CN114890542A - 一种双铁基复合矿源自养反硝化材料及其制备方法 - Google Patents

一种双铁基复合矿源自养反硝化材料及其制备方法 Download PDF

Info

Publication number
CN114890542A
CN114890542A CN202210604036.5A CN202210604036A CN114890542A CN 114890542 A CN114890542 A CN 114890542A CN 202210604036 A CN202210604036 A CN 202210604036A CN 114890542 A CN114890542 A CN 114890542A
Authority
CN
China
Prior art keywords
iron
autotrophic denitrification
based composite
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210604036.5A
Other languages
English (en)
Inventor
李金城
陆祖贤
徐芝芬
韦春满
罗雪静
王华鹏
覃佳佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinxi Environmental Technology Co ltd
Guilin University of Technology
Original Assignee
Jiangsu Jinxi Environmental Technology Co ltd
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinxi Environmental Technology Co ltd, Guilin University of Technology filed Critical Jiangsu Jinxi Environmental Technology Co ltd
Priority to CN202210604036.5A priority Critical patent/CN114890542A/zh
Publication of CN114890542A publication Critical patent/CN114890542A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种双铁基复合矿源自养反硝化材料,包括以下步骤:包含以下质量百分比的原料:硫铁矿35‑55%、菱铁矿30‑45%、碱度材料5‑15%及发泡剂1‑5%。本发明还公开了双铁基复合矿源自养反硝化材料的制备方法,本发明以硫铁矿替代硫磺,增加了菱铁矿,铁作为电子供体可以有效分担硫的负荷,减少出水中硫酸盐的含量;本发明将制成的双铁基复合矿源自养反硝化材料用于自养反硝化装置中,对污染物处理效率高,效果明显,且无需额外投加碳源、剩余污泥少,制备工艺简单,能耗低,实现了废物资源利用。

Description

一种双铁基复合矿源自养反硝化材料及其制备方法
技术领域
本发明涉及污水处理技术领域,尤其涉及一种双铁基复合矿源自养反硝化材料及其制备方法。
背景技术
水是人类生存和发展的基本资源,随着经济的快速发展和工业化进程不断推进,人类活动对水环境造成了严重的影响,水体营养化现象也趋于明显。目前,生活用水的处理主要依靠污水处理厂完成,处理达标后排入江河湖泊,经过处理后的水体,大部分污染物都能够得到消减,但是氮、磷的出水浓度仍然很高。根据水体富营养化的控制指标限值,即当水体中TN和TP含量分别超过0.2mg/L、0.02mg/L时,就会导致水体富营养化。而《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准规定TN和TP排放值不能高于15mg/L和0.5mg/L,仍远高于水体富营养化的控制限值。
对现有城镇污水处理厂进行技术改造的必然趋势便是出水进行深度处理,污水处理厂常规污水处理工艺的在二级处理时,会出现碳源不足的现象,碳源不足导致传统生物脱氮工艺对废水的处理效果不佳,需要投加碳源,如:甲醇、乙酸钠等,为反硝化提供电子供体及能量,但是会导致更高的污泥产量,增加了污泥处置成本。
硫自养反硝化工艺具有无需投加碳源、剩余污泥少、处理效果好等优势,为脱氮工艺增加了更多的可能。硫自养反硝化反应器多采用硫磺作为反硝化材料,但工程应用中大规模使用硫磺会增加成本,出水硫酸盐浓度高,存在一个环境风险,这些问题大大限制了硫自养反硝化的工程应用。
发明内容
本发明的目的在于针对现阶段工程应用中硫自养反硝化填料存在的缺点,提供一种减少出水中硫酸盐的含量,降低出水成本的双铁基复合矿源自养反硝化材料及其制备方法。
为了实现上述目的,本发明采用的技术方案如下:
一种双铁基复合矿源自养反硝化材料的制备方法,包含以下质量百分比的原料:硫铁矿35-55%、菱铁矿30-45%、碱度材料5-15%及发泡剂1-5%。
其中硫铁矿自养反硝化脱氮反应如下:
Figure BDA0003670630390000021
菱铁矿能和H+发生如下反应:
FeCO3+2H+→Fe2++Co2+H2O
此外,Fe2+可以被NO3 -氧化,通过硫自养反硝化菌作以下反应:
Figure BDA0003670630390000022
本发明中硫铁矿主要为反硝化系统提供硫源,产生脱氮硫杆菌进行反硝化脱氮,菱铁矿主要作用是为进行铁自养反硝化,分担硫铁矿自养反硝化中硫元素的负荷,减少出水硫酸盐的生成,同时,菱铁矿可以释放碱度,中和脱氮硫杆菌所消耗的碱度,碱度材料的作用为调节系统pH,确保系统的脱氮速率。
Figure BDA0003670630390000023
硫铁矿作为地壳中含量最丰富的硫铁矿物,获取成本低,硫铁尾矿更是被当作废物被存储在尾矿库中,不仅浪费储存空间,而且长期暴露在空气中会产生酸性废水,污染地下水;菱铁矿在中国产量丰富,但已利用的菱铁矿不足总储量的10%,主要用于冶炼钢铁,在其他方面的应用基本处于空白,将两种矿石充分利用,可以很好的贯彻资源化的理念。
较佳地,所述碱度材料为牡蛎壳、扇贝壳、花甲壳、鸡蛋壳或珊瑚壳粉其中一种或多种,该碱度材料的粒径为20-50目。碱度材料为反硝化系统中的脱氮硫杆菌提供碱度,调节系统pH。
较佳地,所述发泡剂为碳酸钙、碳酸氢钠或碳酸镁中的一种。
较佳地,所述双铁基复合矿源自养反硝化材料的制备方法,包括以下步骤:
(1)将硫铁矿与菱铁矿用水浸泡后进行干燥,再使用粉碎机打碎成粉末,对粉末进行紫外消毒,得到铁矿粉末;
(2)将碱度材料用水洗净,在烘箱中烘干、再研磨至20-50目,研磨后再次烘干,进行紫外消毒;
(3)将上述的硫铁矿粉、菱铁矿粉与碱度材料、发泡剂混合均匀,以水为粘合剂,放置于造粒机中,制成颗粒;
(4)将制成的颗粒在120-150°条件下加热2-5h后取出,静置冷却成型,得到所述双铁基复合矿源自养反硝化材料。
较佳地,在步骤(1),所述浸泡的时长为20-30h,所述干燥的温度为105-120°,干燥的时间为1.5-3h,所述粉末的粒径为50-400目。
较佳地,在步骤(2),所述烘干的温度为105-120°。
较佳地,在步骤(3),所述颗粒的粒径为3-8mm。
本发明由于采用了上述技术方案,具有以下有益效果:
(1)传统硫自养反硝化多使用硫磺提供硫源,硫磺的大量使用会增加处理成本、出水硫酸盐的浓度增高,造成二次污染,存在一个环境风险,本发明制备的硫自养反硝化填料以硫铁矿替代硫磺,增加了菱铁矿,铁作为电子供体可以有效分担硫的负荷,减少出水中硫酸盐的含量。
(2)脱氮硫杆菌脱氮需要在弱碱性条件下进行,硫自养反硝化过程中脱氮硫杆菌会消耗碱,传统硫自养反硝化需要额外投加碱,提高碱度,增加处理成本,本发明中菱铁矿的自养反硝化过程会产生碱度,两者结合可以很好的维持系统中的pH,确保脱氮硫杆菌的脱氮效率。
(3)硫铁矿在反硝化过程中被生物氧化产生铁离子,菱铁矿在自养反硝化中会溶出亚铁离子,铁离子不仅与磷酸根生成溶度积小的沉淀物,更重要的是铁离子强烈水解、聚合生成的多核羟基络合物能够有效吸附、沉淀磷酸根,在反硝化脱氮的同时可以同步除磷;将制成的复合矿源填料用于自养反硝化装置中,对污染物处理效率高,效果明显,且无需额外投加碳源、剩余污泥少,制备工艺简单,能耗低,实现废物资源化利用。
附图说明
图1为本发明实施中使用的硫自养反硝化实验装置示意图。
图2为本发明实施中双铁基复合矿源自养反硝化材料的进出水硝酸盐氮浓度以及去除率。
图3为本发明实施中双铁基复合矿源自养反硝化材料的进出水总磷浓度以及去除率。
附图中:1-进水箱,2-蠕动泵,3-填料层,4-清水层,5-取样口。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本发明进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本发明的这些方面。
实施例1:
一种双铁基复合矿源自养反硝化材料,包含以下质量百分比的原料:硫铁矿50%、菱铁矿40%、牡蛎壳8%及碳酸钙2%。
双铁基复合矿源自养反硝化材料的制备方法,包括以下步骤:
(1)将硫铁矿与菱铁矿用蒸馏水浸泡24h后,放置于120°烘箱中干燥2h,再分别使用粉碎机打碎至200目的粉末,得到铁矿粉末;
(2)牡蛎壳用蒸馏水洗净、在120°烘箱中烘干,再研磨至20目,研磨后再次烘干,进行紫外消毒;
(3)将上述的50%的硫铁矿粉、40%的菱铁矿粉与8%的牡蛎壳、2%的碳酸钙混合均匀,以实验蒸馏水为粘合剂,放置造粒机中,制成粒径为5mm的颗粒;
(4)再将制成的颗粒然后在120°条件下加热4h后取出,静置冷却成型,即制得双铁基复合矿源自养反硝化材料,该填料可适用低C/N比水体的脱氮治理。
实施例2
本实施例与实施例1的其他工艺参数一致,不同之处在于:原料的质量百分比为:硫铁矿35%、菱铁矿45%、扇贝壳15%及碳酸钙5%。
实施例3
本实施例与实施例1的其他工艺参数一致,不同之处在于:原料的质量百分比为:硫铁矿55%、菱铁矿35%、花甲壳8%及碳酸钙2%。
实施例4
本实施例与实施例1的其他工艺参数一致,不同之处在于:原料的质量百分比为:硫铁矿55%、菱铁矿39%、鸡蛋壳5%及碳酸氢钠1%。
实施例5
本实施例与实施例1的其他工艺参数一致,不同之处在于:原料的质量百分比为:硫铁矿55%、菱铁矿39%、珊瑚壳粉5%及碳酸镁1%。
实施例6
本实施例与实施例1的其他工艺参数一致,不同之处在于:制备方法中步骤(1),所述浸泡的时长为20h,所述干燥的温度为105°,干燥的时间为1.5h,所述粉末的粒径为50目。
实施例7
本实施例与实施例1的其他工艺参数一致,不同之处在于:制备方法中步骤(1),所述浸泡的时长为30h,所述干燥的温度为110°,干燥的时间为3h,所述粉末的粒径为400目。
应用实施例1
将实施例1中制备得到的双铁基复合矿源自养反硝化材料应用到图1的自养反硝化实验装置中,装置为直径10cm,高1m的有机玻璃柱,有机玻璃柱包括填料层3及清水层4,有机玻璃柱的右上方设置有取样口,填料高度为60cm,通过蠕动泵,将进水箱1中污水处理厂生化尾水抽入装置,进水的硝酸盐氮浓度为30mg/L,COD浓度为60mg/L,氨氮浓度为10mg/L,总磷浓度为1mg/L,水力停留时间4小时,连续运行15天,运行期间出水结果如图2及图3所示,达到稳定后硝酸盐氮的平均去除率为96%,总磷的平均去除率为92%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种双铁基复合矿源自养反硝化材料,其特征在于:包含以下质量百分比的原料:硫铁矿35-55%、菱铁矿30-45%、碱度材料5-15%及发泡剂1-5%。
2.根据权利要求1所述的双铁基复合矿源自养反硝化材料,其特征在于:所述碱度材料为牡蛎壳、扇贝壳、花甲壳、鸡蛋壳或珊瑚壳粉其中一种或多种,该碱度材料的粒径为20-50目。
3.根据权利要求1所述的双铁基复合矿源自养反硝化材料,其特征在于:所述发泡剂为碳酸钙、碳酸氢钠或碳酸镁中的一种。
4.根据权利要求1至3任一项所述的双铁基复合矿源自养反硝化材料的制备方法,其特征在于:包括以下步骤:
(1)将硫铁矿与菱铁矿按比例用水浸泡后进行干燥,再使用粉碎机打碎成粉末,对粉末进行紫外消毒,得到铁矿粉末;
(2)将碱度材料用水洗净,在烘箱中烘干、再研磨至20-50目,研磨后再次烘干,进行紫外消毒;
(3)将上述的铁矿粉末与碱度材料、发泡剂混合均匀,以水为粘合剂,放置于造粒机中,制成颗粒;
(4)将制成的颗粒然后在120-150°条件下加热2-5h后取出,静置冷却成型,得到所述双铁基复合矿源自养反硝化材料。
5.根据权利要求4所述的双铁基复合矿源自养反硝化材料的制备方法,其特征在于:在步骤(1),所述浸泡的时长为20-30h,所述干燥的温度为105-120°,干燥的时间为1.5-3h,所述粉末的粒径为50-400目。
6.根据权利要求4所述的双铁基复合矿源自养反硝化材料的制备方法,其特征在于:在步骤(2),所述烘干的温度为105-120°。
7.根据权利要求4所述的双铁基复合矿源自养反硝化材料的制备方法,其特征在于:在步骤(3),所述颗粒的粒径为3-8mm。
CN202210604036.5A 2022-05-31 2022-05-31 一种双铁基复合矿源自养反硝化材料及其制备方法 Pending CN114890542A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210604036.5A CN114890542A (zh) 2022-05-31 2022-05-31 一种双铁基复合矿源自养反硝化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210604036.5A CN114890542A (zh) 2022-05-31 2022-05-31 一种双铁基复合矿源自养反硝化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114890542A true CN114890542A (zh) 2022-08-12

Family

ID=82726113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210604036.5A Pending CN114890542A (zh) 2022-05-31 2022-05-31 一种双铁基复合矿源自养反硝化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114890542A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176702A (zh) * 2017-07-31 2017-09-19 南京大学 一种强化硫自养反硝化过程同步脱氮除磷的污水处理方法
CN109052641A (zh) * 2018-09-05 2018-12-21 南京大学 一种耦合填料自养反硝化生物滤池及应用
CN109694131A (zh) * 2019-01-18 2019-04-30 江苏长三角智慧水务研究院有限公司 一种垃圾渗滤液的脱氮方法及系统
US20200338485A1 (en) * 2019-04-23 2020-10-29 Nanjing University Method for preparing simultaneous nitrogen and phosphorus removal lightweight material and the use thereof
CN113735246A (zh) * 2021-08-10 2021-12-03 神美科技有限公司 一种同步脱氮除磷发泡轻质填料及其制备方法
CN114195259A (zh) * 2021-12-06 2022-03-18 清华大学 一种基于混合基质的低碳硝酸盐废水高效净化装置系统及净化处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176702A (zh) * 2017-07-31 2017-09-19 南京大学 一种强化硫自养反硝化过程同步脱氮除磷的污水处理方法
CN109052641A (zh) * 2018-09-05 2018-12-21 南京大学 一种耦合填料自养反硝化生物滤池及应用
CN109694131A (zh) * 2019-01-18 2019-04-30 江苏长三角智慧水务研究院有限公司 一种垃圾渗滤液的脱氮方法及系统
US20200338485A1 (en) * 2019-04-23 2020-10-29 Nanjing University Method for preparing simultaneous nitrogen and phosphorus removal lightweight material and the use thereof
CN113735246A (zh) * 2021-08-10 2021-12-03 神美科技有限公司 一种同步脱氮除磷发泡轻质填料及其制备方法
CN114195259A (zh) * 2021-12-06 2022-03-18 清华大学 一种基于混合基质的低碳硝酸盐废水高效净化装置系统及净化处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕冉;李彬;肖盈;张靖雯;麦裕良;: "铁对废水微生物脱氮的影响研究进展", 化工进展, vol. 39, no. 02, pages 709 - 719 *
戴元法等: "《国外复混肥料译丛》", 化学工业部,上海化工研究院, pages: 155 *

Similar Documents

Publication Publication Date Title
CN109052641B (zh) 一种耦合填料自养反硝化生物滤池及应用
CN107176702B (zh) 一种强化硫自养反硝化过程同步脱氮除磷的污水处理方法
CN107512771B (zh) 一种菱铁矿/硫磺生物滤池及利用其同步去除水中氮和磷的方法
KR101000300B1 (ko) 우드칩을 이용한 음식물쓰레기의 퇴비화 및 처리 방법 및이를 이용한 장치
CN106007001B (zh) 海绵铁与微生物协同去除硫酸盐和Zn(Ⅱ)废水的方法
CN104787984B (zh) 一种同步回收垃圾渗滤液和酸性矿山排水中重金属的方法
CN102398936A (zh) 一种抑制水体黑臭的复合药剂及其制备与使用方法
CN101805099B (zh) 垃圾渗滤液的处理方法及其处理系统
CN112441804B (zh) 一种除磷脱氮型生物滤料制备方法及在一体化农村生活污水处理设备上的应用
CN101081398A (zh) 处理食物垃圾的装置和方法
CN108178246A (zh) 一种环保型微电解陶粒及其制备方法
CN111320268A (zh) 一种自养与异养协同反硝化的脱氮方法
CN106396124B (zh) 海绵铁与微生物协同去除硫酸盐和Cu(Ⅱ)废水的方法
CN106115932B (zh) 海绵铁与微生物协同去除硫酸盐和Cr(Ⅵ)废水的方法
CN101973619A (zh) 一种用改性磷石膏处理铜冶炼废水的方法
Woo et al. Removal of nitrogen from municipal wastewater by denitrification using a sulfur-based carrier: a pilot-scale study
CN102874974A (zh) 污水处理厂污水污泥的深度处理和综合利用工艺
CN104370411A (zh) 一种工业废水重金属去除的方法
CN106115931B (zh) 海绵铁与微生物协同去除硫酸盐和Cd(Ⅱ)废水的方法
CN108751581B (zh) 一种垃圾渗滤液生化出水的处理工艺
CN110606626A (zh) 一种同步脱氮除磷污水处理工艺
CN107324606A (zh) 一种回用富铁剩余污泥除磷膜生物反应器污水处理系统及处理方法
Wang et al. The dynamic experiment on treating acid mine drainage with iron scrap and sulfate reducing bacteria using biomass materials as carbon source
CN116605986A (zh) 一种基于硫自养脱氮的固相缓释硫填料及其制备方法与应用
CN114890542A (zh) 一种双铁基复合矿源自养反硝化材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination