CN114874012A - 一种高强度复相陶瓷部件及其制备方法 - Google Patents

一种高强度复相陶瓷部件及其制备方法 Download PDF

Info

Publication number
CN114874012A
CN114874012A CN202210532189.3A CN202210532189A CN114874012A CN 114874012 A CN114874012 A CN 114874012A CN 202210532189 A CN202210532189 A CN 202210532189A CN 114874012 A CN114874012 A CN 114874012A
Authority
CN
China
Prior art keywords
ceramic
complex phase
strength complex
ceramic particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210532189.3A
Other languages
English (en)
Other versions
CN114874012B (zh
Inventor
赵国庆
刘建华
王薇薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avic Xiamen New Material Technology Co ltd
Original Assignee
Avic Xiamen New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avic Xiamen New Material Technology Co ltd filed Critical Avic Xiamen New Material Technology Co ltd
Priority to CN202210532189.3A priority Critical patent/CN114874012B/zh
Publication of CN114874012A publication Critical patent/CN114874012A/zh
Application granted granted Critical
Publication of CN114874012B publication Critical patent/CN114874012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高强度复相陶瓷部件及其制备方法,包括陶瓷粉和粘结剂的混合物、以及陶瓷颗粒,所述陶瓷颗粒均匀分散在所述混合物中且被混合物包裹,并通过等静压、烧结,形成外层为混合物、内层为单个陶瓷颗粒或多个陶瓷颗粒的新的陶瓷颗粒结构的高强度复相陶瓷部件。本发明利用氧化铝和氧化锆混合的陶瓷粉来增强陶瓷颗粒基体的韧性,使得陶瓷颗粒基体本身不易产生裂纹,在恶劣的工况条件下,不容易开裂,从而较好的发挥陶瓷颗粒的耐磨作用;陶瓷颗粒镶嵌在陶瓷颗粒基体内,陶瓷颗粒升温曲线相比基体更加缓慢,降低内部陶瓷颗粒出现裂纹的倾向,具有优异的抗热冲击性能,从而保证耐磨效果。

Description

一种高强度复相陶瓷部件及其制备方法
技术领域
本发明涉及陶瓷材料领域,具体是指一种高强度复相陶瓷部件及其制备方法。
背景技术
目前较为先进的材料是金属-陶瓷复合耐磨材料,是通过各种工艺手段把陶瓷颗粒镶嵌到金属基体中;这种复合材料制备的耐磨部件利用了金属的韧性和陶瓷颗粒的耐高温、耐磨损、硬度高等特点。耐磨部件工作时,金属的作用是固定陶瓷颗粒,防止陶瓷颗粒脱落,陶瓷颗粒的作用是承受摩擦力,极大提高了耐磨部件的工作寿命。
金属陶瓷复合材料既兼具陶瓷颗粒的高硬度、高强度、高模量,以及金属基体的良好塑韧性和连接性而增强耐磨性能,但是现有的金属陶瓷复合材料的耐磨性还具有很大的提升空间。因此,现有技术通过陶瓷颗粒和合金粉末混合制备成陶瓷颗粒预制体棒,来增强耐磨性,但该陶瓷颗粒的烧结温度和合金粉末的熔点很难调整一致,温度过高,造成合金成分烧损,温度过低,陶瓷颗粒烧结温度不够,强度低,耐磨性能差。或者利用元素和粘结剂来增强陶瓷颗粒间的连接,形成多孔预制块,利用元素和粘结剂粘接陶瓷颗粒、和对陶瓷颗粒表面的改性来改善陶瓷和金属的润湿性,以提高金属和陶瓷的结合,但是陶瓷的摩擦承受力仍然不变。
由此可见,现有技术是通过增加陶瓷颗粒与陶瓷颗粒之间的孔隙、或者对陶瓷颗粒表面改性以改善润湿性,来增强陶瓷颗粒与金属的连接以防止陶瓷颗粒脱落,从而增强复合改料的耐磨性,但对于陶瓷颗粒本身耐磨性却没有改变,可见复合材料的耐磨性能还有很大的提升空间。
有鉴于此,特提出本申请。
发明内容
针对上述现有技术存在的问题,本发明在于提供一种高强度复相陶瓷部件及其制备方法,该适用高强度复相陶瓷部件及其制备方法能够有效解决上述现有技术存在的问题。
本发明的技术方案是:
一种高强度复相陶瓷部件,包括陶瓷粉和粘结剂的混合物、以及陶瓷颗粒,所述陶瓷颗粒均匀分散在所述混合物中且被混合物包裹,并通过等静压、烧结制成新的陶瓷颗粒结构的高强度复相陶瓷部件。
所述混合物均匀包裹单个陶瓷颗粒或多个陶瓷颗粒,形成外层为混合物、内层为单个陶瓷颗粒或多个陶瓷颗粒的新的陶瓷颗粒结构的高强度复相陶瓷部件。
所述高强度复相陶瓷部件包含重量计的陶瓷粉40~55%,陶瓷颗粒45~60%,粘结剂 0.3~4%,水0.2~2.5%。
所述陶瓷颗粒预先在温度大于1600℃的条件下经过烧结,使陶瓷颗粒的莫氏硬度大于 5.0。
所述陶瓷粉包括莫来石、刚玉、粘土、氧化铝、硅微粉、蓝晶石、尖晶石、氧化锆、碳化硅中的一种或者多种,且其粒度小于600目。
所述陶瓷颗粒包括WC、TiC、B4C、SiC、SiB6、AlN、BN中的一种或多种。
所述陶瓷颗粒的颗粒尺寸为1mm~4mm。
所述粘结剂包括硅溶胶、铝溶胶、硅酸乙酯、磷酸盐、水玻璃、羟甲基纤维素、甲基纤维素、羟丙基纤维素、羟丙基甲基纤维素、天然或人工合成树脂、聚乙烯醇、糊精、淀粉、沥青、碳基粘结剂中的一种或者多种。
包含以下具体步骤:将陶瓷粉、粘结剂、水混合后均匀包裹陶瓷颗粒形成混合包裹体;把混合包裹体放入模具中预压成型,取出放入等静压机器中用等静压成型得到半成品;将半成品烧结、自然冷却后得到陶瓷颗粒结构的高强度复相陶瓷部件。
所述烧结的温度为1500~1620℃,烧结过程为非氧化气氛或者真空烧结。
本发明的优点:
1)本发明通过由陶瓷粉和粘结剂的混合物紧紧包裹陶瓷颗粒形成的新的陶瓷颗粒结构的高强度复相陶瓷部件,通过陶瓷粉末的包裹在高温下对陶瓷颗粒进行固定,以加强陶瓷颗粒的强度,从而提高高强度复相陶瓷部件的摩擦承受力,并且粉末包裹后加大陶瓷颗粒的表面积和表面孔隙数量,从而利于增强高强度复相陶瓷部件与金属的连接,二者配合进一步提高陶瓷金属复合材料的耐磨性。
2)本发明将陶瓷粉和粘结剂制成的混合物均匀包裹单个或多个的陶瓷颗粒形成的新的陶瓷颗粒结构的高强度复相陶瓷部件,利用氧化铝和氧化锆混合的陶瓷粉来增强高强度复相陶瓷部件的韧性,使得高强度复相陶瓷部件本身不易产生裂纹,在恶劣的工况条件下,不容易开裂,从而较好的发挥陶瓷颗粒的耐磨作用;并且陶瓷颗粒镶嵌在高强度复相陶瓷部件内,陶瓷颗粒升温曲线相比基体更加缓慢,降低内部陶瓷颗粒出现裂纹的倾向,使得高强度复相陶瓷部件具有优异的抗热冲击性能,从而保证耐磨效果。
3)本发明利用粒度小于600目的陶瓷粉包裹住粒度为1~4mm的陶瓷颗粒,陶瓷颗粒具有比陶瓷粉更优异的耐磨性能,陶瓷粉包裹住陶瓷颗粒,在持续的高速摩擦和碰撞中,耐磨部件表面温度会急剧升高,最高可达400℃以上,在持续的高温状态下,陶瓷粉拥有比金属更加优异的高温抗蠕变性能,可以在持续高温状态下紧紧包裹住陶瓷颗粒,不会因基体变软导致陶瓷颗粒脱落;并且陶瓷粉有比金属更好的耐高温和耐摩擦性能,从而使得用陶瓷粉包裹陶瓷颗粒制备的复相陶瓷部件的结构比金属直接包裹陶瓷颗粒有更优异的耐磨性能。
4)本发明的制备过程中,先用普通压力机对坯体成型,压力方向和预设摩擦面的方向平行,易于脱模,再进行等静压成型增强陶瓷粉和内部陶瓷颗粒的连接;陶瓷部件在烧结时,优选采用气氛保护烧结或者真空烧结,这样可以最大程度的防止陶瓷颗粒被氧化,保证陶瓷颗粒的耐磨性能;内部陶瓷颗粒作为抵抗磨损的主要部件,材质选用碳化物、氮化物、硼化物陶瓷,这几种材质具有极强的共价键,有比多数氧化物更加优异的耐磨性能。
5)本发明先将陶瓷颗粒预先经过温度大于1600℃的烧结后,再在其表面均匀覆盖粒径小于600目的陶瓷粉混合物,最后等静压成型经过温度为1500~1620℃的烧结。陶瓷颗粒预烧结确保陶瓷颗粒具有足够的强度,以有效防止生产过程中受压破坏陶瓷颗粒的形状,再均匀覆盖陶瓷粉后进行二次烧结使陶瓷颗粒和陶瓷粉末紧密粘结形成坚固的多晶致密体,从而进一步提高陶瓷部件的耐磨性能。
具体实施方式
为了便于本领域技术人员理解,现对本发明的结构作进一步详细描述:
实施例1:
一种高强度复相陶瓷部件,包括陶瓷粉和粘结剂的混合物、以及陶瓷颗粒,通过如下具体步骤制成:
S1:将重量计的陶瓷粉46%,陶瓷颗粒49.5%,石蜡3%,聚乙烯醇1%,水0.5%放入混料机混合20min,使陶瓷粉与粘结剂组成的混合物均匀包裹在陶瓷颗粒外层形成新的陶瓷结构的混合包裹体;
S1-1:陶瓷粉是由粒度小于600目的40%的氧化铝和60%的氧化锆混合构成;
S1-2:陶瓷颗粒为尺寸为1mm~4mm的WC,预先在温度大于1600℃的条件下经过烧结,使陶瓷颗粒的莫氏硬度大于5.0;
S2:把混合包裹体放入模具中用20MPa预压成型,取出放入等静压机器中用等静压成型,压力150MPa,保压2min得到半成品;
S3:半成品在温度为1620℃条件下真空烧结,真空度小于0.1Pa,保温30min,升温速率5min/℃、自然冷却后得到新的陶瓷颗粒结构的高强度复相陶瓷部件。
制备好高强度复相陶瓷部件,将其固定在铸型内表面,高强度复相陶瓷部件的体积占铸型型腔体积的50%,选择Cr含量12%的高铬铸铁作为金属基体,把金属基体熔化,预热铸型到500℃,把金属液浇铸入铸型型腔,浇铸温度1480℃,获得复相构件。
实施例2-6:
实施例2-6与实施例1的不同之处如下表1。
表1各个实施例1-6的反应条件汇总
Figure BDA0003636600120000041
Figure BDA0003636600120000051
对比例7:
选取ZTA陶瓷颗粒,颗粒尺寸为3~5mm,ZTA陶瓷颗粒和粘结剂搅拌均匀,ZTA和粘结剂比例为100:7,把混合物放入模具,70℃烘干1小时,脱模得到预制体,将预制体在1300℃下烧结30min,得到孔隙率50%的预制体,将预制体固定在砂模型腔中,预热铸型到500℃,浇铸Cr含量12%的高铬铸铁金属液到铸型,浇铸温度1480℃,得到耐磨件。
对以上各个实施例和对比例进行性能检测,利用MMH-5型环块三体磨料磨损试验机对复合材料的三体磨料磨损性能进行测试。三体磨损采用的白刚玉目数为30-80目,转速45r/min,试验力5kg,每次120min,每组样品进行三次试验,每次完成后对试样进行称重,并计算各个样品试验的磨损量,三次试验取均值作为本组样品最终数据,测定结果如下表2。
表2试验数据汇总表
编号 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 对比例7
磨损量/g 15.0 24.6 17.3 29.6 23.1 15.5 42.0
由表2中可以看出,耐磨效果从优到差依次为:实施例1、实施例6、实施例3、实施例5、实施例2、实施例4、实施例7,实施例1和实施例6的复合材料的耐磨性能最好,但实施例1的增韧效果要强于实施例6;由实施例5和实施例1,实施例3和实施例5分别对比可知烧结温度高,制备的耐磨件更加致密,强度更高,耐磨效果也越好;实施例5 耐磨效果优于实施例4,实施例3耐磨效果优于实施例2,可知氧化铝和氧化锆混合的韧性比氧化铝要好,可以更好的包裹住陶瓷颗粒;前六个实施例比对比例7可知实施例耐磨性能好,从而证明复相陶瓷部件的耐磨性能远比单相ZTA的性能好;并且可将本发明与通过增加陶瓷颗粒与陶瓷颗粒之间的孔隙、或者对陶瓷颗粒表面改性等手段相互配合,进一步增强耐磨件的耐磨性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种高强度复相陶瓷部件,其特征在于:包括陶瓷粉和粘结剂的混合物、以及陶瓷颗粒,所述陶瓷颗粒均匀分散在所述混合物中且被混合物包裹,并通过等静压、烧结制成新的陶瓷颗粒结构的高强度复相陶瓷部件。
2.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述混合物均匀包裹单个陶瓷颗粒或多个陶瓷颗粒,形成外层为混合物、内层为单个陶瓷颗粒或多个陶瓷颗粒的新的陶瓷颗粒结构的高强度复相陶瓷部件。
3.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述高强度复相陶瓷部件包含重量计的陶瓷粉40~55%,陶瓷颗粒45~60%,粘结剂0.3~4%,水0.2~2.5%。
4.根据权利要求1所述的一种高强度复相陶瓷部件的制备方法,其特征在于:所述陶瓷颗粒预先在温度大于1600℃的条件下经过烧结,使陶瓷颗粒的莫氏硬度大于5.0。
5.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述陶瓷粉包括莫来石、刚玉、粘土、氧化铝、硅微粉、蓝晶石、尖晶石、氧化锆、碳化硅中的一种或者多种,且其粒度小于600目。
6.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述陶瓷颗粒包括WC、TiC、B4C、SiC、SiB6、AlN、BN中的一种或多种。
7.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述陶瓷颗粒的颗粒尺寸为1mm~4mm。
8.根据权利要求1所述的一种高强度复相陶瓷部件,其特征在于:所述粘结剂包括硅溶胶、铝溶胶、硅酸乙酯、磷酸盐、水玻璃、羟甲基纤维素、甲基纤维素、羟丙基纤维素、羟丙基甲基纤维素、天然或人工合成树脂、聚乙烯醇、糊精、淀粉、沥青、碳基粘结剂中的一种或者多种。
9.如权利要求1-8中任一所述的一种高强度复相陶瓷部件的制备方法,其特征在于:包含以下具体步骤:将陶瓷粉、粘结剂、水混合后均匀包裹陶瓷颗粒形成混合包裹体;把混合包裹体放入模具中预压成型,取出放入等静压机器中用等静压成型得到半成品;将半成品烧结、自然冷却后得到新的陶瓷颗粒结构的高强度复相陶瓷部件。
10.根据权利要求9所述的一种高强度复相陶瓷部件的制备方法,其特征在于:所述烧结的温度为1500~1620℃,烧结过程为非氧化气氛或者真空烧结。
CN202210532189.3A 2022-05-10 2022-05-10 一种高强度复相陶瓷部件及其制备方法 Active CN114874012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210532189.3A CN114874012B (zh) 2022-05-10 2022-05-10 一种高强度复相陶瓷部件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210532189.3A CN114874012B (zh) 2022-05-10 2022-05-10 一种高强度复相陶瓷部件及其制备方法

Publications (2)

Publication Number Publication Date
CN114874012A true CN114874012A (zh) 2022-08-09
CN114874012B CN114874012B (zh) 2023-05-02

Family

ID=82674863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210532189.3A Active CN114874012B (zh) 2022-05-10 2022-05-10 一种高强度复相陶瓷部件及其制备方法

Country Status (1)

Country Link
CN (1) CN114874012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368113A (zh) * 2022-09-29 2022-11-22 湖南华联瓷业股份有限公司 一种废瓷再利用的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292666A (ja) * 1986-06-09 1987-12-19 株式会社東芝 多機能セラミックの製造方法
US4846673A (en) * 1987-12-25 1989-07-11 Ibiden Co., Ltd. Process for preparing heat-resistant composite body
JPH0686926A (ja) * 1991-11-25 1994-03-29 Nisshin Flour Milling Co Ltd 超微粒子で表面が被覆された粒子の製造方法
JP2006001766A (ja) * 2004-06-16 2006-01-05 Honda Motor Co Ltd 三次元網目構造を備えたセラミック成形体の製造方法およびセラミック成形体
WO2011017318A1 (en) * 2009-08-04 2011-02-10 Allomet Corporation Tough coated hard particles consolidated in a tough matrix material
KR20140011508A (ko) * 2012-06-21 2014-01-29 한국기계연구원 콜로이드 입자 안정화 세라믹 폼을 코팅한 세라믹 소재 및 이의 제조방법
CN103641487A (zh) * 2013-12-02 2014-03-19 昆明理工大学 一种陶瓷预制体的制备方法及应用
CN104692803A (zh) * 2015-02-15 2015-06-10 广东省工业技术研究院(广州有色金属研究院) 耐磨复合材料预制体的制备方法
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN107201459A (zh) * 2017-05-12 2017-09-26 昆明理工大学 一种金属基复合材料预制体的脱胶工艺
CN111054916A (zh) * 2020-01-06 2020-04-24 南通高欣耐磨科技股份有限公司 一种蜂窝状金属陶瓷耐磨复合预制体的成型方法及成型模具
CN113579208A (zh) * 2021-08-19 2021-11-02 南通理工学院 一种高铬铸铁基陶瓷复合磨辊的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292666A (ja) * 1986-06-09 1987-12-19 株式会社東芝 多機能セラミックの製造方法
US4846673A (en) * 1987-12-25 1989-07-11 Ibiden Co., Ltd. Process for preparing heat-resistant composite body
JPH0686926A (ja) * 1991-11-25 1994-03-29 Nisshin Flour Milling Co Ltd 超微粒子で表面が被覆された粒子の製造方法
JP2006001766A (ja) * 2004-06-16 2006-01-05 Honda Motor Co Ltd 三次元網目構造を備えたセラミック成形体の製造方法およびセラミック成形体
WO2011017318A1 (en) * 2009-08-04 2011-02-10 Allomet Corporation Tough coated hard particles consolidated in a tough matrix material
KR20140011508A (ko) * 2012-06-21 2014-01-29 한국기계연구원 콜로이드 입자 안정화 세라믹 폼을 코팅한 세라믹 소재 및 이의 제조방법
CN103641487A (zh) * 2013-12-02 2014-03-19 昆明理工大学 一种陶瓷预制体的制备方法及应用
CN104692803A (zh) * 2015-02-15 2015-06-10 广东省工业技术研究院(广州有色金属研究院) 耐磨复合材料预制体的制备方法
CN106986666A (zh) * 2017-03-17 2017-07-28 昆明理工大学 一种无烧结陶瓷预制体复合材料的制备方法
CN107201459A (zh) * 2017-05-12 2017-09-26 昆明理工大学 一种金属基复合材料预制体的脱胶工艺
CN111054916A (zh) * 2020-01-06 2020-04-24 南通高欣耐磨科技股份有限公司 一种蜂窝状金属陶瓷耐磨复合预制体的成型方法及成型模具
CN113579208A (zh) * 2021-08-19 2021-11-02 南通理工学院 一种高铬铸铁基陶瓷复合磨辊的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
朱流: "金属—陶瓷复合粉体制备与机理及其应用研究", 《中国优秀博硕士学位论文全文数据库 (博士)工程科技Ⅰ辑》 *
林洁;杨建;刘娇;丘泰;: "用包裹纳米复合粉体制备ZTA陶瓷" *
黄岳祥等: "不同工艺制备ZrO2-Al2O3复合陶瓷超细粉体的研究", 《硅酸盐通报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368113A (zh) * 2022-09-29 2022-11-22 湖南华联瓷业股份有限公司 一种废瓷再利用的方法

Also Published As

Publication number Publication date
CN114874012B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
CN111040385B (zh) 一种3d打印网格陶瓷增强树脂复合材料及其制备方法
CN1107795C (zh) 气缸体及其金属基复合用预制件
CN107553686A (zh) 一种基于3d打印的纤维增强梯度多孔陶瓷的制造方法
CN106904984A (zh) 一种SiC短纤维复合材料及复合包壳管及其制备方法
CN111217611B (zh) 一种氮化铝氮化硼复合陶瓷材料及其制备方法
CN107937792B (zh) 一种梯度复合陶瓷刀具材料及其制备方法
CN114874012B (zh) 一种高强度复相陶瓷部件及其制备方法
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN113121240A (zh) 一种高耐磨氮化物结合碳化硅复合陶瓷过流件的制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
CN113199413B (zh) 一种磨钨钢球砂轮及其制备方法
JP2002097080A (ja) 複合化用予備成形体の製造方法
US10851020B2 (en) Machinable metal matrix composite and method for making the same
CN111876625A (zh) 一种AlNMg复合材料及其制备方法
CN111848167A (zh) 湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷
CN108329040B (zh) 一种铝水流槽用赛隆结合熔融石英预制件及其制造方法
CN102815957B (zh) 一种有色金属合金增韧氮化铝陶瓷基复合材料及制备方法
CN109396419A (zh) 一种陶瓷增强体及其制备方法
CN115057692A (zh) 一种添加钛铁合金的铝碳滑板砖及其生产方法
CN111848175A (zh) 湿纺共挤出法制备弱界面纤维独石硼化铪陶瓷的工艺
CN107285748B (zh) 一种用于乳化泵柱塞的陶瓷复合材料的制备方法
JP3628198B2 (ja) 金属基複合材用プリフォーム及びその製造方法
CN110845249A (zh) 一种弹性模量提升的氮化硅复合材料及其制备方法
US11001914B2 (en) Machinable metal matrix composite and method for making the same
JP4217278B2 (ja) 金属−セラミックス複合材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant