CN114891774A - 在酵母细胞中高活性表达的木糖异构酶及应用 - Google Patents

在酵母细胞中高活性表达的木糖异构酶及应用 Download PDF

Info

Publication number
CN114891774A
CN114891774A CN202210481456.9A CN202210481456A CN114891774A CN 114891774 A CN114891774 A CN 114891774A CN 202210481456 A CN202210481456 A CN 202210481456A CN 114891774 A CN114891774 A CN 114891774A
Authority
CN
China
Prior art keywords
seq
xylose
ala
gly
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210481456.9A
Other languages
English (en)
Other versions
CN114891774B (zh
Inventor
金明杰
陈思同
许召贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202210481456.9A priority Critical patent/CN114891774B/zh
Publication of CN114891774A publication Critical patent/CN114891774A/zh
Priority to PCT/CN2023/092250 priority patent/WO2023213294A1/zh
Application granted granted Critical
Publication of CN114891774B publication Critical patent/CN114891774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • C12N9/92Glucose isomerase (5.3.1.5; 5.3.1.9; 5.3.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/48Tricarboxylic acids, e.g. citric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种在酵母细胞中高活性表达的木糖异构酶,具有ID NO.1~SEQ ID NO.4中任一氨基酸序列,四种木糖异构酶分别来自于Acetanaerobacterium elongatum、Bacterium J10、Hallella seregens、Streptobacillus canis菌株,它们的单独表达或组合表达能够赋予酵母细胞转化木糖为木酮糖的能力,进而赋予宿主细胞将木糖转化为其他产物的能力。本发明还涉及此四种木糖异构酶在酵母利用木糖为底物生产乙醇等化学品上的应用。当该木糖异构酶在酿酒酵母等酵母细胞中被表达时,能够使原来不具备转化木糖为木酮糖能力的宿主获得该转化能力,并赋予宿主细胞利用木糖或木质纤维素水解液等富含木糖的原料生产乙醇等化学品的能力。

Description

在酵母细胞中高活性表达的木糖异构酶及应用
技术领域
本发明属于生物技术领域,尤其涉及一种在酵母细胞中高活性表达的木糖异构酶,以及木糖异构酶赋予宿主细胞利用木糖或木质纤维素水解液生产多种发酵产品的应用。
背景技术
化石资源的过度开采和使用不仅使得这种不可持续资源存量不断减少,而且化石资源的过度使用还带来二氧化碳大量排放及其引起的全球变暖、极端气候多发等问题。木质纤维素类生物质是地球上最丰富的可再生有机资源,全球每年光合作用生产约1500~2000亿吨生物质,其中80%以上为木质纤维素类生物质,包括常见的农业秸秆、林业废弃物等。利用木质纤维素生产乙醇等燃料或化学品,对于缓解能源危机、减轻环境污染和温室效应具有重要作用(Vu et al.,Science of The Total Environment,2020,743:140630)。
根据组成的结构单元不同,木质纤维素主要分为三种主要成分:纤维素、半纤维素和木质素。根据植物物种的不同,纤维素、半纤维素和木质素约占木质纤维素总质量的30-50%、 15-35%和10-30%(Ragauskas et al.,Science,2014,344:6185)。木质纤维素生物质经过预处理、酶水解后,其纤维素和半纤维素组分分别被水解成葡萄糖和木糖两种主要单糖。许多微生物,例如酿酒酵母,可以利用木质纤维素水解液中的葡萄糖发酵生产包括乙醇在内的多种化学品,但野生的酿酒酵母缺乏对木糖的转化能力,导致木质纤维素中的木糖不能被有效转化为目标化学品。基于半纤维素组分在木质纤维素生物质中占有的高比例,假如半纤维素水解出的木糖同样能够被微生物转化为相关产品,可以使得木质纤维素为原料生产乙醇等化学品的转化率得到大幅度提高(Lee et al.,Current Opinion inBiotechnology,2021,67:15-25)。
许多微生物,例如酿酒酵母,具有完整的木酮糖代谢系统,木酮糖在木酮糖激酶的作用下生成5-磷酸木酮糖,进入非氧化磷酸戊糖途径,进而可以继续转化为多种化学品。因此,如何将木糖转化为木酮糖则成为了木糖利用的关键。目前微生物中发现的木糖转为木酮糖的途径主要有两种,第一种是存在于毕赤酵母等真菌的木糖还原酶-木糖醇脱氢酶途径,其中木糖还原酶首先将木糖转化成木糖醇,继而木糖醇被木糖醇脱氢酶转化为木酮糖。但是这个过程中木糖还原酶和木糖醇脱氢酶的偏好性并不一致:木糖还原酶更偏好NADPH作为辅酶,木糖醇脱氢酶则偏好NAD+作为辅酶。因为木糖还原酶和木糖醇脱氢酶辅因子偏好性的不同,导致木糖在利用这个途径转化的过程中有大量副产物木糖醇的积累,降低了目标产物的产率 (Cunha et al.,Biotechnology for Biofuels,2019,12(1):1-14)。第二种微生物木糖利用途径是大部分存在于细菌的木糖异构酶途径。在该途径中只涉及到木糖异构酶一个关键酶,它可以直接将木糖异构生成木酮糖,期间不依赖于辅因子(Hou etal.,Journal of Bioscience and Bioengineering,2016,121(2):160-165;Brat et al.,Applied and Environmental Microbiology,2009, 75(8):2304-2311)。但是目前只有极少数木糖异构酶能够在酿酒酵母中表现出活性,限制了基于木糖异构酶的木糖代谢途径的应用。
一些研究尝试将木糖异构酶基因在酿酒酵母等酵母细胞中进行表达,但是大多数表达的木糖异构酶都没有活性,推测原因可能是蛋白的错误折叠、翻译后修饰、二硫键形成。对在酿酒酵母中活性表达的木糖异构酶进行氨基酸序列分析,发现了一些底物结合和金属离子结合的保守位点,但也不是在酿酒酵母中活性表达的充分条件。目前公布的在酿酒酵母中有活性的木糖异构酶包括来自真菌的Piromyces sp.E2、Orpinomyces sp.ukk1、Termite gut (unspecified),细菌的Thermus thermophilus、Clostridiumphytofermentans、Soil—xym1 (unspecified)、Soil—xym2(unspecified)、Bacteroidesstercoris、Ruminococcus flavefaciens、 Prevotella ruminicola、Burkholderiacenocepacia、Bacteroides vulgatus、Bovine rumen(unspecified)、Sorangiumcellulosum、Uncultured Lachnospira sp.clone XI58444和Passalid beetle gut—8054_2 (unspecified)。但是仅有Piromyces sp.E2、Clostridium phytofermentans和Bovine rumen (unspecified)在酿酒酵母等酵母细胞中表现出较高的活力,发掘更多的在酿酒酵母等酵母细胞中有活力的木糖异构酶对于木糖转化,尤其是木质纤维素资源中木糖的转化具有重要意义。
发明内容
针对现有技术的不足,本发明提供了一种在酵母细胞中高活性表达的木糖异构酶及应用。
本发明的目的是通过以下技术方案实现的:一种在酵母细胞中高活性表达的木糖异构酶,其氨基酸序列为以下氨基酸序列之一:
(1)SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示的氨基酸序列;
(2)SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示的氨基酸序列添加、缺失、取代或插入了1个或多个氨基酸的氨基酸序列;
(3)具有与SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4的任一者所示的氨基酸序列具有70%以上的同一性的氨基酸序列。
进一步地,其核苷酸序列为以下核苷酸序列之一:
(1)SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示的核苷酸序列;
(2)SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示的核苷酸序列添加、缺失、取代或插入了1个或多个核苷酸的核苷酸序列;
(3)具有与SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8中任一者所示的核苷酸序列具有70%以上的同一性的核苷酸序列;
(4)由于遗传密码子的简并性区别于SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示核苷酸序列的核苷酸序列。
进一步地,所述木糖异构酶的表达均能够赋予宿主细胞转化木糖为木酮糖能力,从而赋予宿主细胞同化木糖的能力,所述的宿主细胞为酿酒酵母细胞(Saccharomyces)、耶氏酵母 (Yarrowia)、假丝酵母(Candida)、毕赤酵母(Pichia)、裂殖酵母(Schizosaccharomyces)、汉逊酵母(Hansenula)、克鲁维酵母(Kluyveromyces)。
进一步地,所述宿主细胞优选为酿酒酵母细胞。
进一步地,所述木糖异构酶在宿主的表达方式为以下方式之一:
(1)木糖异构酶基因连接到宿主的游离质粒上,在宿主中进行游离表达;
(2)木糖异构酶基因整合到宿主细胞的染色体上,在宿主中进行整合表达;
(3)木糖异构酶基因在宿主中同时进行游离表达和整合表达。
进一步地,所述木糖异构酶可以单独在宿主菌株中表达,也可以共同在宿主细胞中表达,其中共同表达的形式包括SEQ ID NO.5+SEQ ID NO.6(组合1)、SEQ ID NO.5+SEQID NO.7 (组合2)、SEQ ID NO.5+SEQ ID NO.8(组合3)、SEQ ID NO.6+SEQ ID NO.7(组合4)、 SEQ ID NO.6+SEQ ID NO.8(组合5)、SEQ ID NO.7+SEQ ID NO.8(组合6)、SEQ ID NO.5+SEQ ID NO.6+SEQ ID NO.7(组合7)、SEQ ID NO.5+SEQ ID NO.6+SEQ ID NO.8(组合 8)、SEQ ID NO.5+SEQ ID NO.7+SEQ ID NO.8(组合9)、SEQ ID NO.6+SEQ ID NO.7+SEQ IDNO.8(组合10)、SEQ ID NO.5+SEQ ID NO.6+SEQ ID NO.7+SEQ ID NO.8(组合11)。
进一步地,所述酵母细胞可以是野生菌株,也可以是进行了一个或多个遗传修饰的酵母细胞。
一种上述木糖异构酶的应用,该应用具体为:所述木糖异构酶赋予宿主细胞利用木糖或木质纤维素水解液生产多种发酵产品,包括木酮糖、果糖、乙醇、丁醇、微生物油脂、游离脂肪酸、糠醛、乳酸、琥珀酸、柠檬酸、丙酸、3-羟基丙酸、己二酸、木酮糖-5-磷酸、异戊二烯、聚羟基脂肪酸酯、赖氨酸、谷氨酸、苯丙氨酸、丙氨酸、香草酸、香草醛。
本发明的有益效果是,本发明公开了四种新的可以在酵母细胞中高活性表达的木糖异构酶的氨基酸序列和核苷酸序列。这四种木糖异构酶分别来自于Acetanaerobacterium elongatum、 Bacterium J10、Hallella seregens、Streptobacillus canis菌株,它们的单独表达或组合表达能够赋予酵母细胞转化木糖为木酮糖的能力,进而赋予宿主细胞将木糖转化为其他产物的能力。本发明还涉及此四种木糖异构酶在酵母利用木糖为底物生产乙醇等化学品上的应用。当该木糖异构酶在酿酒酵母等酵母细胞中被表达时,能够使原来不具备转化木糖为木酮糖能力的宿主获得该转化能力,并赋予宿主细胞利用木糖或木质纤维素水解液等富含木糖的原料生产乙醇等化学品的能力。
附图说明
图1是四种木糖异构酶在酿酒酵母中游离表达时,重组酿酒酵母CRD3AE、CRD3BJ、CRD3HS、CRD3SC以初始40g/L木糖为碳源发酵192小时后的发酵液成分柱状图;
图2是四种木糖异构酶整合至酿酒酵母染色体时重组酿酒酵母CRD5AE、CRD5BJ、CRD5HS、CRD5SC以初始40g/L木糖进行发酵的发酵曲线图,其中,(a)是CRD4AE的发酵曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵曲线图、(d)是CRD4SC 的发酵曲线图;
图3是四种木糖异构酶整合至酿酒酵母染色体时重组酿酒酵母CRD5AE、CRD5BJ、CRD5HS、CRD5SC以初始80g/L葡萄糖、40g/L木糖的混糖培养基进行发酵的发酵曲线图,其中,(a)是CRD4AE的发酵曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵曲线图、(d)是CRD4SC的发酵曲线图;
图4是四种木糖异构酶整合至酿酒酵母染色体并经过驯化后重组酿酒酵母CRD5AE、 CRD5BJ、CRD5HS、CRD5SC以初始40g/L木糖的培养基进行发酵的发酵曲线图,其中,(a) 是CRD4AE的发酵曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵曲线图、 (d)是CRD4SC的发酵曲线图;
图5是四种木糖异构酶整合至酿酒酵母染色体并经过驯化后重组酿酒酵母CRD5AE、 CRD5BJ、CRD5HS、CRD5SC以初始80g/L葡萄糖、40g/L木糖的培养基进行发酵曲线图,其中,(a)是CRD4AE的发酵曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵曲线图、(d)是CRD4SC的发酵曲线图;
图6是重组酿酒酵母CRD5AE、CRD5BJ、CRD5HS、CRD5SC细胞破碎后,获得的粗酶液的木糖异构酶活力柱状图;
图7是重组酿酒酵母CRD5AE、CRD5BJ、CRD5HS、CRD5SC以30%(w/w)底物浓度DLCA(ch)预处理的玉米秸秆水解液为底物进行发酵实验曲线图,其中,(a)是CRD4AE 的发酵实验曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵实验曲线图、(d) 是CRD4SC的发酵实验曲线图;
图8是重组酿酒酵母CRD5AE、CRD5BJ、CRD5HS、CRD5SC以30%(w/w)底物浓度 DLCA(sa)预处理的玉米芯为底物进行发酵实验曲线图,其中,(a)是CRD4AE的发酵实验曲线图、(b)是CRD4BJ的发酵曲线图、(c)是CRD4HS的发酵实验曲线图、(d)是CRD4SC 的发酵实验曲线图。
具体实施方式
以下实施例中所举的质粒、菌株只是用于对本发明作进一步详细说明,并不对本发明的实质内容加以限制。实际上,用本发明发现的核苷酸序列,本领域技术人员可以得到其它多种具有将木糖转化为木酮糖能力的遗传工程菌株,其均不能脱离本发明的精神和思路。除特别指出以外,实施例中的百分比为质量百分比。
实施例1:四种木糖异构酶在酿酒酵母中的游离表达
1.1、游离表达载体的构建
委托金斯瑞生物科技股份有限公司对SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8的木糖异构酶核苷酸序列分别进行合成。之后将合成的四条核苷酸大分子分别插入酿酒酵母游离表达载体,具体步骤为:将G418抗性基因插入至酿酒酵母游离表达载体pESC-URA 的SmaI-SalI位点,获得G418_pESC-URA质粒;然后将酿酒酵母启动子TDH3序列插入至 G418_pESC-URA质粒的KpnI-NheI位点,获得TDH3_G418_pESC-URA质粒;最后分别将合成的SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8对应的大分子核苷酸片段插入TDH3_G418_pESC-URA质粒的NheI位点,获得木糖异构酶游离表达载体pESC-AE、 pESC-BJ、pESC-HS、pESC-SS。在获得这些酿酒酵母游离表达载体中木糖异构酶基因5’侧为 TDH3启动子,3’侧为CYC1终止子。
1.2、游离表达载体的转化及转化子的筛选
将具有木糖异构酶基因的质粒pESC-AE、pESC-BJ、pESC-HS、pESC-SS转化至双倍体酿酒酵母CRD3(ATCC 26603,MATa/α,△Gre3, pho13::TPI1p-XKS1-ADH1t-FBA1p-TKL1-FBA1t-PGK1p-RKI1-GAL2t, pyk2::TEF1p-GAL2N376F-TEF1t-TDH3p-TAL1-PGI1t),转化子在YPD平板(400μg/mLG418) 筛选,未转化的细胞不能在这些平板上生长。以平板上的单菌落为模板,PCR扩增相应的木糖异构酶基因并测序,鉴定含有相应木糖异构酶基因质粒的转化子,分别命名为CRD3AE、 CRD3BJ、CRD3HS、CRD3SC。
1.3、重组菌株利用木糖能力测定
将酵母CRD3AE、CRD3BJ、CRD3HS、CRD3SC于YPD(2%蛋白胨、1%酵母提取物、 2%葡萄糖)培养基过夜培养,然后以初始OD600为1.0转接到YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基,30℃,150rpm进行厌氧培养。高效液相色谱(HPLC)测定培养基中的木糖和乙醇浓度。使用紫外分光光度计在600nm波长下测量OD600来监测酵母生长。
结果1:
如图1所示,YPX培养基初始木糖浓度为40g/L,当酿酒酵母CRD3AE、CRD3BJ、CRD3HS、 CRD3SC在其中培养192h后,培养基中剩余的木糖含量分别为24.02、8.84、8.09、9.67g/L 木糖,并且伴随着菌体的生长和乙醇的生成。该结果表明,本实验室中涉及的四种木糖异构酶在酿酒酵母中表达后,均赋予了酿酒酵母转化木糖为木酮糖的能力,使其可以利用木糖生长,并生成乙醇。
实施例2:四种木糖异构酶基因在酿酒酵母染色体整合表达
2.1、基于Crispr-Cas9系统的染色体整合系统构建
将G418抗性基因克隆至pML104载体的HindIII-EcoRI位点,获得质粒pML-G418。通过http://crispr.dbcls.jp/查询酿酒酵母delta序列的20bp靶点序列,构建至pML-G418质粒 sgRNA表达框的5’端,获得pML-delta质粒。以酿酒酵母基因组为模板,PCR扩增得到delta 序列的上下游片段、TDH3启动子、CYC1终止子,重叠PCR得到含有delta序列上游片段、 TDH3启动子、木糖异构酶基因、CYC1终止子、delta序列下游片段的基因片段,将其和质粒pML-delta转化至酿酒酵母CRD3,转接至YPX液体培养基(400μg/mL G418),30℃、150 rpm培养至培养液稍显浑浊。
2.2、筛选染色体整合木糖异构酶基因的酿酒酵母
取YPX液体培养基中生长的酵母涂布于YPX平板培养,30℃静置培养至有单菌落出现。分别挑取YPX平板上的单菌落至酵母裂解缓冲液,85℃处理30min,然后以其为模板,PCR扩增相应的木糖异构酶基因,获得相应大小PCR产物,测序确定木糖异构酶基因整合至酵母染色体。将含有SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8对应的木糖异构酶核苷酸片段的酵母命名为CRD4AE、CRD4BJ、CRD4HS、CRD4SC。
2.3、CRD4AE、CRD4BJ、CRD4HS、CRD4SC酵母木糖利用的测定
将酵母CRD4AE、CRD4BJ、CRD4HS、CRD4SC在YPD液体培养基(2%蛋白胨、1%酵母提取物、2%葡萄糖)中30℃、150rpm过夜培养作为种子液,之后以初始OD600为1.0 接入YPDX(2%蛋白胨、1%酵母提取物、8%平葡萄糖、4%木糖)、YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基,30℃、150rpm进行厌氧发酵实验。高效液相色谱(HPLC)测定培养基中的木糖和乙醇浓度。使用紫外分光光度计在600nm波长下测量OD600来监测酵母生长。
结果2:
以YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基进行发酵时,CRD4HS、CRD4BJ、CRD4AE、CRD4SC分别在72h、84h、108h、108h消耗完40g/L木糖,其乙醇得率分别为0.38、0.38、0.40和0.39g乙醇/g木糖(图2)。以YPDX(2%蛋白胨、1%酵母提取物、8%平葡萄糖、4%木糖)培养基进行发酵时,CRD4HS、CRD4BJ、CRD4AE、CRD4SC 4种重组酿酒酵母均在12h内将葡萄糖消耗完全,120h利用10g/L左右的木糖(图3)。
实施例3:通过菌株驯化提高CRD5HS、CRD5BJ、CRD5AE、CRD5SS利用木糖的能力
将酵母CRD4HS、CRD4BJ、CRD4AE、CRD4SC在YPX(2%蛋白胨、1%酵母提取物、 4%木糖)培养基中连续传代培养,其木糖利用速率和生长速率随着传代不断提升,最终获得稳定的驯化酵母,命名为CRD5HS、CRD5BJ、CRD5AE、CRD5SC。
分别将CRD5HS、CRD5BJ、CRD5AE、CRD5SC酵母在YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基中过夜培养,以初始OD600为1.0接入YPDX(2%蛋白胨、1%酵母提取物、8%葡萄糖、4%木糖)、YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基,30℃、 150rpm进行厌氧发酵实验。高效液相色谱(HPLC)测定培养基中的木糖和乙醇浓度。使用紫外分光光度计在600nm波长下测量OD600来监测酵母生长。
结果3:
YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基进行发酵时,驯化后的菌株CRD5HS、 CRD5BJ在14h剩余7.54、5.09g/L木糖,16h基本利用完40g/L木糖。CRD5AE、CRD5SC在14h剩余11.87、10.76g/L木糖,18h基本利用完40g/L木糖(图4)。以YPDX(2%蛋白胨、1%酵母提取物、8%葡萄糖、4%木糖)培养基进行发酵时,CRD5HS、CRD5BJ、CRD5AE、 CRD5SC在14h消耗完80g/L葡萄糖。10h时,木糖开始利用,18h分别剩余4.45、4.02、 25.21、20.40g/L木糖(图5)。上述结果表明导入四种木糖异构酶的重组酿酒酵母菌株经过菌株驯化后利用木糖的速度明显加快。
实施例4:木糖异构酶酶活测量
4.1、重组酿酒酵母细胞破碎
将重组酿酒酵母细胞接种于YPD(2%蛋白胨、1%酵母提取物、2%葡萄糖)液体培养基, 150rpm、30℃培养至培养液OD600达到3.0时,将菌液低温离心收集菌体至离心管。向离心管中加入含有蛋白酶抑制剂PMSF和NaF的100mM Tris-Hcl(pH7.5)缓冲液和一定量的酸洗玻璃珠(2g/g细胞湿重),使用旋涡震荡仪混匀并破碎细胞。4℃、12000rpm离心10min,收集上清液。使用考马斯亮蓝法测量上清液在595nm处的吸收值来确定蛋白浓度。
4.2、木糖异构酶酶活测量
酶活测量体系为:66mM木糖,10mM MgCl2,1/3体积的粗酶液,100mM Tris-HCl缓冲液(pH7.5)。30℃反应30min,沸水浴10min终止反应。使用高效液相色谱(HPLC)测量木糖的消耗和木酮糖的生成。每分钟催化产生1μM木酮糖的酶量为1个酶活力单位。
结果4:
酿酒酵母CRD5AE、CRD5BJ、CRD5HS和CRD5SC均表现出高的木糖异构酶活性,其活性分别为0.76、3.30、1.05和2.02U/mg蛋白质。
实施例5:CRD5HS、CRD5BJ、CRD5AE、CRD5SC酵母以DLCA(ch)玉米秸秆水解液为底物进行发酵
5.1、DLC(ch)预处理玉米秸秆:
DLC(ch)预处理按照文献(Chen et al.,Green Chemistry,2021,23:4828-4839)中描述进行,具体地,首先将玉米秸秆水洗至洗涤水颜色接近无色,将水洗后的秸秆放至60℃烘箱烘干至水分为10%-20%。对烘干后的玉米秸秆进行DLC(ch)预处理(densifyinglignocellulosic biomass with calcium hydroxide,氢氧化钙辅助密化预处理),即先将氢氧化钙溶液均匀的喷洒至玉米秸秆上,其中氢氧化钙和水的加量分别为0.15、0.5g/g玉米秸秆,然后使用造粒机将秸秆制粒。将制备成颗粒状的玉米秸秆晾干后于室温储存待用。
5.2、DLCA(ch)玉米秸秆水解:
在酶水解之前,首先使用高温灭菌锅对DLC(ch)玉米秸秆进行进一步处理,条件为:秸秆底物浓度为25%(w/w)、121℃反应60min。待处理后的DLC(ch)玉米秸秆温度降至室温后,使用硫酸调节pH为中性,于通风橱晾干,直至水分为10%左右。使用30%(w/w)底物浓度的DLCA(ch)玉米秸秆进行水解,纤维素酶为
Figure BDA0003627644390000081
CTec2(87mg蛋白/mL),酶加量为 20mg蛋白/g葡聚糖。秸秆和纤维素酶分两批加入,即初始加入50%质量的秸秆和纤维素酶, 4h后加入剩余的秸秆和纤维素酶。水解条件为pH 4.8,50℃、250rpm水解72h。
5.3、DLCA(ch)玉米秸秆酶水解液发酵:
CRD5HS、CRD5BJ、CRD5AE、CRD5SC酵母在YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基中以30℃、150rpm进行种子培养。培养好的种子液以初始OD600为2.0接入 30%(w/w)底物浓度DLCA(ch)玉米秸秆水解液,并添加5g/L酵母粉和10g/L蛋白胨,调节pH为5.5,30℃、150rpm进行厌氧发酵实验。
结果5:
图7显示了含有木糖异构酶的重组菌株CRD5HS、CRD5BJ、CRD5AE、CRD5SC利用 DLCA(ch)玉米秸秆水解液进行发酵时的葡萄糖、木糖和乙醇浓度变化。DLCA(ch)玉米秸秆水解液中初始葡萄糖和木糖浓度分别为116.31、42.90g/L。四株重组酵母均在24h消耗完所有葡萄糖。120h时,CRD5HS、CRD5BJ、CRD5AE、CRD5SC菌株分别消耗39.86、34.46、 31.40、20.86g/L木糖,并伴随着73.72、71.00、67.68、65.85g/L乙醇生成。以上结果说明含有木糖异构酶的酿酒酵母菌可以利用玉米秸秆水解液中的葡萄糖和木糖两种糖进行发酵,并生成乙醇。
实施例6:CRD5HS、CRD5BJ、CRD5AE、CRD5SC酵母以DLCA(sa)玉米芯水解液为底物进行发酵
6.1、DLC(sa)预处理:
DLC(sa)预处理按照文献(Yuan et al.,Renewable Energy,2022,182:377-389)中描述进行,具体地,首先将玉米芯水洗至洗涤水颜色接近无色,将水洗后的玉米芯放至60℃烘箱烘干至水分为10%-20%。对烘干后的玉米芯进行DLC(sa)预处理(densifyinglignocellulosic biomass with sulfuric acid,硫酸辅助密化预处理),即首先将硫酸溶液均匀的喷洒在秸秆上面,硫酸和水的加量分别为0.075、0.5g/g玉米芯,然后使用造粒机将玉米芯制粒。将制备成颗粒状的玉米芯晾干后于室温储存待用。
6.2、DLCA(sa)玉米芯水解:
在酶水解之前,首先使用高温灭菌锅对DLC(sa)玉米芯进行进一步处理,条件为:秸秆底物浓度为30%(w/w)、121℃反应20min。待处理后的DLC(ch)玉米芯温度降至室温后,使用氢氧化钙调节pH为中性,于通风橱晾干,直至水分为10%左右。使用30%(w/w)底物浓度的DLCA(sa)玉米芯进行水解,其中使用的纤维素酶为
Figure BDA0003627644390000091
CTec2(87mg蛋白/mL),酶加量为20mg蛋白/g葡聚糖。秸秆和纤维素酶分两批加入,即初始加入50%质量的秸秆和纤维素酶,4h后加入剩余的秸秆和纤维素酶。水解条件为pH 4.8,50℃、250rpm水解72h。
6.3、DLCA(sa)玉米芯酶水解液发酵:
CRD5HS、CRD5BJ、CRD5AE、CRD5SC酵母在YPX(2%蛋白胨、1%酵母提取物、4%木糖)培养基中以30℃、150rpm进行种子培养。将培养好的种子液以初始OD600为2.0接入 30%(w/w)底物浓度DLCA(sa)玉米芯酶水解液中,并添加5g/L酵母粉和10g/L蛋白中。调节pH为5.5,30℃、150rpm进行厌氧发酵实验。
结果6:
图8显示了含有木糖异构酶的重组菌株CRD5HS、CRD5BJ、CRD5AE、CRD5SC利用 DLCA(sa)玉米芯酶水解液发酵时水解液中葡萄糖、木糖和乙醇浓度变化。DLCA(sa)玉米芯水解液中初始葡萄糖和木糖浓度分别为96.27g/L和94.09g/L木糖。四株重组酵母均在24h消耗完所有葡萄糖。120h时,CRD5HS、CRD5BJ、CRD5AE、CRD5SC菌株分别消耗69.04、 57.97、45.04、25.04g/L木糖,伴随着76.78、69.38、64.09、55.21g/L乙醇的生成。以上结果说明含有木糖异构酶的酿酒酵母菌可以利用玉米芯水解液中的葡萄糖和木糖两种糖进行发酵,并生成乙醇。
序列表
<110> 南京理工大学
<120> 在酵母细胞中高活性表达的木糖异构酶及应用
<141> 2022-05-05
<160> 8
<170> SIPOSequenceListing 1.0
<210> 1
<211> 437
<212> PRT
<213> Acetanaerobacterium elongatum
<400> 1
Met Ala Ser Tyr Phe Pro Thr Val Pro Thr Val Lys Tyr Glu Gly Ser
1 5 10 15
Lys Ser Lys Asn Pro Met Ala Phe Lys Phe Tyr Asn Pro Asp Gln Ile
20 25 30
Ile Met Gly Lys Pro Met Lys Glu His Leu Lys Phe Ala Met Ser Tyr
35 40 45
Trp His Thr Leu Cys Ala Gly Gly Arg Asp Pro Phe Gly Val Glu Thr
50 55 60
Met Gly Arg Thr Tyr Gly Gln Thr Asp Pro Met Ala Gln Ala Lys Ala
65 70 75 80
Lys Ala Asp Ala Gly Phe Glu Phe Met Gln Lys Leu Gly Ile Glu Tyr
85 90 95
Phe Cys Phe His Asp Leu Asp Ile Ala Pro Glu Gly Ala Thr Phe Glu
100 105 110
Glu Thr Arg Ala Asn Leu Leu Glu Met Val Glu Tyr Ile Asp Gly Leu
115 120 125
Met Lys Lys Thr Gly Ile Lys Leu Leu Trp Gly Thr Ala Asn Cys Phe
130 135 140
Gly Asn Pro Arg Tyr Met His Gly Ala Gly Thr Ser Cys Asn Ala Asp
145 150 155 160
Ser Phe Ala Tyr Ala Ala Ser Gln Ile Lys Asn Ala Ile Asp Ala Thr
165 170 175
Ile Arg Leu Gly Gly Lys Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly
180 185 190
Tyr Glu Thr Leu Leu Asn Thr Asp Met Gly Leu Glu Leu Asp Asn Met
195 200 205
Ala Arg Leu Met Lys Leu Ala Val Ala Tyr Gly Arg Ser Lys Gly Phe
210 215 220
Thr Gly Asp Phe Tyr Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys His
225 230 235 240
Gln Tyr Asp Phe Asp Thr Ala Thr Val Ile Gly Phe Leu Arg Lys Tyr
245 250 255
Gly Leu Asp Lys Asp Phe Lys Met Asn Ile Glu Ala Asn His Ala Thr
260 265 270
Leu Ala Met His Thr Phe Gln His Glu Leu Arg Thr Ala Arg Ile Asn
275 280 285
Gly Val Phe Gly Ser Ile Asp Ala Asn Gln Gly Asp Tyr Leu Leu Gly
290 295 300
Trp Asp Thr Asp Gln Phe Pro Thr Asn Val Tyr Asp Thr Thr Leu Cys
305 310 315 320
Met Tyr Glu Val Leu Lys Ala Gly Gly Phe Thr Asn Gly Gly Leu Asn
325 330 335
Phe Asp Ala Lys Val Arg Arg Gly Ser Phe Thr Phe Glu Asp Ile Ala
340 345 350
Leu Ala Tyr Ile Ser Gly Met Asp Ala Phe Ala Leu Gly Leu Ile Lys
355 360 365
Ala Ala Ala Ala Ile Glu Asp Gly Arg Leu Asp Lys Phe Val Glu Asn
370 375 380
Arg Tyr Ala Ser Tyr Lys Thr Gly Ile Gly Lys Asp Ile Val Asp Gly
385 390 395 400
Lys Val Thr Leu Glu Gln Leu Glu Ala Tyr Thr Leu Lys Asn Gly Glu
405 410 415
Pro Lys Met Glu Ser Gly Lys Gln Glu Tyr Leu Glu Ser Val Leu Asn
420 425 430
Glu Ile Ile Phe Gly
435
<210> 2
<211> 438
<212> PRT
<213> Bacterium J10
<400> 2
Met Ala Thr Lys Glu Tyr Phe Pro Gly Ile Gly Lys Ile Gln Phe Glu
1 5 10 15
Gly Lys Asp Ser Lys Asn Pro Leu Ala Tyr Arg Tyr Tyr Asp Ala Glu
20 25 30
Lys Val Ile Leu Gly Lys Lys Met Lys Asp Trp Leu Lys Phe Ala Met
35 40 45
Ala Trp Trp His Thr Leu Cys Ala Glu Gly Gly Asp Gln Phe Gly Gly
50 55 60
Gly Thr Lys Lys Phe Pro Trp Asn Glu Gly Asn Asp Ala Val Glu Ile
65 70 75 80
Ala Lys Gln Lys Val Asp Ala Gly Phe Glu Phe Met Gln Lys Met Gly
85 90 95
Ile Glu Tyr Phe Cys Phe His Asp Val Asp Leu Val Ser Glu Gly Asn
100 105 110
Ser Val Glu Glu Tyr Glu Ser Asn Leu Lys Ala Thr Val Ala Tyr Leu
115 120 125
Lys Glu Lys Met Ala Glu Thr Gly Ile Lys Asn Leu Trp Gly Thr Ala
130 135 140
Asn Val Phe Gly Asn Gly Arg Tyr Met Asn Gly Ala Ala Thr Asn Pro
145 150 155 160
Asp Phe Asp Val Val Ala Arg Ala Ala Val Gln Ile Lys Asn Ala Ile
165 170 175
Asp Ala Thr Ile Glu Leu Gly Gly Thr Asn Tyr Val Phe Trp Gly Gly
180 185 190
Arg Glu Gly Tyr Met Ser Leu Leu Asn Thr Asp Gln Lys Arg Glu Lys
195 200 205
Glu His Leu Ala Met Met Leu Thr Ile Ala Arg Asp Tyr Ala Arg Ala
210 215 220
Lys Gly Phe Thr Gly Thr Phe Leu Ile Glu Pro Lys Pro Met Glu Pro
225 230 235 240
Ser Lys His Gln Tyr Asp Val Asp Ser Glu Thr Val Ile Gly Phe Leu
245 250 255
Lys Ala His Gly Leu Asp Lys Asp Phe Lys Leu Asn Ile Glu Val Asn
260 265 270
His Ala Thr Leu Ala Gly His Thr Phe Glu His Glu Leu Ala Val Ala
275 280 285
Val Asp Asn Asn Met Leu Gly Ser Ile Asp Ala Asn Arg Gly Asp Tyr
290 295 300
Gln Asn Gly Trp Asp Thr Asp Gln Phe Pro Ile Asp Asn Phe Glu Leu
305 310 315 320
Ile Gln Ala Met Met Gln Ile Ile Arg Asn Gly Gly Leu Gly Asn Gly
325 330 335
Gly Thr Asn Phe Asp Ala Lys Thr Arg Arg Asn Ser Thr Asp Leu Glu
340 345 350
Asp Ile Phe Ile Ala His Ile Ala Gly Met Asp Ala Met Ala Arg Ala
355 360 365
Leu Glu Ser Ala Ala Ala Leu Leu Glu Glu Ser Pro Tyr Lys Lys Met
370 375 380
Leu Ala Asp Arg Tyr Ala Ser Phe Asp Ser Gly Lys Gly Lys Glu Phe
385 390 395 400
Glu Glu Gly Lys Leu Thr Leu Glu Glu Val Ala Ala Tyr Gly Lys Glu
405 410 415
Val Asn Glu Pro Lys Gln Thr Ser Gly Lys Gln Glu Leu Tyr Glu Ala
420 425 430
Ile Val Ala Met Tyr Cys
435
<210> 3
<211> 439
<212> PRT
<213> Hallella seregens
<400> 3
Met Thr Lys Glu Tyr Phe Pro Glu Ile Gly Lys Ile Pro Phe Glu Gly
1 5 10 15
Thr Glu Ser Lys Thr Pro Met Ala Phe His Tyr Tyr Glu Pro Glu Arg
20 25 30
Val Val Lys Gly Lys Lys Met Lys Asp Trp Leu Lys Phe Ala Met Ala
35 40 45
Trp Trp His Thr Leu Gly Gln Ala Ser Gly Asp Gln Phe Gly Gly Gln
50 55 60
Thr Arg Asn Tyr Ala Trp Asp Ala Asp Ala Asn Pro Val Gln Arg Ala
65 70 75 80
Lys Asp Lys Val Asp Ala Gly Phe Glu Ile Met Thr Lys Leu Gly Ile
85 90 95
Glu Tyr Phe Cys Phe His Asp Val Asp Leu Val Asp Pro Asp Asp Asp
100 105 110
Ile Asp Arg Tyr Glu Ala Asn Met Ala Ala Val Thr Asp Tyr Leu Lys
115 120 125
Glu Lys Met Ala Ala Asp Pro Thr Lys Lys Leu Leu Trp Gly Thr Ala
130 135 140
Asn Val Phe Ser Asp Lys Arg Tyr Met Asn Gly Ala Ala Thr Asn Pro
145 150 155 160
Asn Phe Asp Val Val Ala Arg Ala Ala Val Gln Ile Lys Asn Ala Ile
165 170 175
Asp Ala Thr Ile Lys Leu Gly Gly Gln Asn Tyr Val Phe Trp Gly Gly
180 185 190
Arg Glu Gly Tyr Met Ser Leu Leu Asn Thr Gln Met Gln Arg Glu Lys
195 200 205
Asn His Leu Ala Arg Met Leu Thr Ala Ala Arg Asp Tyr Ala Arg Ala
210 215 220
Gln Gly Phe Lys Gly Thr Phe Leu Ile Glu Pro Lys Pro Cys Glu Pro
225 230 235 240
Thr Lys His Gln Tyr Asp Val Asp Thr Glu Thr Val Ile Gly Phe Leu
245 250 255
Arg Ala Asn Gly Leu Asp Lys Asp Phe Lys Val Asn Ile Glu Val Asn
260 265 270
His Ala Thr Leu Ala Gly His Thr Phe Glu His Glu Leu Ala Val Ala
275 280 285
Val Asp Asn Gly Met Leu Gly Ser Ile Asp Ala Asn Arg Gly Asp Ala
290 295 300
Gln Asn Gly Trp Asp Thr Asp Gln Phe Pro Ile Asp Asn Phe Glu Leu
305 310 315 320
Thr Gln Ala Met Met Gln Ile Ile Arg Asn Gly Gly Leu Gly Asn Gly
325 330 335
Gly Ser Asn Phe Asp Ala Lys Ile Arg Arg Asn Ser Thr Asp Pro Glu
340 345 350
Asp Ile Phe Leu Ala His Ile Ser Gly Met Asp Ala Met Ala Arg Ala
355 360 365
Leu Leu Asn Ala Ala Ala Ile Leu Asp Glu Ser Glu Leu Pro Gln Met
370 375 380
Leu Arg Asp Arg Tyr Ala Ser Phe Asp Glu Gly Gln Gly Lys Ala Phe
385 390 395 400
Glu Glu Gly Arg Leu Ser Leu Glu Asp Leu Val Asp Tyr Ala Lys Gln
405 410 415
Asn Gly Glu Pro Arg Gln Ile Ser Gly Lys Gln Glu Leu Tyr Glu Thr
420 425 430
Ile Val Ala Leu Tyr Ser Lys
435
<210> 4
<211> 437
<212> PRT
<213> Streptobacillus canis
<400> 4
Met Lys Glu Tyr Phe Val Asn Ile Pro Lys Ile Lys Phe Glu Gly Pro
1 5 10 15
Asp Ser Lys Asn Pro Leu Ser Phe Lys Tyr Tyr Asp Ala Glu Arg Val
20 25 30
Ile Asn Gly Lys Lys Met Lys Asp His Leu Lys Phe Ala Met Ser Trp
35 40 45
Trp His Thr Ile Val Ala Glu Gly Val Asp Pro Phe Gly Arg Gly Thr
50 55 60
Ile Asp Arg Lys Tyr Gly Glu Ile Asp Glu Ile Ala Arg Ser Lys Ala
65 70 75 80
Lys Val Asp Ala Gly Phe Glu Leu Met Glu Lys Leu Gly Ile Glu Tyr
85 90 95
Phe Cys Phe His Asp Val Asp Ile Ala Val Glu Gly Asn Asn Phe Lys
100 105 110
Glu Tyr Arg Lys Asn Leu Lys Glu Ile Val Gln Tyr Ile Lys Gly Lys
115 120 125
Met Glu Asn Thr Asn Ile Lys Leu Leu Trp Gly Thr Ala Asn Cys Phe
130 135 140
Ser Asn Pro Ile Tyr Met His Gly Ala Ala Thr Ser Cys Asn Val Asp
145 150 155 160
Ala Phe Ala His Ala Ala Ser Gln Ile Lys Asn Ser Ile Asp Ala Thr
165 170 175
Ile Glu Leu Asn Gly Ser Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly
180 185 190
Tyr Glu Thr Leu Leu Asn Thr Asp Met Gly Phe Glu Leu Asp Asn Leu
195 200 205
Ala Arg Leu Met Lys Met Ala Val Lys Tyr Ala Arg Asp Lys Gly Phe
210 215 220
Lys Gly Asp Phe Tyr Ile Glu Pro Lys Pro Lys Glu Pro Thr Lys His
225 230 235 240
Gln Tyr Asp Phe Asp Val Ala Thr Thr Leu Ala Phe Leu Arg Lys Tyr
245 250 255
Gly Leu Glu Asn Asp Phe Lys Met Asn Ile Glu Ala Asn His Ala Thr
260 265 270
Leu Ser Gly His Thr Phe Gln His Glu Leu Asn Val Ala Arg Val Asn
275 280 285
Asn Val Phe Gly Ser Ile Asp Ala Asn Gln Gly Asp Met Leu Leu Gly
290 295 300
Trp Asp Thr Asp Gln Phe Pro Ser Asn Ile Tyr Asp Ala Thr Leu Ala
305 310 315 320
Met Tyr Glu Val Ile Lys Ala Gly Gly Phe Thr Asn Gly Gly Leu Asn
325 330 335
Phe Asp Ala Lys Val Arg Arg Gly Ser Phe Thr Phe Glu Asp Ile Val
340 345 350
Leu Ala Tyr Ile Leu Gly Met Asp Thr Phe Ala Lys Gly Leu Ile Lys
355 360 365
Ala Phe Glu Ile Ile Glu Asp Gly Arg Ile Glu Glu Asn Ile Lys Asn
370 375 380
Arg Tyr Ser Ser Tyr Asn Ser Glu Ile Gly Lys Lys Ile Leu Asp Glu
385 390 395 400
Asn Thr Asn Leu Glu Glu Leu Glu Asn Tyr Ile Glu Asn Lys Glu Lys
405 410 415
Ile Thr Met Glu Ser Gly Arg Gln Glu Tyr Leu Glu Ser Ile Leu Asn
420 425 430
Gln Ile Ile Leu Arg
435
<210> 5
<211> 1314
<212> DNA
<213> Acetanaerobacterium elongatum
<400> 5
atggccagtt atttccctac tgttcccacc gtaaagtacg agggtagcaa gtccaagaac 60
cctatggcat ttaagtttta taaccccgat caaatcatca tgggcaagcc catgaaggag 120
cacctgaagt ttgctatgtc ttactggcac accctctgcg cgggcggaag agatccgttc 180
ggtgtcgaga ccatgggccg cacctatggg cagaccgacc cgatggctca ggccaaggca 240
aaggctgacg caggctttga gttcatgcag aagctgggta ttgaatactt ctgcttccac 300
gaccttgaca tcgctcccga aggcgccacc tttgaagaaa cccgcgccaa tctgcttgaa 360
atggtagagt acattgatgg cctgatgaag aaaaccggca tcaagctgct gtggggaact 420
gcgaactgct ttggcaaccc ccgctacatg cacggcgcag gtacctcctg caacgctgac 480
agctttgcat atgctgcttc tcagattaag aacgccatcg acgccaccat ccgcctcggc 540
ggtaagggct atgtgttctg gggcggccgt gagggctacg aaaccctgct gaacaccgat 600
atgggcttag agcttgacaa tatggcccgt ctgatgaagc tggctgttgc gtatggtcgc 660
tccaagggct ttaccggcga cttctacatc gagcccaagc cgaaggagcc caccaagcat 720
cagtacgatt ttgataccgc taccgtaatc ggcttcttaa gaaaatacgg ccttgataaa 780
gactttaaga tgaacatcga agcaaaccat gcaacccttg ctatgcacac cttccagcac 840
gagctcagaa ccgcacgcat caacggcgtg tttggctcca ttgacgctaa ccagggcgac 900
tacctgctgg gctgggatac cgaccaattc cccaccaatg tatacgacac caccctgtgc 960
atgtatgaag tgctcaaggc gggcggcttc accaacggcg gcttaaactt tgacgccaag 1020
gttcgtcgcg gttcgttcac cttcgaggat atcgcgcttg cgtatatcag cggtatggat 1080
gcctttgctc tcggcctgat taaggctgct gcagctatcg aagacggcag actggataag 1140
tttgttgaaa accgttatgc ctcctacaaa accggcatcg gtaaagacat tgttgacggt 1200
aaggttaccc tcgagcagct cgaagcctac accctcaaga acggcgagcc caagatggaa 1260
agcggcaagc aggaatacct tgagagcgta ctcaacgaga ttatctttgg ttaa 1314
<210> 6
<211> 1317
<212> DNA
<213> Bacterium J10(2018)
<400> 6
atggcaacaa aagagtattt tcccgggata ggtaaaatcc agtttgaagg caaagacagc 60
aagaatccgc tggcttaccg ctactatgac gccgaaaagg taatcctcgg caaaaaaatg 120
aaagattggc tgaagtttgc catggcatgg tggcacactc tttgcgccga gggcggcgac 180
cagttcggcg gcggcacaaa gaaatttcct tggaacgagg gcaacgatgc cgtagaaatc 240
gcaaaacaaa aagtcgatgc aggcttcgaa ttcatgcaga agatgggcat cgaatacttc 300
tgcttccatg atgtcgacct cgtaagcgaa ggcaattctg tagaagaata tgaaagcaac 360
ctcaaggcta ccgttgctta tctcaaggaa aagatggccg agaccggcat caaaaacctc 420
tggggtacag ccaatgtgtt cggcaacggc cgttacatga acggagcagc caccaaccct 480
gactttgacg tagtagcacg cgctgccgtt cagatcaaga acgccattga cgccactatc 540
gagctcggcg gtaccaacta cgtattctgg ggtggtcgcg aaggctacat gtcactgctc 600
aataccgacc agaagcgtga gaaagagcac ttggccatga tgcttaccat agcacgcgac 660
tacgcacgcg ccaaaggctt cacaggcaca ttcctcatcg agcccaagcc catggaaccc 720
tccaagcacc agtatgatgt tgacagcgaa accgtaatag gcttcctcaa ggctcacggt 780
cttgacaagg acttcaagct caacatcgag gtaaaccacg ctactctcgc cggccacaca 840
ttcgagcacg aactcgcagt agctgtcgac aacaacatgc tcggctctat cgacgccaac 900
cgcggtgact accagaacgg atgggatacc gaccagttcc ccatcgacaa cttcgagctc 960
attcaggcca tgatgcagat catacgcaac ggcggcctcg gcaacggcgg taccaatttc 1020
gacgcaaaaa cccgtcgcaa ctctaccgat ctcgaagaca tattcatcgc ccatatcgcc 1080
ggcatggacg caatggcacg cgcactcgag agcgcagccg ctctgctcga agagtcgccc 1140
tacaagaaga tgcttgccga ccgctacgca tcgtttgaca gcggcaaggg caaggaattc 1200
gaggaaggca agctcacact cgaggaagta gccgcctacg gcaaagaggt caacgaaccc 1260
aagcagacca gcggcaagca ggaactttat gaggctatcg tagccatgta ctgctaa 1317
<210> 7
<211> 1320
<212> DNA
<213> Hallella seregens
<400> 7
atgactaaag aatacttccc agaaatcggc aagattccat tcgaaggtac cgaatccaag 60
accccaatgg ctttccacta ctacgaacca gaaagagttg ttaagggtaa gaagatgaag 120
gactggttga agttcgctat ggcttggtgg cacaccttag gtcaagccag tggtgaccaa 180
ttcggtggtc aaaccagaaa ctatgcttgg gacgctgacg ccaacccagt tcaaagagct 240
aaagacaagg tcgacgctgg tttcgaaatt atgaccaaac ttggtatcga atacttctgt 300
ttccatgatg tcgatttggt tgacccagac gatgacattg acagatacga agctaacatg 360
gctgccgtta ctgactactt gaaggaaaag atggccgccg acccaaccaa gaaattgttg 420
tggggtactg ctaacgtttt ctctgacaag agatacatga acggtgctgc taccaaccca 480
aactttgatg ttgtcgctcg tgctgctgtc caaatcaaga acgccattga cgcgaccatc 540
aagctgggtg gtcaaaacta cgtcttctgg ggtggaagag aaggttacat gtctttgtta 600
aacactcaaa tgcaaagaga aaagaaccat ttggctagaa tgttgactgc cgctagggac 660
tacgctagag ctcaaggttt caagggcact tttttgattg aaccaaagcc atgtgaacca 720
actaagcacc aatacgacgt tgacactgaa accgttattg gtttcttgag agctaatggt 780
ttagataagg atttcaaggt taacattgaa gtcaaccacg ctactttggc cggtcacact 840
ttcgaacacg aattagctgt tgctgtcgat aacggtatgt tgggttctat cgacgctaac 900
agaggtgatg ctcaaaacgg ttgggatacc gatcaattcc caattgacaa ctttgagcta 960
acccaagcta tgatgcaaat catcagaaat ggtggtttgg gtaacggtgg ttccaacttc 1020
gatgcaaaga tcagaagaaa ctccacagat cctgaagata ttttcttggc tcacatctcc 1080
ggtatggacg ccatggctcg tgctttattg aacgctgccg ctatcttgga cgaatctgaa 1140
ttgccacaaa tgctaagaga tcgttacgct tctttcgatg aaggtcaagg taaggctttt 1200
gaagaaggta gattgtcttt ggaagacttg gtggattacg ccaagcaaaa tggtgaacct 1260
agacagatct ctggtaagca agaattgtat gaaactattg tcgctttgta ctccaaatga 1320
<210> 8
<211> 1314
<212> DNA
<213> Streptobacillus canis
<400> 8
atgaaggaat atttcgtcaa catcccaaag attaagttcg aaggtccaga ctctaagaat 60
ccattgtctt tcaagtacta cgacgctgaa agagttatca acggtaagaa gatgaaggac 120
cacttgaaat tcgctatgtc ttggtggcac accatcgttg ctgaaggtgt tgacccattc 180
ggtagaggta ccatcgacag aaagtacggt gaaattgatg aaatcgccag atccaaagcc 240
aaggttgacg ctggctttga attgatggaa aaattaggta tcgaatactt ctgtttccat 300
gatgtcgata ttgctgtcga aggtaacaac tttaaggaat acagaaagaa cttgaaggaa 360
atcgtccaat acatcaaggg taagatggaa aacactaaca tcaagttgtt gtggggtact 420
gccaattgtt tctctaaccc aatttacatg cacggtgctg ctacctcttg taacgttgat 480
gcctttgctc acgctgcttc tcaaatcaaa aattccattg atgcaactat tgaattgaac 540
ggttcaggat acgttttctg gggtgggaga gaaggttatg aaactttatt aaacaccgat 600
atgggtttcg aattagacaa cttagctaga ttgatgaaga tggctgttaa gtacgctaga 660
gacaagggtt tcaagggtga tttctacatc gaacctaagc caaaagaacc aactaagcac 720
caatatgact tcgatgttgc taccaccttg gctttcttga gaaagtacgg tttggaaaac 780
gattttaaga tgaacattga agctaaccat gctactttgt ccggtcacac tttccaacac 840
gaattgaacg ttgcccgtgt taacaacgtc ttcggttcca ttgatgctaa ccaaggtgac 900
atgttgttgg gttgggacac tgaccaattc ccatccaaca tttacgatgc cacactagcc 960
atgtacgaag tcattaaggc tggtggtttc accaacggtg gtttgaactt cgacgctaag 1020
gtgagaagag gttccttcac tttcgaagac atcgtcttgg cttacatctt gggtatggac 1080
acctttgcca agggtctgat taaggctttc gagattatag aagatggtag aatcgaagag 1140
aacatcaaga acagatactc ttcttacaac tctgaaattg gtaagaaaat cttggacgaa 1200
aataccaact tggaagaatt ggaaaactac attgaaaaca aggaaaagat aactatggaa 1260
agtggtcgtc aagaatacct agaatctatc ttgaaccaaa tcattttgcg ttga 1314

Claims (8)

1.一种在酵母细胞中高活性表达的木糖异构酶,其特征在于,其氨基酸序列为以下氨基酸序列之一:
(1)SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示的氨基酸序列;
(2)SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4所示的氨基酸序列添加、缺失、取代或插入了1个或多个氨基酸的氨基酸序列;
(3)具有与SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4的任一者所示的氨基酸序列具有70%以上的同一性的氨基酸序列。
2.根据权利要求1所述在酵母细胞中高活性表达的木糖异构酶,其特征在于,其核苷酸序列为以下核苷酸序列之一:
(1)SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示的核苷酸序列;
(2)SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8所示的核苷酸序列添加、缺失、取代或插入了1个或多个核苷酸的核苷酸序列;
(3)具有与SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ ID NO.8中任一者所示的核苷酸序列具有70%以上的同一性的核苷酸序列;
(4)由于遗传密码子的简并性区别于SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、SEQ IDNO.8所示核苷酸序列的核苷酸序列。
3.根据权利要求1或2所述的木糖异构酶,其特征在于,所述木糖异构酶的表达均能够赋予宿主细胞转化木糖为木酮糖能力,从而赋予宿主细胞同化木糖的能力,所述的宿主细胞为酿酒酵母细胞(Saccharomyces)、耶氏酵母(Yarrowia)、假丝酵母(Candida)、毕赤酵母(Pichia)、裂殖酵母(Schizosaccharomyces)、汉逊酵母(Hansenula)、克鲁维酵母(Kluyveromyces)。
4.根据权利要求3所述的木糖异构酶,其特征在于,所述宿主细胞优选为酿酒酵母细胞。
5.根据权利要求3所述的木糖异构酶,其特征在于,所述木糖异构酶在宿主的表达方式为以下方式之一:
(1)木糖异构酶基因连接到宿主的游离质粒上,在宿主中进行游离表达;
(2)木糖异构酶基因整合到宿主细胞的染色体上,在宿主中进行整合表达;
(3)木糖异构酶基因在宿主中同时进行游离表达和整合表达。
6.根据权利要求3所述的木糖异构酶,其特征在于,所述木糖异构酶可以单独在宿主菌株中表达,也可以共同在宿主细胞中表达,其中共同表达的形式包括SEQ ID NO.5+SEQ IDNO.6(组合1)、SEQ ID NO.5+SEQ ID NO.7(组合2)、SEQ ID NO.5+SEQ ID NO.8(组合3)、SEQID NO.6+SEQ ID NO.7(组合4)、SEQ ID NO.6+SEQ ID NO.8(组合5)、SEQ ID NO.7+SEQ IDNO.8(组合6)、SEQ ID NO.5+SEQ ID NO.6+SEQ ID NO.7(组合7)、SEQ ID NO.5+SEQ IDNO.6+SEQ ID NO.8(组合8)、SEQ ID NO.5+SEQ ID NO.7+SEQ ID NO.8(组合9)、SEQ IDNO.6+SEQ ID NO.7+SEQ ID NO.8(组合10)、SEQ ID NO.5+SEQ ID NO.6+SEQ ID NO.7+SEQID NO.8(组合11)。
7.根据权利要求3所述的木糖异构酶,其特征在于,所述酵母细胞可以是野生菌株,也可以是进行了一个或多个遗传修饰的酵母细胞。
8.一种权利要求1所述的木糖异构酶的应用,其特征在于,该应用具体为:所述木糖异构酶赋予宿主细胞利用木糖或木质纤维素水解液生产多种发酵产品,包括木酮糖、果糖、乙醇、丁醇、微生物油脂、游离脂肪酸、糠醛、乳酸、琥珀酸、柠檬酸、丙酸、3-羟基丙酸、己二酸、木酮糖-5-磷酸、异戊二烯、聚羟基脂肪酸酯、赖氨酸、谷氨酸、苯丙氨酸、丙氨酸、香草酸、香草醛。
CN202210481456.9A 2022-05-05 2022-05-05 在酵母细胞中高活性表达的木糖异构酶及应用 Active CN114891774B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210481456.9A CN114891774B (zh) 2022-05-05 2022-05-05 在酵母细胞中高活性表达的木糖异构酶及应用
PCT/CN2023/092250 WO2023213294A1 (zh) 2022-05-05 2023-05-05 木糖异构酶及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210481456.9A CN114891774B (zh) 2022-05-05 2022-05-05 在酵母细胞中高活性表达的木糖异构酶及应用

Publications (2)

Publication Number Publication Date
CN114891774A true CN114891774A (zh) 2022-08-12
CN114891774B CN114891774B (zh) 2024-02-02

Family

ID=82719035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210481456.9A Active CN114891774B (zh) 2022-05-05 2022-05-05 在酵母细胞中高活性表达的木糖异构酶及应用

Country Status (1)

Country Link
CN (1) CN114891774B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213294A1 (zh) * 2022-05-05 2023-11-09 南京理工大学 木糖异构酶及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174549A (zh) * 2011-02-22 2011-09-07 山东大学 一种编码木糖异构酶的核酸分子及其编码的木糖异构酶

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174549A (zh) * 2011-02-22 2011-09-07 山东大学 一种编码木糖异构酶的核酸分子及其编码的木糖异构酶

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NCBI: "NCBI Reference Sequence: WP_027952460.1", NCBI, pages 1 *
NCBI: "NCBI Reference Sequence: WP_092638076.1", NCBI, pages 1 *
NCBI: "NCBI Reference Sequence: WP_121698442.1", NCBI, pages 1 *
NCBI: "NCBI Reference Sequence: WP_156299687.1", NCBI, pages 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213294A1 (zh) * 2022-05-05 2023-11-09 南京理工大学 木糖异构酶及应用

Also Published As

Publication number Publication date
CN114891774B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
CA2728682C (en) Prokaryotic xylose isomerase for the construction of xylose-fermenting yeasts
Wongwatanapaiboon et al. The potential of cellulosic ethanol production from grasses in Thailand
JP5321320B2 (ja) 発酵能力が向上された酵母及びその利用
Olsson et al. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae
JP5711873B2 (ja) セルロース系原料の同時糖化発酵法
Doran et al. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes
US20110230682A1 (en) Microorganisms with inactivated lactate dehydrogenase gene (ldh) for chemical production
Ndaba et al. Effect of Saccharomyces cerevisiae and Zymomonas mobilis on the co-fermentation of sweet sorghum bagasse hydrolysates pretreated under varying conditions
KR20140042888A (ko) 5탄당 발효 세포
Wu et al. Enhanced hydrogen production from xylose and bamboo stalk hydrolysate by overexpression of xylulokinase and xylose isomerase in Klebsiella oxytoca HP1
CN102171351A (zh) 重组细菌中增加的乙醇产量
CN108603179B (zh) 发酵产物生产增加的真核细胞
Yuan et al. Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus
CN114891774B (zh) 在酵母细胞中高活性表达的木糖异构酶及应用
US20180245034A1 (en) Biomass with bioengineered microorganism such as yeast, associated organic compounds, and related methods
JP2015519079A (ja) ザイモモナス属(Zymomonas)発酵におけるホップ酸を使用した汚染物質制御
KR101599997B1 (ko) 신규한 고온 효모 피키아 길리에르몬디 y-2 및 이의 용도
JP7078887B2 (ja) エタノール発酵によるエタノール生産性の向上に関与する変異遺伝子及びこれを用いたエタノールの製造方法
WO2023213294A1 (zh) 木糖异构酶及应用
CN114507608B (zh) 一种在线粒体内生产乙醇的重组丝状真菌及其构建和应用
KR101543845B1 (ko) L-갈락토스 대사능을 가지는 재조합 미생물 및 이를 이용하여 l-갈락토스를 함유하는 바이오매스로부터 바이오에탄올을 제조하는 방법
US11421201B2 (en) Biomass with bioengineered yeast, associated organic compounds, and related methods
JP6249391B2 (ja) キシロースを高温で発酵する方法
KR101815004B1 (ko) 혼합당을 이용할 수 있는 재조합 미생물 및 이를 이용한 바이오에탄올의 제조방법
KR101814997B1 (ko) 오탄당을 이용할 수 있는 재조합 미생물 및 이를 이용한 바이오에탄올의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant