CN114874818B - 高炉煤气脱硫剂及其制备方法和应用 - Google Patents

高炉煤气脱硫剂及其制备方法和应用 Download PDF

Info

Publication number
CN114874818B
CN114874818B CN202210791956.2A CN202210791956A CN114874818B CN 114874818 B CN114874818 B CN 114874818B CN 202210791956 A CN202210791956 A CN 202210791956A CN 114874818 B CN114874818 B CN 114874818B
Authority
CN
China
Prior art keywords
blast furnace
furnace gas
desulfurizer
cos
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210791956.2A
Other languages
English (en)
Other versions
CN114874818A (zh
Inventor
李振岳
李俊华
李云鹏
刘俊
张信阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Pengda Ecological Technology Co ltd
Original Assignee
Shandong Pengda Ecological Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Pengda Ecological Technology Co ltd filed Critical Shandong Pengda Ecological Technology Co ltd
Priority to CN202210791956.2A priority Critical patent/CN114874818B/zh
Publication of CN114874818A publication Critical patent/CN114874818A/zh
Application granted granted Critical
Publication of CN114874818B publication Critical patent/CN114874818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于环境保护技术领域,具体涉及一种高炉煤气脱硫剂及其制备方法和应用,包括以下质量百分比的原料:煤矸石20~25wt%,赤泥10~15wt%,软锰矿3~5wt%,工业废弃活性炭40~50wt%,焦油渣15~17wt%;同时外加原料总质量10~15%的NH4SCN以及原料总质量10~20%的粘结剂制得。本发明既可以有效处理工业固废和焦化固废及副产,又可以制备得到一种高性能的高炉煤气低温脱硫剂,能够在低温下同时高效去除COS和H2S,活性炭表面的碱性官能团一方面是COS水解的活性位点,另一方面也有利于H2S的氧化。同时制备方法简便易行,制备成本比较低,具有较好的经济技术优势和广泛的应用前景。

Description

高炉煤气脱硫剂及其制备方法和应用
技术领域
本发明属于环境保护技术领域,具体涉及一种高炉煤气脱硫剂及其制备方法和应用。
背景技术
高炉煤气是高炉炼铁过程中副产的可燃性气体,是一种重要的二次能源,目前钢铁厂高炉煤气经过除尘净化后主要用于热风炉、烧结、焦化、球团、加热炉和锅炉等。但是高炉煤气在燃烧时会产生大量的SO2,随着环保要求的日益严格,规定全面普及烧结烟气循环、机械化原料场、高炉煤气精脱硫、烧结机头高效脱硫脱硝等技术应用。高炉煤气是高炉冶炼过程中副产的一种可燃气体,主要成分为一氧化碳、二氧化碳、氮气、氢气及烃类,同时含有少量HCl、H2S、有机硫(主要为COS)及粉尘。高炉煤气具有热值低、气量大的特点,这增加了其利用难度。高炉煤气除用于自身系统热风炉作燃料外,还有大量富裕的高炉煤气需要外排,外排的高炉煤气通常用于TRT发电(余压回收透平发电)、炼焦炉、加热炉、均热炉、轧钢加热炉燃料及锅炉蒸汽发电。随着节能减排政策不断加强,钢铁企业高炉煤气超低排放势在必行,从源头集中治理可以减少企业的投资,降低运行费用,从根本上保证SO2超低排放。对于硫化氢的脱除技术已经非常成熟,羰基硫的脱硫技术则以水解催化的方法,将羰基硫转化成硫化氢后再进行脱除。
目前,COS、CS2单独的低温水解催化剂主要分为负载型低温水解催化剂和非负载型低温水解催化剂。负载型低温水解催化剂由载体负载适量的活性组分而合成。COS、CS2水解催化剂的载体主要分为两类:一类是以Al2O3和TiO2为主的金属氧化物;另一类则是非金属氧化物,这类载体主要指活性炭和一些非金属材料(如堇青石等)。活性组分则包括碱金属、碱土金属、过渡金属氧化物和稀土金属氧化物等。煤基活性炭经过表面修饰后(Mn、Fe、K、Cu和Ce等活性前驱体),能够同时去除COS和H2S,活性炭表面的碱性官能团一方面是COS水解的活性位点,另一方面也有利于H2S的氧化。因此,低温下能够同时去除COS和H2S的改性活性炭脱硫剂具有较好的经济技术优势,如何制备低温高效协同脱除COS和H2S的高炉煤气脱硫剂是目前迫切需要解决的问题。
专利申请号为CN101703928A和CN101559379A的专利文件公开了一种低温水解羰基硫活性炭催化剂及制备方法,所述活性炭基催化剂,采用市售的煤质活性炭,经过等体积法浸渍Mn的活性组分,在700oC温度下进行热解处理,然后继续浸渍3~15%的碱溶液,在160oC温度下干燥处理,即制备得到低温水解羰基硫活性炭催化剂,其在50oC下能够将气体中1200-1400 mg/m3的COS脱除,同时将水解产生的H2S脱除。但是对于既含H2S又含COS的原始气体,该类型的低温硫容和水解性能有待进一步提升。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种高炉煤气脱硫剂及其制备方法和应用,与传统的高炉煤气脱硫剂相比,本发明高炉煤气脱硫剂制备工艺简单,能够在30~50oC低温下同时高效协同脱除高炉煤气中的COS和H2S;同时采用煤矸石、赤泥、软锰矿、工业废弃活性炭和焦化固废及废盐为原材料,是一种低成本的环境友好型催化剂。
为了实现上述目的,本发明解决具体技术问题的技术方案如下:
本发明所述的高炉煤气脱硫剂,包括以下质量百分比的原料:煤矸石20~25wt%,赤泥10~15wt%,软锰矿3~5wt%,工业废弃活性炭40~50wt%,焦油渣15~17wt%;同时外加原料总质量10~15%的NH4SCN以及原料总质量10~20%的粘结剂制得。
优选地,工业废弃活性炭包括脱硫脱硝废碳粉、兰炭粉、化工制药脱色炭或化工制药废粉炭中的一种或多种;NH4SCN为焦化脱硫废液副产NH4SCN盐。
优选地,粘结剂为矿源黄腐酸钾、凹凸棒土、膨润土、拜耳法赤泥或酚醛树脂中的一种或多种组合混合物。
本发明高炉煤气脱硫剂的平均孔径为10~20nm,介孔占比为50~60%,微孔占比为40~50%,比表面积为900~1000m2/g,径向抗压碎力大于100N/cm,耐磨强度大于96%。
本发明所述的高炉煤气脱硫剂的制备方法,包括以下步骤:
(1)将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN以及粘结剂混合后进行破碎、研磨到特定粒径,得到混合原料;
(2)然后向混合原料中加入焦油渣进行混捏,得到混捏料;
(3)将混捏料依次经造粒、干燥、催化热解后,制得高炉煤气脱硫剂。
其中:
步骤(1)中混合破碎料的粒径为400-600目。
步骤(2)中采用轮式碾压机进行混捏,分次进行加水,加水量为混捏原料质量的15~25%,搅拌混捏2-3h,得到混捏料。
步骤(3)中造粒所用的造粒机为液压造粒机、平模碾压造粒机或螺杆挤压造粒机中的一种;造粒料进入网带干燥机中干燥,干燥温度为50-80oC,干燥时间为1-1.5h,最终干燥料的含水量小于10wt%。
步骤(3)中干燥后的烘干料依次进入回转炭化炉进行催化热解,回转炭化炉优选为内热式、外热式或者内外混热式炭化炉中的任意一种,炭化温度为700-900oC,停留时间为3-8h;催化热解过程为炭活化一体,活化介质为水蒸气和CO2的混合介质,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:(0.3~0.5):(0.2~0.3)的物料比例。
本发明制备的高炉煤气脱硫剂可用于高炉煤气中的COS低温水解,转化为H2S;同时用于水解产生的H2S和高炉煤气中原始的H2S的催化氧化,最终高炉煤气中的COS和H2S均以硫磺的形式固定于脱硫剂内部孔道中。
与现有技术相比,本发明的有益效果如下:
1、本发明既可以有效处理工业固废(脱硫脱硝废碳粉、兰炭粉、化工制药脱色炭、化工制药废粉炭、赤泥和煤矸石)和焦化固废及副产(焦油渣、焦化厂脱硫废液提盐产物),又可以制备得到一种高性能的高炉煤气低温脱硫剂。
2、利用该脱硫剂能够在30-50℃低温下同时高效去除COS和H2S,活性炭表面的碱性官能团一方面是COS水解的活性位点,另一方面也有利于H2S的氧化,既能够有效的发生COS水解,同时能够将水解生成的H2S和煤气中的原始H2S进行氧化,最终将高炉煤气中的硫组分全部以固态硫形式存在于活性炭内部孔道。
3、本发明制备方法简便易行,制备成本比较低,低温下高效去除高炉煤气中的COS和H2S,具有较好的经济技术优势和广泛的应用前景。
附图说明
图1为本发明利用碳基废弃物制备高性能高炉煤气低温脱硫剂的制备流程图;
图2为实施例1所制备的脱硫剂的XRD组分分析图;
图3为实施例1所制备的脱硫剂的孔结构及表面孔结构特性分析图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
实施例1
按图1所示制备流程制备高性能高炉煤气低温脱硫剂,所用煤矸石、赤泥和焦油渣的组分分析见表2、表3和表4,具体方法为:
1)将煤矸石20 wt%,赤泥10 wt%,软锰矿3 wt%,工业废弃活性炭50 wt%,焦油渣17wt%作为原材料,焦化脱硫废液副产NH4SCN盐/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为10 wt%,粘结剂/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为15wt%,按照上述比例,将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN盐、粘结剂混合后进入雷蒙磨粉碎碎到400-600目粒径,过筛率95%。
2)然后向上述固体混合样中加入17 wt%的焦化固废焦油渣,在轮式碾压机中进行混捏,向混合料中分多次加入水20 wt%,搅拌2.5 h。
3)将得到的混捏料导出到液压造粒机进行造粒,造粒料进入网带干燥机中,80oC干燥1h,最终干燥料水分小于10%。
4)然后烘干料进入内热式回转炭化炉,进行热解过程,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:0.3:0.2的物料比例,在900oC进行同步炭活化,热解时间6h,制备得到碳基脱硫剂。
5)最终得到的产品经过筛分、包装得到活性炭高效脱硫剂。
活性测试脱硫条件为:温度35oC,空速800h-1,COS浓度为1000 mg/m3,H2S浓度为200mg/m3,O2 0.3%,,N2平衡气,活性炭对COS和H2S总的饱和吸附流量为65g/100g。
实施例2
按图1所示制备流程制备高性能高炉煤气低温脱硫剂,所用煤矸石、赤泥和焦油渣的组分分析见表2、表3和表4,具体方法为:
1)将煤矸石25 wt%,赤泥15 wt%,软锰矿5 wt%,工业废弃活性炭40 wt%,焦油渣15wt%作为原材料,焦化脱硫废液副产NH4SCN盐/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为15 wt%,粘结剂/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为20wt%,按照上述比例,将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN盐、粘结剂混合后进入雷蒙磨粉碎碎到400-600目粒径,过筛率95%。
2)然后向上述固体混合样中加入15 wt%的焦化固废焦油渣,在轮式碾压机中进行混捏,向混合料中分多次加入水18 wt%,搅拌3h。
3)将得到的混捏料导出到液压造粒机进行造粒,造粒料进入网带干燥机中,80oC干燥1.5h,最终干燥料水分小于10%。
4)然后烘干料进入内热式回转炭化炉,进行热解过程,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:0.35:0.24的物料比例,在900oC进行同步炭活化,热解时间7h,制备得到碳基脱硫剂。
5)最终得到的产品经过筛分、包装得到活性炭高效脱硫剂。
活性测试脱硫条件为:温度35oC,空速800h-1,COS浓度为1000 mg/m3,H2S浓度为200mg/m3,O2 0.3%,N2平衡气,活性炭对COS和H2S总的饱和吸附流量为63g/100g。
实施例3
按图1所示制备流程制备高性能高炉煤气低温脱硫剂,所用煤矸石、赤泥和焦油渣的组分分析见表2、表3和表4,具体方法为:
1)将煤矸石23 wt%,赤泥13 wt%,软锰矿4 wt%,工业废弃活性炭45 wt%,焦油渣15wt%作为原材料,焦化脱硫废液副产NH4SCN盐/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为12 wt%,粘结剂/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为10wt%,按照上述比例,将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN盐、粘结剂混合后进入雷蒙磨粉碎碎到400-600目粒径,过筛率95%。
2)然后向上述固体混合样中加入15 wt%的焦化固废焦油渣,在轮式碾压机中进行混捏,向混合料中分多次加入水25 wt%,搅拌2 h。
3)将得到的混捏料导出到液压造粒机进行造粒,造粒料进入网带干燥机中,60oC干燥1.5h,最终干燥料水分小于10%。
4)然后烘干料进入内热式回转炭化炉,进行热解过程,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:0.4:0.25的物料比例,在700oC进行同步炭活化,热解时间8h,制备得到碳基脱硫剂。
5)最终得到的产品经过筛分、包装得到活性炭高效脱硫剂。
活性测试脱硫条件为:温度35oC,空速800h-1,COS浓度为1000 mg/m3,H2S浓度为200mg/m3,O2 0.3%,N2平衡气,活性炭对COS和H2S总的饱和吸附流量为64g/100g。
实施例4
按图1所示制备流程制备高性能高炉煤气低温脱硫剂,所用煤矸石、赤泥和焦油渣的组分分析见表2、表3和表4,具体方法为:
1)将煤矸石22 wt%,赤泥14 wt%,软锰矿3 wt%,工业废弃活性炭45 wt%,焦油渣16wt%作为原材料,焦化脱硫废液副产NH4SCN盐/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为15 wt%,粘结剂/(煤矸石+赤泥+软锰矿+工业废弃活性炭+焦油渣)占比为18wt%,按照上述比例,将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN盐、粘结剂混合后进入雷蒙磨粉碎碎到400-600目粒径,过筛率95%。
2)然后向上述固体混合样中加入16 wt%的焦化固废焦油渣,在轮式碾压机中进行混捏,向混合料中分多次加入水15 wt%,搅拌3 h。
3)将得到的混捏料导出到液压造粒机进行造粒,造粒料进入网带干燥机中,50oC干燥1.5h,最终干燥料水分小于10%。
4)然后烘干料进入内热式回转炭化炉,进行热解过程,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:0.4:0.3的物料比例,在800oC进行同步炭活化,热解时间3h,制备得到碳基脱硫剂。
5)最终得到的产品经过筛分、包装得到活性炭高效脱硫剂。
活性测试脱硫条件为:温度35oC,空速800h-1,COS浓度为1000 mg/m3,H2S浓度为200mg/m3,O2 0.3%,N2平衡气,活性炭对COS和H2S总的饱和吸附流量为63g/100g。
表1实施例1所制备的脱硫剂的常规性能指标参数
Figure 824322DEST_PATH_IMAGE001
表2实施例1-4所使用煤矸石化学组分分析
Figure 803779DEST_PATH_IMAGE002
表3实施例1-4所使用赤泥化学组分分析
Figure 911413DEST_PATH_IMAGE003
表4实施例1-4所使用焦油渣化学组分分析
Figure 368939DEST_PATH_IMAGE004
当然,上述内容仅为本发明的较佳实施例,不能被认为用于限定对本发明的实施例范围。本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的均等变化与改进等,均应归属于本发明的专利涵盖范围内。

Claims (8)

1.一种高炉煤气脱硫剂,其特征在于:包括以下质量百分比的原料:煤矸石20~25wt%,赤泥10~15wt%,软锰矿3~5wt%,工业废弃活性炭40~50wt%,焦油渣15~17wt%;同时外加原料总质量10~15%的NH4SCN以及原料总质量10~20%的粘结剂制得;
所述的高炉煤气脱硫剂的制备方法,包括以下步骤:
(1)将煤矸石、赤泥、软锰矿、工业废弃活性炭、NH4SCN以及粘结剂混合后进行破碎、研磨到特定粒径,得到混合原料;
(2)然后向混合原料中加入焦油渣进行混捏,得到混捏料;
(3)将混捏料依次经造粒、干燥、催化热解后,制得高炉煤气脱硫剂。
2.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:工业废弃活性炭包括脱硫脱硝废碳粉、兰炭粉、化工制药脱色炭或化工制药废粉炭中的一种或多种;NH4SCN为焦化脱硫废液副产NH4SCN盐。
3.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:粘结剂为矿源黄腐酸钾、凹凸棒土、膨润土、拜耳法赤泥或酚醛树脂中的一种或多种组合混合物。
4.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:高炉煤气脱硫剂的平均孔径为10~20nm,介孔占比为50~60%,微孔占比为40~50%,比表面积为900~1000m2/g,径向抗压碎力大于100N/cm,耐磨强度大于96%。
5.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:步骤(1)中混合破碎料的粒径为400-600目。
6.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:步骤(3)中造粒所用的造粒机为液压造粒机、平模碾压造粒机或螺杆挤压造粒机中的一种;造粒料进入网带干燥机中干燥,干燥温度为50-80oC,干燥时间为1-1.5h,最终干燥料的含水量小于10wt%。
7.根据权利要求1所述的高炉煤气脱硫剂,其特征在于:步骤(3)中干燥后的烘干料依次进入回转炭化炉进行催化热解,炭化温度为700-900oC,停留时间为3-8h;催化热解过程为炭活化一体,活化介质为水蒸气和CO2的混合介质,热解时按照活性炭投料量:850oC水蒸气:CO2单位时间质量比为1:(0.3~0.5):(0.2~0.3)的物料比例。
8.一种权利要求1-4任一所述的高炉煤气脱硫剂的应用,其特征在于:高炉煤气脱硫剂用于高炉煤气中的COS低温水解,转化为H2S;同时用于水解产生的H2S和高炉煤气中原始的H2S的催化氧化,最终高炉煤气中的COS和H2S均以硫磺的形式固定于脱硫剂内部孔道中。
CN202210791956.2A 2022-07-07 2022-07-07 高炉煤气脱硫剂及其制备方法和应用 Active CN114874818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210791956.2A CN114874818B (zh) 2022-07-07 2022-07-07 高炉煤气脱硫剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210791956.2A CN114874818B (zh) 2022-07-07 2022-07-07 高炉煤气脱硫剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114874818A CN114874818A (zh) 2022-08-09
CN114874818B true CN114874818B (zh) 2022-10-18

Family

ID=82683188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210791956.2A Active CN114874818B (zh) 2022-07-07 2022-07-07 高炉煤气脱硫剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114874818B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340887B (zh) * 2022-10-18 2023-01-31 山东鹏达生态科技股份有限公司 高炉煤气精脱硫及硫资源化工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818258A (zh) * 2010-05-10 2010-09-01 梁伟基 一种混合浸出剂快速浸出金银的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2838897B2 (ja) * 1989-06-15 1998-12-16 関西熱化学株式会社 ロダン塩の回収方法
CN104028218B (zh) * 2014-06-06 2016-05-25 四川大学 一种低成本高活性催化型脱硫活性焦及其制备方法
CN104096585B (zh) * 2014-06-25 2016-03-02 四川大学 低温催化氧化二氧化硫的炭基脱硫催化剂及其制备与应用
CN109847701A (zh) * 2019-04-02 2019-06-07 安徽工业大学 一种用于烟气脱硫脱硝的复合改性生物质活性炭及其制备方法
CN111774032A (zh) * 2020-08-06 2020-10-16 淄博鹏达环保科技有限公司 高效脱硫材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818258A (zh) * 2010-05-10 2010-09-01 梁伟基 一种混合浸出剂快速浸出金银的方法

Also Published As

Publication number Publication date
CN114874818A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN110872531B (zh) 利用固体颗粒热载体热解气化的梯级余热回收装置及方法
CN111872412B (zh) 一种粉末冶金用金属铁粉的制备方法
CN108374065B (zh) 一种可燃性气体和直接还原铁的联产方法
CN108870407B (zh) 一种基于铜渣为载氧体的化学链气化处理污泥的方法及实现该方法的装置
CN102586529A (zh) 一种以生物质含碳球团为原料的转底炉炼铁方法
CN110813070A (zh) 循环流化床锅炉脱硫用电石渣改性剂、改性电石渣及其制备方法
CN114874818B (zh) 高炉煤气脱硫剂及其制备方法和应用
CN110961106A (zh) 一种利用废固资源制备的高性能低温脱硝催化剂及其制备方法
CN106398766B (zh) 一种增强化学链气化制氢过程焦油脱除与co2捕集的方法
CN102533387A (zh) 一种燃煤脱硫脱硝清焦添加剂及其制备工艺
CN114574250B (zh) 一种生物质化学链气化制清洁合成气的方法及装置
Zhang et al. Performance of iron ore oxygen carrier modified by biomass ashes in coal‐fueled chemical looping combustion
CN109775666B (zh) 煤气化协同硫酸钙煅烧及炭热还原制备硫磺的装置及方法
CN109735369A (zh) 一种石油焦化学链气化制取硫磺的装置及方法
CN112479206A (zh) 一种用于烟气净化高性能活性焦的制备方法
CN110791305A (zh) 生物质与煤共热解制备活性焦的方法、系统
CN111099590A (zh) 煤基活性炭生产工艺
CN113651295B (zh) 一种烧结工艺处理半干法脱硫灰和高硫铁料制备硫酸的方法
Zhang et al. Sulfur migration behavior in sintering and pelletizing processes: A review
CN108570525B (zh) 一种用于生产可燃气和dri的生物质含铁团块及其制备方法
Sheng et al. Synergistic and competitive adsorption of NOx and SO2 using a microwave-assisted approach with industrial waste materials fly ash and carbide slag as sorbents
CN111996024A (zh) 冶金粉尘与高硫煤复合制备高反应性焦炭协同脱锌固硫方法
CN111733322A (zh) 一种基于煤气化反应梯级吸收铜渣余热的装置系统及方法
CN115093886B (zh) 一种气化合成气脱硫除尘的循环移动床工艺方法及装置
CN114774165B (zh) 氧解耦载氧体、制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 255420 wujiaqiao West, Fenghuang Town, Linzi District, Zibo City, Shandong Province

Applicant after: Shandong Pengda Ecological Technology Co.,Ltd.

Address before: 255420 wujiaqiao West, Fenghuang Town, Linzi District, Zibo City, Shandong Province

Applicant before: ZIBO PENGDA ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant