培养箱(上海跃进医疗器械厂);
UV-2450紫外分光光度计(日本岛津公司);
HYG-A全温摇瓶柜(太仓实验设备厂);
AY120电子精密天平(日本岛津公司);
Eppendorf 5418离心机(德国Eppendorf公司);
NanoDrop 2000微量紫外-可见分光光度计(美国Thermo公司);
电转化仪MicroPulserTM(Bio-Rad生命医学产品有限公司);
Ultimate3000高效液相分析系统(美国Dionex公司)。
1.5方法
1.5.1引物设计
根据解淀粉芽孢杆菌fmbJ基因组测序结果、解淀粉DSM7菌株中Iturin A合成酶操纵子的基因序列(GenBank:FN597644.1),设计用于重组质粒构建的引物,序列如表1所示,由金斯瑞生物科技有限公司合成。
表1用于质粒构建的PCR引物
Table 1Primers for plasmids construction
1.5.2重组整合质粒的构建
解淀粉芽孢杆菌fmbJ基因组DNA和BacillusamyloliquefaciensLZ-5的提取参照OMEGA基因组试剂盒说明书。以解淀粉芽孢杆菌fmbJ基因组DNA为模板,采用引物IA-U-F/R、IA-D-F/R,扩增上游同源臂IA-U、下游同源臂IA-D。以解淀粉芽孢杆菌LZ-5基因组DNA为模板,采用引物IA-TE-F/R,扩增Iturin A合成酶操纵子中硫酯酶结构域IA-TE。PCR反应体系(50μL):2×Phanta Master Mix 25.00μL,上游引物(10μM)2.00μL,下游引物(10μM)2.00μL,模板DNA 1.00μL,ddH2O 20.00μL。PCR扩增条件:95℃3min,95℃15s,57℃15s,72℃1min/kb,共计30个循环;72℃5min。PCR产物经1.2%琼脂糖凝胶电泳后,参照DNA凝胶回收试剂盒说明书回收目的产物。
根据定点突变试剂盒说明书对温敏型质粒pKS2中BamHI酶切位点进行点突变。以Linear-PKS2-F/R为引物PCR扩增线性载体pKS2-ΔBamHI。采用两次重叠延伸PCR将IA-U、IA-TE和IA-D连接成融合片段,再与线性载体pKS2-ΔBamHI连接,连接产物转化进E.coliJM109中,提取质粒pKS2-IA-TE-0,送金唯智生物公司测序验证。
经过测定,以解淀粉芽孢杆菌fmbJ基因组DNA为模板,PCR扩增获得上游同源臂IA-U,其序列大小为801bp,下游同源臂IA-D,其序列大小为824bp;以解淀粉芽孢杆菌LZ-5基因组DNA为模板,PCR扩增获得硫酯酶基因IA-TE,其序列大小为696bp,测序验证正确。
将质粒pKS2-IA-TE-0转入E.coli JM110中,进行去甲基化处理,最终获得重组质粒pKS2-IA-TE,如图1所示。
1.5.3解淀粉芽孢杆菌fmbJ感受态的制备
将过夜培养于LBS培养基中解淀粉芽孢杆菌fmbJ转接于新鲜的LBS培养基,进行25倍稀释,37℃、180rpm培养OD600达到0.5,添加甘氨酸,使终浓度达到10mg/mL,继续培养,待吸光值OD600达到0.9左右时,将菌体置于冰水中30-40min,然后8000rpm离心5min收集菌体细胞,并用预冷的电转化液清洗3-4次,最后按1:100(v/v)重悬于预冷的电转化液中,获得解淀粉芽胞杆菌fmbJ的感受态细胞,每管分装100μL感受态细胞,置于-80℃,备用。
1.5.4解淀粉芽孢杆菌fmbJ的电转化
在100μL感受态细胞中加入约500ng的待转化质粒(pKS2-IA-TE),轻轻混匀,转移至预冷的电转杯(2mm),冰浴3-5min,2500V电压电击后,立即加入1mL LBS培养基于电转杯中,充分混匀后,吸取到2mL的离心管中,30℃温和振荡培养3h,离心后留100μL菌液涂布于含有红霉素(5μg·mL-1)和卡纳(20μg·mL-1)双抗的LB平板,30℃倒置培养36-48h,进行PCR验证。
1.5.5同源重组双交换和整合菌株的筛选
将含有敲除质粒的解淀粉芽胞杆菌fmbJ接种至LB液体培养基中37℃、180rpm摇床培养24h,稀释涂布于含有红霉素和卡纳抗性的LB平板上,37℃培养过夜,长出的菌落即为敲除质粒在同源臂的位置发生第一次单交换,整合到宿主菌株的基因组上的单交换菌;然后,将发生单交换后的菌落接种至LB液体培养中30℃、180rpm摇床培养48h,诱导同源臂发生第二次单交换,如图2所示,最终实现无抗性标记敲除。
平板法筛选出的红霉素和卡纳双抗敏感菌株,并以敏感菌株的基因组DNA为模板,PCR扩增目的片段,如图3-A所示,测序验证(图3-B),确定正确的重组突变菌株,命名为fmbJ-IA-TE。
1.5.6抗菌脂肽bacillomycin D类似物的提取、HPLC检测和LC-MS检测
将原始菌株fmbJ以及突变菌株活化后的单菌落,接入种子培养基,在37℃、180rpm培养至对数生长期,按照5%的接种量接入发酵培养基中,33℃、180rpm发酵培养。发酵液在8000g离心20min,收集上清液,并用6M HCl将上清液的pH调至2.0,4℃静置过夜后,8000g离心20min,弃上清,得到沉淀,加入甲醇进行溶解,然后用NaOH将其pH调至7.0,10000g离心10min,取上清获得含有Bacillomycin D粗提物的甲醇溶液。
然后对含有Bacillomycin D的粗提液进行HPLC检测,流动相成分和比例为:0~15min,乙腈+0.1%甲酸30~45%,水+0.1%甲酸70~55%;15~40min,乙腈+0.1%甲酸45~55%,水+0.1%甲酸55~45%;流速为0.6ml/min。Bacillomycin D的标准曲线为:y=7.6396x-2.3576,R2=0.9999,x,bacillomycin D浓度,mg/L;y,峰面积,mAU.h。LC-MS检测条件如下:
离子源为电喷雾电离(ESI),离子源温度为110℃,雾化气为氦气,雾化气温度330℃,雾化气气流6L/min,喷雾压力30psi,正离子毛细管电压3500V,选择离子扫描范围m/z在800-1400。
如图4所示,野生菌株发酵产物4个峰的保留时间分别为22.050min、24.847min、28.960min和33.140min,突变菌株fmbJ-IA-TE发酵产物出峰时间与对野生菌株基本一致,初步推断突变菌株fmbJ-IA-TE发酵产物也为Bacillomycin D同系物。
对发酵产物进行LC-MS检测,结果见图5,替换菌株fmbJ-IA-TE合成了C14、C15、C16和C17的Bacillomycin D同系物,[M+H]+模式下质荷比(m/z)分别为1031.20、1045.20、1059.20、1073.20,[M+Na]+模式下质荷比(m/z)分别为1053.10、1067.20、1081.20、1095.20,与对照组一致。TE结构域只负责产物的环化,对其进行替换,并不影响脂肪酸链的合成与肽链的合成,因此无法对合成的脂肽种类产生影响。
此外,还分析了硫酯酶TE替换对Bacillomycin D产量的影响,野生菌株fmbJ合成的Bacillomycin D产量为215.223mg/L,而突变菌株fmbJ-IA-TE的Bacillomycin D产为282.693mg/L,显著高于对照组(P<0.0001),为对照组的1.31倍。
1.5.7抗菌脂肽bacillomycin D类似物抑菌实验
将黄曲霉菌接种至PDA培养基上于30℃培养至产生孢子。使用无菌生理盐水洗下孢子,将孢子悬液添加进PDA培养基中,使每毫升PDA培养基含有104个黄曲霉孢子,倒入平板中,晾干后打孔,加入50μl突变菌株发酵粗提液,以甲醇作为对照,30℃培养24-36h,观察并记录抑菌圈大小。
结果如图6所示,对照组的抑菌圈直径为19.62±0.15mm,突变菌株fmbJ-IA-TE发酵产物的抑菌圈直径大于对照组,为20.65±0.16mm。这也与突变菌株fmbJ-IA-T的Bacillomycin D产量高相对应。
虽然,上文中已经用一般性说明和具体实施方案对本发明作了详尽的描述,但在本发明的基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 南京农业大学
<120> 一种Bacillomycin D 高活性菌株及其构建方法和应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 696
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
caagcggccg ttttcgagtc caagacggat aacgtattcg tcaagatgaa tcagaacggt 60
tcaatccctg tgttctgttt cccgccttta atcggatacg ggctggtcta taatgaaatg 120
gcgaaaagac ttgacggccg ctgcaccgtc tatgccgctg atttcctaga agagccgtct 180
tacgagcaag agatcgttga ccggtatgca gaaagcatga taggcattca ggaacaaggg 240
ccctttgttt tacttggtta ctcctcgggg tcgaatttgg cttttgaggt tgccaaagcc 300
ttggagaagc gcggacgcat cgtatcggac attatgatgc ttgattctaa aagagccgtt 360
tcggtgaatt atttttcgga agaggaaacc gaagagatca ttcatcggaa tctggatatc 420
attccggatt attatagaga attattaacc attccttcca ttaaggataa aatcagaagc 480
tatctcacat atcacaataa actgatcaat tccggcgcgg tgaacgccaa cattcatcat 540
tttctatgcg gcgagttgac cgatagagga tggaagcaat caaccgccca gcattacctt 600
gagtacaaat taaaaggaga ccatgtgacg atctttgacc ctcacaatat tgaagaaaat 660
acggatacaa ttcgatctat tattaaacgg attgaa 696

Claims (2)

1.重组菌,其特征在于,为提高解淀粉芽孢杆菌的抗菌脂肽Bacillomycin D产量得到的重组菌,所述重组菌包含解淀粉芽孢杆中IturinA合成酶操纵子硫酯酶(TE)基因;出发菌株为解淀粉芽孢杆菌fmbJ,所述芽孢杆菌为枯草芽孢杆菌(Bacillus subtilis)fmbJ,由南京农业大学酶工程实验室自主筛选所得,菌种保藏号为CGMCC No.0943;
提高抗菌脂肽Bacillomycin D产量的方法如下:将Bacillomycin D合成酶操纵子中的硫酯酶结构域替换成Iturin A合成酶操纵子中的硫酯酶结构域;所述替换通过同源重组实现;
所述重组菌的构建方法包括如下步骤:
(1)设计引物对IA-U-F和IA-U-R、IA-D-F和IA-D-R、IA-TE-F和IA-TE-R;以解淀粉芽孢杆菌fmbJ基因组DNA为模板,PCR扩增上游同源臂IA-U、下游同源臂IA-D;以解淀粉芽孢杆菌LZ-5基因组DNA为模板,PCR扩增Iturin A合成酶操纵子中的硫酯酶结构域IA-TE;
(2)以IA-U-F和IA-TE-R为引物,上述(1)中获得的IA-U和IA-TE为模板,通过重叠延伸PCR获得融合片段IA-U-TE;
(3)以IA-U-F和IA-D-R为引物,上述(1)中获得的IA-D和(2)中获得的IA-U-TE为模板,再次重叠延伸PCR获得融合片段IA-U-TE-D;
(4)设计引物对Linear-pKS2-F和Linear-pKS2-R,以消除BamHI限制性酶切位点的温敏型质粒pKS2-DBamHI为模板,PCR扩增获得线性载体Linear-pKS2;
(5)用ClonExpress II One Step Cloning Kit中的重组酶将融合片段IA-U-TE-D和线性载体Linear-pKS2连接成重组整合质粒pKS2-IA-TE;
(6)将重组整合质粒pKS2-IA-TE转入解淀粉芽孢杆菌fmbJ中,通过温度诱导同源重组双交换,将目的基因IA-TE整合至基因组中,抗性筛选和测序验证,获得产Bacillomycin D的高活性菌株,命名为解淀粉芽孢杆菌fmbJ-IA-TE;
步骤(1)所述的引物对序列如下:
IA-U-F:TATAGGGCGAATTGGGTACCGACGAGGGCAGAAGCAACAT;
IA-U-R:TCGAAAACGGCCGCTTGAATGGCGCGTGCCATTGT;
IA-D-F:ACGGATTGAAGAACGGCATCATCACGGACT;
IA-D-R:GCTTATCGATACCGTCGACCTGCCGGATCAAAAAGCCA;
IA-TE-F:ATTCAAGCGGCCGTTTTCGAA;
IA-TE-R:GATGCCGTTCTTCAATCCGTTTAATAATAGATCGAAT;
步骤(4)所述的引物对序列如下:
Linear-pKS2-F:GGTCGACGGTATCGATAAGCTT;
Linear-pKS2-R:GGTACCCAATTCGCCCTATAGTG;
步骤(4)所用的消除BamHI限制性酶切位点的质粒pKS2-DBamHI是对原始的质粒pKS2进行定点突变获得。
2.权利要求1所述的重组菌在抑制黄曲霉菌中的应用。
CN202210686953.2A 2022-06-17 2022-06-17 一种Bacillomycin D高活性菌株及其构建方法和应用 Active CN114891821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210686953.2A CN114891821B (zh) 2022-06-17 2022-06-17 一种Bacillomycin D高活性菌株及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210686953.2A CN114891821B (zh) 2022-06-17 2022-06-17 一种Bacillomycin D高活性菌株及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN114891821A CN114891821A (zh) 2022-08-12
CN114891821B true CN114891821B (zh) 2023-07-18

Family

ID=82728924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210686953.2A Active CN114891821B (zh) 2022-06-17 2022-06-17 一种Bacillomycin D高活性菌株及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN114891821B (zh)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bacillomycin D高产菌株的选育及其发酵工艺;李伟;《中国优秀硕士论文全文数据库工程科技I辑》;第2020卷;1-86 *
Effects of the deletion and substitution of thioesterase on bacillomycin D synthesis;Zhang P.等;Biotechnology Letters;第45卷;981-991页 *
高产抗菌脂肽菌株筛选和代谢产物纯化及应用;谢定刚;《中国优秀硕士论文全文数据工程科技I辑》;1-68页 *

Also Published As

Publication number Publication date
CN114891821A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Lavie et al. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum
CN111117942B (zh) 一种产林可霉素的基因工程菌及其构建方法和应用
JP2001500003A (ja) タンパク質の過剰発現
CN110343689A (zh) 一种新型链霉菌胰蛋白酶gm2938及其异源表达
Kimura et al. Characterization of zoospore type IV pili in Actinoplanes missouriensis
CN116333957A (zh) 一种展示猪链球菌前噬菌体裂解酶的重组芽孢杆菌及其构建方法和应用
WO1999052563A9 (en) A method for the targeting of proteins produced by yersinia into the cytosol of eukaryotic cells
Fodor et al. Modular broad-host-range expression vectors for single-protein and protein complex purification
Nogueira et al. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis
Khandekar et al. The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae
CN114891821B (zh) 一种Bacillomycin D高活性菌株及其构建方法和应用
CN115820707B (zh) 一种无抗生素介入的细菌表达系统的构建方法及应用
CN111019948A (zh) 一种丰原素合成代谢调控基因FenSr3及其应用
Copp et al. Characterization of PPTNs, a cyanobacterial phosphopantetheinyl transferase from Nodularia spumigena NSOR10
KR20020029767A (ko) 환상 뎁시펩티드 합성효소 및 그의 유전자 및 환상뎁시펩티드의 대량생산계
CN112481278B (zh) 一种基于aip诱导的生物传感器及其应用
CN110923223B (zh) 一种新型腈水解酶及其应用
CN109097315B (zh) 一种高产脂肽的基因工程菌及其构建方法和应用
CN111944779B (zh) 一种海藻糖合成双功能酶编码基因TvTPS/TPP及其应用
CN113462711B (zh) 结核杆菌蛋白质内含子剪接抑制剂筛选系统、构建方法及其应用
JPWO2004031243A1 (ja) タンパク質ポリマー及びその製造方法
CN107987137B (zh) 一种abc转运蛋白及其制备方法
CN117363550A (zh) 一株bacillomycin D高产菌株的构建方法
JP4258874B2 (ja) 放線菌由来の環状プラスミドdna
Nagakubo et al. Contractile injection systems facilitate sporogenic differentiation of bacteria through the action of a phage tapemeasure protein-related effector.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant