CN114887651A - 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用 - Google Patents

一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN114887651A
CN114887651A CN202210544303.4A CN202210544303A CN114887651A CN 114887651 A CN114887651 A CN 114887651A CN 202210544303 A CN202210544303 A CN 202210544303A CN 114887651 A CN114887651 A CN 114887651A
Authority
CN
China
Prior art keywords
tio
nano
photocatalytic material
hydrophobic zeolite
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210544303.4A
Other languages
English (en)
Inventor
汤俊涛
傅梦莹
宋爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202210544303.4A priority Critical patent/CN114887651A/zh
Publication of CN114887651A publication Critical patent/CN114887651A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用,所述光催化材料是以结晶过程中在八面沸石骨架上官能化有机基团合成的沸石护套为基底,将通过水热法制备的二氧化钛纳米片固定在疏水沸石内部,得到二氧化钛纳米片@疏水沸石复合光催化材料。本发明的光催化材料具有核壳型分级结构,比表面积大,TiO2的厚度和大小可以通过合成条件调控,制备工艺简便易行,成本低,产率高,这种纳米片组装的核壳结构锐钛矿二氧化钛沸石在光催化剂领域具有巨大的应用潜力。

Description

一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法 和应用
技术领域
本发明涉及光催化材料技术领域,特别是涉及一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用。
背景技术
随着工业的快速发展,挥发性有机化合物(VOCs)已成为发展中国家城市地区的主要空气污染物之一,对人类健康和大气化学产生了重大影响。人为排放源包括化工和石化行业、汽车尾气、加油站、车内燃料输送等。甲苯是一种常见且典型的VOC,已被公认为强致癌物。VOCs可以通过破坏性方法(焚烧、生物过滤和催化氧化)和非破坏性方法(吸收、吸附、冷凝和膜过滤)工艺进行处理。特别是,光催化氧化是一种有吸引力的技术,可消除空气污染物,并从材料科学、物理化学和环境工程的角度引起了极大的兴趣。
光触媒是光催化降解VOCs的空气净化技术中的关键部件之一。到目前为止,TiO2因其化学稳定性和强光氧化能力而被广泛用作环境光催化剂。在紫外线下,光催化剂可以产生电子和空穴,这些电子和空穴进一步转化为羟基自由基(OH)、超氧阴离子(O2 •-)或其他活性物质,可以将VOCs氧化成无机小分子。但是 TiO2的失活导致光催化效率低,光催化寿命缩短,这将降低光催化作为一种实用的空气净化技术的商业价值。从经济角度来看,催化剂的短寿命会导致催化剂的频繁更换,从而增加与系统相关的成本。
为了防止光催化剂在VOCs长时间降解过程中失活并提高光催化效率,应高度阻止顽固中间体的形成或它们在表面上的积累。因此,已经开发了许多策略来防止光催化剂失活,包括与其他半导体形成异质结、表面改性、新型光催化材料的合成等。于是我们选用将金属氧化物固定在疏水沸石内以实现理想的润湿选择性的方法,在疏水沸石微孔中选择性捕获和富集甲苯,然后在二氧化钛上进行光降解,以达到抗失活的目的并提高效率。
发明内容
针对现有技术存在的上述技术问题,本发明的目的在于提供一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用,本发明采用对环境无污染的安全材料沸石与二氧化钛进行复合作为光催化剂,在光催化降解有机污染物的过程中阻碍了降解过程中催化剂的失活,并且易于回收利用,更有利于在环境中的应用。
本发明采用的技术方案是:
一种TiO2纳米片@疏水沸石复合微球光催化材料,该光催化材料是以TiO2纳米片和具备疏水性的沸石纳米颗粒复合形成的多孔微球光催化剂,其具备核壳型分级结构,TiO2纳米片固定在疏水沸石纳米颗粒内部;其中所述TiO2纳米片@疏水沸石复合微球光催化材料中,TiO2的质量百分含量占比为43.5~85.5wt%。
进一步地,TiO2纳米片的长度为40-60 nm,厚度为10-20 nm;所述光催化材料的平均直径为2.5-12 μm。
进一步地,TiO2纳米片为锐钛矿相,表面暴露(001)晶面和(101)晶面。
所述的一种TiO2纳米片@疏水沸石复合微球光催化材料的制备方法,包括以下步骤:
1)将TiO2纳米片分散在质量分数25~28%的氨水、去离子水和乙醇混合液中,充分搅拌均匀后,加入硅源,室温再搅拌5~10h;然后于真空加热脱除水和乙醇,90~110℃干燥6~10h,得到无定形硅和二氧化钛的复合物;其中,TiO2纳米片、氨水、去离子水、乙醇和硅源的投料比为0.5~4g:8~10mL:100~200mL:100~150mL:5~7g;
2)将步骤1)所得复合物与铝酸钠、氢氧化钠和去离子水混合,在室温下搅拌10~15h形成凝胶,将凝胶转移到不锈钢高压釜中,在90~120℃下加热反应20~30h,反应结束后经过过滤、水洗和干燥,最终得到TiO2纳米片@疏水沸石复合微球光催化材料;其中,步骤1)中硅源与步骤2)中铝酸钠、氢氧化钠和去离子水的投料比为5~7g:0.6~0.7g:0.9~1.0g:8~10g。
进一步地,步骤1)中硅源为原硅酸四乙酯和二甲氧基二乙氧基硅烷,原硅酸四乙酯和二甲氧基二乙氧基硅烷的投料质量比为6~10:1,优选为8:1。
进一步地,TiO2纳米片通过水热法合成,具体包括以下步骤:向钛源中加入形貌控制剂,先室温搅拌20~40min进行水解,然后转移至具有聚四氟乙烯内衬的高压釜中,于160~200℃下继续水热反应20~30h,离心、洗涤、干燥、研磨,最终得到TiO2纳米片产物。
进一步地,钛源为钛酸四丁酯,形貌控制剂为质量分数20~30%的氢氟酸的水溶液,钛酸四丁酯与氢氟酸的水溶液体积比为6~10:1,优选为8~8.5:1。
本发明的一种TiO2纳米片@疏水沸石复合微球光催化材料在光催化降解有机污染物中的应用。
与现有技术相比本发明的有益效果为:
1)本发明提供的TiO2纳米片@疏水沸石复合微球光催化材料中,TiO2纳米片负载于沸石上,TiO2纳米片高比例暴露的(001)晶面利于H2O离解产羟基提高反应活性,提高催化效率,在紫外光源下对甲苯的去除效率均大于95%。
2)疏水性的Y型沸石对目标污染物具有吸附增强作用而避免水的竞争吸附,并使整体复合结构拥有极高稳定性,长期使用不会发生失活。
3)本发明所得TiO2纳米片@疏水沸石复合微球光催化剂物理稳定性较好,无挥发、不溶解、耐热温度高、无毒性;用去离子水冲洗,未见二氧化钛剥落。
4)本发明利用Y型沸石为载体,原料资源丰富,价格低廉,制备过程简单,产量大,在环境保护方面,可以用来消除大气污染、进行污水处理等。
附图说明
图1为实施例1制得的TiO2@Y-0.5的扫描电子显微镜(SEM)图;
图2为实施例1制得的TiO2@Y-0.5的透射电子显微镜(TEM)图。
图3为实施例1制得的TiO2@Y-0.5的水接触角图。
图4为实施例1制得的TiO2@Y-0.5的X射线衍射(XRD)图。
图5为对比例1制得的TiO2的SEM图。
图6为对比例2制得的Y沸石的SEM图。
图7为实施例1、2、3、4所制备的复合光催化材料、对比例1所制备的TiO2和P25在紫外光下对甲苯的降解性能。
图8为实施例3和对比例1所制备的TiO2在紫外光下连续循环使用5次降解甲苯的性能图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例1
TiO2纳米片的制备:通过水热方法合成,在室温下向50ml的钛酸四丁酯中加入6mL氢氟酸溶液(质量分数25%,以下实施例相同)搅拌30分钟进行反应水解。接着转移到一个200ml具有白色聚四氟乙烯内衬的高压釜,在180℃下水热保持24小时。随后离心并收集白色沉淀物,先后用乙醇和蒸馏水洗涤,最后转移至60℃烘箱直至烘干,研磨,所得样品用F-TiO2来表示。
TiO2@疏水Y沸石的合成:将0.5g上述制作的二氧化钛纳米片分散在氨水(质量分数25%,9mL)、水(150mL)和乙醇(120mL)的混合物中。搅拌0.5h后,加入5.31g原硅酸四乙酯和0.66g二甲氧基二乙氧基硅烷,再搅拌8h。在真空下加热除去水和乙醇,在100℃下干燥8h后,得到非晶态二氧化硅和二氧化钛的复合材料,然后与铝酸钠(0.624g)、氢氧化钠(0.954g)和水(9g)混合。在室温下搅拌12小时后,将凝胶转移到聚四氟乙烯-石灰化不锈钢高压釜中,并在100°C下加热24小时。过滤后,用大量水洗涤,100°C干燥12h,最终得到疏水Y沸石固定的二氧化钛样品,记为TiO2@Y-0.5,TiO2的质量占比为43.5%。
对实施例1所得的TiO2@Y-0.5样品进行SEM表征,结果见图1。图1表明制备得到的TiO2@Y-0.5的形貌结构呈球状,平均粒径为10μm左右。进一步观察可知,该微球是由无数个片状颗粒堆叠而成。
对实施例1所得的TiO2@Y-0.5样品进行TEM表征,结果见图2。图2表明制备得到的TiO2@Y-0.5的形貌结构呈球状,微球是由TiO2纳米片和Y沸石微球组成,该结果与SEM结果一致。进一步地,所述TiO2纳米片长度为40-60 nm,厚度为10-20 nm,晶面间距分别为0.235nm和0.35nm,对应锐钛矿二氧化钛的(001)晶面和(101)晶面。
对实施例1所得的TiO2@Y-0.5样品进行水接触角测试,结果见图3。图3显示TiO2@Y-0.5的水接触角为110.1o,表面为疏水性。
对实施例1所得的TiO2@Y-0.5样品进行XRD测试,结果见图4。图4显示制备得到的TiO2@Y-0.5含有TiO2和Y沸石的明显衍射峰,表明该催化剂是由TiO2和Y沸石组成。
实施例2
TiO2纳米片的制备过程重复实施例1中。
TiO2@疏水Y沸石的合成:将1g上述制作的二氧化钛纳米片分散在氨水(质量分数25%,9mL)、水(150mL)和乙醇(120mL)的混合物中。搅拌0.5h后,加入5.31g原硅酸四乙酯和0.66g二甲氧基二乙氧基硅烷,再搅拌8h。在真空下加热除去水和乙醇,在100°C下干燥8h后,得到非晶态二氧化硅和二氧化钛的复合材料,然后与铝酸钠(0.624g)、氢氧化钠(0.954g)和水(9g)混合。在室温下搅拌12小时后,将凝胶转移到聚四氟乙烯-石灰化不锈钢高压釜中,并在100°C下加热24小时。过滤后,用大量水洗涤,100°C干燥12h,最终得到疏水Y沸石固定的二氧化钛样品,记为TiO2@Y-1,TiO2的质量占比为65.1%。
实施例3
TiO2纳米片的制备过程重复实施例1中。
TiO2@疏水Y沸石的合成:将2g制作的二氧化钛纳米片分散在氨水(质量分数25%,9mL)、水(150mL)和乙醇(120mL)的混合物中。搅拌0.5h后,加入5.31g原硅酸四乙酯和0.66g二甲氧基二乙氧基硅烷,再搅拌8h。在真空下加热除去水和乙醇,在100°C下干燥8h后,得到非晶态二氧化硅和二氧化钛的复合材料,然后与铝酸钠(0.624g)、氢氧化钠(0.954g)和水(9g)混合。在室温下搅拌12小时后,将凝胶转移到聚四氟乙烯-石灰化不锈钢高压釜中,并在100°C下加热24小时。过滤后,用大量水洗涤,100°C干燥12h,最终得到疏水Y沸石固定的二氧化钛样品,记为TiO2@Y-2,TiO2的质量占比为72.7%。
实施例4
TiO2纳米片的制备过程重复实施例1中。
TiO2@疏水Y沸石的合成:将4g上述制作的二氧化钛纳米片分散在氨水(质量分数25%,9mL)、水(150mL)和乙醇(120mL)的混合物中。搅拌0.5h后,加入5.31g原硅酸四乙酯和0.66g二甲氧基二乙氧基硅烷,再搅拌8h。在真空下加热除去水和乙醇,在100°C下干燥8h后,得到非晶态二氧化硅和二氧化钛的复合材料,然后与铝酸钠(0.624g)、氢氧化钠(0.954g)和水(9g)混合。在室温下搅拌12小时后,将凝胶转移到聚四氟乙烯-石灰化不锈钢高压釜中,并在100°C下加热24小时。过滤后,用大量水洗涤,100°C干燥12h,最终得到疏水Y沸石固定的二氧化钛样品,记为TiO2@Y-4,TiO2的质量占比为85.5%。
对比例1
TiO2纳米片的合成:TiO2纳米片的制备过程重复实施例1中。
对对比例1所得的TiO2纳米片样品进行SEM表征,结果见图5。图5表明纳米片呈现以高比例(001)晶面暴露的十面体块。
对比例2
疏水Y沸石的合成:将氨水(质量分数25%,9mL)、水(150mL)和乙醇(120mL)的混合物搅拌0.5h后,加入5.31g原硅酸四乙酯和0.66g二甲氧基二乙氧基硅烷,再搅拌8h。在真空下加热除去水和乙醇,在100℃下干燥8h后,得到非晶态二氧化硅材料,然后与铝酸钠(0.624g)、氢氧化钠(0.954g)和水(9g)混合。在室温下搅拌12小时后,将凝胶转移到聚四氟乙烯-石灰化不锈钢高压釜中,并在100°C下加热24小时。过滤后,用大量水洗涤,100°C干燥12h,最终得到疏水Y沸石。
对比例2所得的疏水Y沸石样品进行SEM表征,结果见图6。图6表明沸石呈鳞片状不规则球体,并且颗粒表面部分位置有小孔存在,这些块状鳞片和小孔不仅为催化剂吸附污染物提供了便利,还增强了催化剂对污染物选择性吸附的能力。
对比例3
取常规市售二氧化钛Degussa P25商用光催化剂(简称为P25)与上述本发明制得的光催化剂进行催化性能对比。所述P25购自于广州合仟贸易有限公司德国德固赛品牌,平均粒径为25nm。
应用实施例1:
对实施例1~4制得的TiO2纳米片@疏水沸石复合微球光催化剂与对比例1制得的TiO2纳米片进行光催化降解甲苯的性能研究,具体步骤如下:
首先取0.1g催化剂样品用乙醇均匀铺开在直径为4cm的圆形石英玻璃皿上并烘干,然后将盛有催化剂的圆形石英玻璃皿固定到托盘架子上,并将托盘架子固定在烘干的反应器内部中间,反应器底部内设置搅拌器(搅拌器的作用是通过转动,使反应器内气体流动,气体均匀分散在反应器内),密封反应器,反应器的容积大约为270cm3。向反应器内打入1ul甲苯和3ul水,随即放入烘箱30min,使得甲苯和水完全汽化形成气态环境,甲苯-水以气态的形式与催化剂接触。然后取出反应器首先25℃模拟常温环境水浴30min,记为初始时刻,打开汞灯进行紫外光照射条件下2小时的催化反应(汞灯的照射功率300W、光照强度450uw/cm2),定时取样并用安捷伦气相进行VOC检测。
图7为实施例1、2、3、4所制备的复合光催化材料和对比例1所制备的TiO2及P25催化剂在紫外光下对甲苯的降解性能图。当未复合疏水Y沸石时,对比例1在45min对甲苯的去除率为94.6%;当与疏水Y沸石复合时,实施例1的TiO2@Y-0.5光催化剂在120 min对甲苯的去除率为37.8%;实施例2的TiO2@Y-1光催化剂在120 min对甲苯的去除率为92.7%;实施例3的TiO2@Y-2光催化剂在120min对甲苯的去除率为97.0%;实施例4的TiO2@Y-4光催化剂在120min对甲苯的去除率为56.3%。TiO2@Y-x对甲苯去除效果受包裹程度影响,且其对甲苯的光催化去除效率大小顺序为:[001]TIO2>P25>TiO2@Y-2>TiO2@Y-1>>TiO2@Y-0.5。通过与对比例3的常规市售商业用光催化剂P25对比可知,实施例3制得的TiO2@Y-2催化剂对甲苯的光催化污染物降解性能在短反应时间内虽未优于P25,但由于P25迅速中毒(p25就是普通的混晶型TIO2,其催化降解效果与对比例1的纯TIO2较为相近,这点从图7中也能够看出。而对比例1的纯TIO2在图8a中已证明迅速失活),本发明所制样品实际矿化率更高、氧化效果更好,表明本发明的TiO2纳米片@疏水沸石复合微球光催化剂具有非常好的应用前景。
本发明先通过水热法制备二氧化钛纳米片,然后在制备疏水性的沸石纳米颗粒的过程中,将二氧化钛纳米片固定在疏水沸石内部得到具有核壳型分级结构的催化剂,经过实验验证其催化活性好、稳定性高。相较于现有催化剂常规制备方法具有更好的催化效果,例如文献Efficient removal of toluene and benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst直接使用USY沸石作为载体,对草酸氧钛铵的水溶液进行浸渍后,将草酸氧钛铵转化为TiO2最终形成催化剂,而与之相比本发明的催化剂取得了更好的催化效果。
应用实施例2:
对实施例3制得的TiO2@Y-2与对比例1制得的TiO2纳米片进行光催化降解甲苯的稳定性研究,具体步骤如下:
首先取0.1g催化剂样品用乙醇均匀铺开在直径为4cm的圆形石英玻璃皿上并烘干,然后将盛有催化剂的圆形石英玻璃皿固定到托盘架子上,并将托盘架子固定在烘干的反应器内部中间,反应器底部内设置搅拌器(搅拌器的作用是通过转动,使反应器内气体流动,气体均匀分散在反应器内),密封反应器,反应器的容积大约为270cm3。向反应器内打入1ul甲苯和3ul水,随即放入烘箱30min,使得甲苯和水完全汽化形成气态环境,甲苯-水以气态的形式与催化剂接触。然后取出反应器首先25℃模拟常温环境水浴30min,记为初始时刻,打开汞灯进行紫外光照射条件下2小时的催化反应(汞灯的照射功率300W、光照强度450uw/cm2),定时取样并用安捷伦气相进行VOC检测,催化剂重复使用连续五次进行实验。
图8a为实施例3所制备的TiO2@Y-2在紫外光下连续循环使用5次降解甲苯的性能图,且其催化剂TiO2@Y-2在循环使用5次后基本不发生变色。图8b为对比例1所制备的TiO2在紫外光下连续循环使用5次降解甲苯的性能图,其催化剂TiO2在循环使用1次后已经转变成棕褐色,变色严重。
由图8可知,实施例3所制备的TiO2@Y-2光催化剂在5次循环使用中对甲苯的去除效率未发生明显下降,而对比例1所制备的TiO2纳米片在第3次循环后对甲苯的去除效率仅为第1次实验时的50%。该结果表明,实施例3所制备的TiO2@Y-2对具有较高的反应稳定性,疏水Y沸石的存在可避免TiO2在反应过程中失活。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (8)

1.一种TiO2纳米片@疏水沸石复合微球光催化材料,其特征在于该光催化材料是以TiO2纳米片和具备疏水性的沸石纳米颗粒复合形成的多孔微球光催化剂,其具备核壳型分级结构,TiO2纳米片固定在疏水沸石纳米颗粒内部;其中所述TiO2纳米片@疏水沸石复合微球光催化材料中,TiO2的质量百分含量占比为43.5~85.5wt%。
2.如权利要求1所述的一种TiO2纳米片@疏水沸石复合微球光催化材料,其特征在于TiO2纳米片的长度为40-60 nm,厚度为10-20 nm;所述光催化材料的平均直径为2.5-12 μm。
3.如权利要求1所述的一种TiO2纳米片@疏水沸石复合微球光催化材料,其特征在于所述TiO2纳米片为锐钛矿相,表面暴露(001)晶面和(101)晶面。
4.如权利要求1所述的一种TiO2纳米片@疏水沸石复合微球光催化材料的制备方法,其特征在于包括以下步骤:
1)将TiO2纳米片分散在质量分数25~28%的氨水、去离子水和乙醇混合液中,充分搅拌均匀后,加入硅源,室温再搅拌5~10h;然后于真空加热脱除水和乙醇,90~110℃干燥6~10h,得到无定形硅和二氧化钛的复合物;其中,TiO2纳米片、氨水、去离子水、乙醇和硅源的投料比为0.5~4g:8~10mL:100~200mL:100~150mL:5~7g;
2)将步骤1)所得复合物与铝酸钠、氢氧化钠和去离子水混合,在室温下搅拌10~15h形成凝胶,将凝胶转移到不锈钢高压釜中,在90~120℃下加热反应20~30h,反应结束后经过过滤、水洗和干燥,最终得到TiO2纳米片@疏水沸石复合微球光催化材料;其中,步骤1)中硅源与步骤2)中铝酸钠、氢氧化钠和去离子水的投料比为5~7g:0.6~0.7g:0.9~1.0g:8~10g。
5.如权利要求4所述的一种TiO2纳米片@疏水沸石复合微球光催化材料的制备方法,其特征在于步骤1)中硅源为原硅酸四乙酯和二甲氧基二乙氧基硅烷,原硅酸四乙酯和二甲氧基二乙氧基硅烷的投料质量比为6~10:1,优选为8:1。
6.如权利要求4所述的一种TiO2纳米片@疏水沸石复合微球光催化材料的制备方法,其特征在于TiO2纳米片通过水热法合成,具体包括以下步骤:向钛源中加入形貌控制剂,先室温搅拌20~40min进行水解,然后转移至具有聚四氟乙烯内衬的高压釜中,于160~200℃下继续水热反应20~30h,离心、洗涤、干燥、研磨,最终得到TiO2纳米片产物。
7.如权利要求6所述的一种TiO2纳米片@疏水沸石复合微球光催化材料的制备方法,其特征在于钛源为钛酸四丁酯,形貌控制剂为质量分数20~30%的氢氟酸水溶液,钛酸四丁酯与氢氟酸的水溶液体积比为6~10:1,优选为8~8.5:1。
8.如权利要求1所述的一种TiO2纳米片@疏水沸石复合微球光催化材料在光催化降解有机污染物中的应用。
CN202210544303.4A 2022-05-19 2022-05-19 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用 Pending CN114887651A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210544303.4A CN114887651A (zh) 2022-05-19 2022-05-19 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210544303.4A CN114887651A (zh) 2022-05-19 2022-05-19 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN114887651A true CN114887651A (zh) 2022-08-12

Family

ID=82723479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210544303.4A Pending CN114887651A (zh) 2022-05-19 2022-05-19 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114887651A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078244A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种掺杂金属铌二氧化钛纳米片及其制备方法和应用
CN104071833A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种锐钛矿型TiO2纳米片的制备方法及应用
CN108339567A (zh) * 2018-02-10 2018-07-31 浙江大学 一种制备封装二氧化钛的疏水沸石催化材料的方法
CN111974446A (zh) * 2019-05-24 2020-11-24 宁夏大学 一种室内空气污染物清除剂的制备方法
CN113023774A (zh) * 2021-03-19 2021-06-25 晋中学院 一种高活性晶面共暴露的锐钛矿型TiO2纳米晶的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078244A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种掺杂金属铌二氧化钛纳米片及其制备方法和应用
CN104071833A (zh) * 2013-03-26 2014-10-01 中国科学院大连化学物理研究所 一种锐钛矿型TiO2纳米片的制备方法及应用
CN108339567A (zh) * 2018-02-10 2018-07-31 浙江大学 一种制备封装二氧化钛的疏水沸石催化材料的方法
CN111974446A (zh) * 2019-05-24 2020-11-24 宁夏大学 一种室内空气污染物清除剂的制备方法
CN113023774A (zh) * 2021-03-19 2021-06-25 晋中学院 一种高活性晶面共暴露的锐钛矿型TiO2纳米晶的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
T. MALLAT等: "Hydrophobic titania–silica aerogels: epoxidation of cyclic compounds", 《TOPICS IN CATALYSIS》, vol. 11, no. 12, 31 December 2000 (2000-12-31), pages 369 *
YU-HSIANG HSIEN等: "Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 31, 31 December 2001 (2001-12-31), pages 241 *
赵纯 等: "沸石特性对负载纳米TiO2光催化去除水中土霉素的影响", 《土木建筑与环境工程》, vol. 36, no. 4, 31 August 2014 (2014-08-31), pages 115 - 120 *

Similar Documents

Publication Publication Date Title
Shams-Ghahfarokhi et al. As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process
Singh et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect
Todorova et al. Composite TiO2/clays materials for photocatalytic NOx oxidation
Delsouz Khaki et al. Enhanced UV–Visible photocatalytic activity of Cu-doped ZnO/TiO 2 nanoparticles
US5468699A (en) Molecular sieve - photoactive semiconductor membranes and reactions employing the membranes
CN113164867B (zh) 富勒烯及其衍生物复合材料在降解甲醛、室内VOCs或抑菌中的应用
Wang et al. Photocatalytic activity of TiO2 supported SiO2-Al2O3 aerogels prepared from industrial fly ash
AU2011227642B2 (en) Photocatalyst comprising TiO2 and activated carbon made from date pits
Shi et al. Application of fly ash supported titanium dioxide for phenol photodegradation in aqueous solution
Salgado et al. Evaluation of the photocatalytic activity of SiO2@ TiO2 hybrid spheres in the degradation of methylene blue and hydroxylation of benzene: Kinetic and mechanistic study
Shokri et al. Photocatalytic degradation of ceftriaxone in aqueous solutions by immobilized TiO2 and ZnO nanoparticles: Investigating operational parameters
CN105688957A (zh) 具有可见光催化活性的CNTs-Ag3PO4催化剂及其制备方法
CN109174075A (zh) 一种用于光催化降解VOCs的稀土元素改性二氧化钛纳米光催化材料及其制备方法
Saadati et al. Synthesis of nanocomposite based on Semnan natural zeolite for photocatalytic degradation of tetracycline under visible light
Vo Spray pyrolysis synthesis and UV-driven photocatalytic activity of mesoporous Al2O3@ TiO2 microspheres
CN113926443A (zh) 用于可见光催化除醛的多元复合材料、制备方法及空气净化器
Xie et al. Synthesis and Photocatalytic Activity of Cerium‐Modified CdS‐TiO2 Photocatalyst for the Formaldehyde Degradation at Room Temperature
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
CN1150979C (zh) 空气净化用纳米复合光催化剂及其制备方法
Daimalah et al. CuCr2O4-polystyrene immobilized photocatalyst: Facile fabrication, characterization and enhanced photodegradation of cefixime under visible light
CN112934167A (zh) 二氧化钛/层状双氢氧化物非碳基复合材料及其制备方法和应用
Ghorbanpour et al. A comparative study of photocatalytic activity of ZnO/activated carbon nanocomposites prepared by solid-state and conventional precipitation methods
Yuan et al. Promotion effect of Al2O3–SiO2 interlayer and Pt loading on TiO2/nickel-foam photocatalyst for degrading gaseous acetaldehyde
CN114887651A (zh) 一种TiO2纳米片@疏水沸石复合微球光催化材料及其制备方法和应用
Padervand et al. Kinetic and mechanistic study of p-nitrochlorobenzene photoreduction and Bacillus inactivation over aluminosilicate-based nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination