CN114873681A - 一种吸附和光催化联用处理茜素红废水的方法 - Google Patents

一种吸附和光催化联用处理茜素红废水的方法 Download PDF

Info

Publication number
CN114873681A
CN114873681A CN202210576402.0A CN202210576402A CN114873681A CN 114873681 A CN114873681 A CN 114873681A CN 202210576402 A CN202210576402 A CN 202210576402A CN 114873681 A CN114873681 A CN 114873681A
Authority
CN
China
Prior art keywords
pani
adsorption
alizarin red
composite material
photocatalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210576402.0A
Other languages
English (en)
Other versions
CN114873681B (zh
Inventor
韩杰
孙玉倩
孙晓环
郭荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210576402.0A priority Critical patent/CN114873681B/zh
Publication of CN114873681A publication Critical patent/CN114873681A/zh
Application granted granted Critical
Publication of CN114873681B publication Critical patent/CN114873681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本案涉及一种吸附和光催化联用处理茜素红废水的方法,向含25~300mg/L的茜素红废水中按每10ml添加4~16mg的吸附‑光催化剂,在pH为3~6,温度为10~50℃,自然光照条件下处理2~5h;其中,所述吸附‑光催化剂为PANI/CNTs复合材料,将水、D‑樟脑磺酸、苯胺、苯胺二聚体和碳纳米管超声混合,取得混合液;将混合液和过硫酸铵混合进行反应,得PANI/CNTs复合材料。本发明通过简单的制备方法制得了PANI/GO和PANI/CNTs复合材料,是以吸附和光催化联用来处理茜素红染料废水的,染料废水的去除率较高,PANI/CNTs复合材料对茜素红的去除率可达到90%以上。

Description

一种吸附和光催化联用处理茜素红废水的方法
技术领域
本发明涉及染料废水处理技术领域,具体涉及一种吸附和光催化联用处理茜素红废水的方法。
背景技术
茜素红作为一种典型的蒽醌类染料,在纺织工业中得到广泛应用,这种阴离子染料被广泛用于尼龙和羊毛的染色。然而,茜素红由于其化学结构中存在芳环而具较高的物理化学稳定性、光热稳定性,难以自然降解,这些未经处理的茜素红废水直接排放到湖泊、溪流和池塘等水生环境中,这可能对水生态系统和人类健康造成严重威胁。
为了实现获得清洁饮用水的目标,目前针对茜素红废水的去除研究主要有两种方法:一是物理方法,如吸附、膜过滤、离子交换等,该方法效率高,处理量大,但只是将茜素红从水中转移,易造成二次污染;二是化学方法,如化学试剂氧化、电化学阳极氧化、光催化降解等,该方法可将茜素红降解成无毒或矿化的物质,但效率低,只能处理较低浓度的茜素红废水。为了克服单一方法的缺点,近几年学者提出了吸附-光催化处理技术,即所吸附的污染物可以通过光催化过程被降解成无毒或矿化的物质,进一步提高了吸附-光催化剂的废水处理性能,但目前鲜少有人通过吸附-光催化技术来处理茜素红废水。
发明内容
针对现有技术中的不足之处,本发明提供了一种吸附和光催化联用处理茜素红废水的方法。
为实现上述目的,本发明提供如下技术方案:
一种吸附和光催化联用处理茜素红废水的方法,包括如下步骤:
向含25~300mg/L的茜素红废水中按每10ml添加4~16mg的吸附-光催化剂,在pH为3~6,温度为10~50℃,自然光照条件下处理2~5h;其中,所述吸附-光催化剂为PANI/CNTs复合材料或PANI/GO复合材料;制备过程如下:
PANI/CNTs复合材料:将水、D-樟脑磺酸、苯胺、苯胺二聚体和碳纳米管(CNTs)超声混合,取得混合液;将混合液和过硫酸铵混合进行反应,得PANI/CNTs复合材料;
PANI/GO复合材料:将水、D-樟脑磺酸、苯胺和苯胺二聚体超声混合,取得混合液,加入过硫酸铵混合进行反应,得聚苯胺纳米纤维;将聚苯胺纳米纤维与羧基化氧化石墨烯(GO)加入水中共混反应,得PANI/GO复合材料。
进一步地,所述PANI/CNTs复合材料制备过程中,水、樟脑磺酸、苯胺、苯胺二聚体、碳纳米管和过硫酸铵的质量体积比为10ml:1.3~1.5g:190~200μL:10~12mg:100mg:0.4~0.5g。
进一步地,所述PANI/GO复合材料制备过程中,水、D-樟脑磺酸、苯胺、苯胺二聚体和过硫酸铵的质量体积比为10ml:1.3~1.5g:190~200μL:10~12mg:0.4~0.5g;聚苯胺纳米纤维与羧基化氧化石墨烯的质量比为2:1。
进一步地,所述吸附-光催化剂为PANI/CNTs复合材料。
本发明的有益效果是:本发明通过简单的制备方法制得了PANI/GO和PANI/CNTs复合材料,并将其用于处理茜素红染料废水。PANI/GO和PANI/CNTs复合材料在pH为6,温度为25℃的条件下,对浓度为100mg/L的茜素红的去除率分别为47.3%和87.2%,达到了平衡,再次经过光催化降解后,去除率分别提升到了67.1%和91.0%;说明本案制得的复合材料是以吸附和光催化联用来处理茜素红染料废水的,染料废水的去除率较高。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例1制备得到的PANI/GO复合材料的扫描电镜(SEM)图。
图2是实施例2制备得到的PANI/CNTs复合材料的透射电镜(TEM)图。
图3是实施例1和2制备得到的PANI/GO和PANI/CNTs复合材料的红外(IR)图。
图4是实施例3吸附-光催化剂的用量对茜素红去除率的影响曲线图。
图5是实施例4温度对茜素红去除率的影响曲线图。
图6是实施例5pH对茜素红去除率的影响曲线图。
图7是实施例6吸附时间对茜素红去除率的影响曲线图。
图8是实施例7茜素红初始浓度对茜素红去除率的影响曲线图。
图9是实施例8光照时间对光催化降解茜素红去除率的影响曲线图。
图10是实施例9pH对吸附-光催化降解茜素红去除率的影响曲线图。
图11是实施例9pH对光催化降解茜素红降解率的影响曲线图。
图12是实施例10吸附-光催化剂用量对吸附-光催化降解茜素红去除率的影响曲线图。
图13是实施例10吸附-光催化剂用量对光催化降解茜素红降解率的影响曲线图。
图14是实施例11茜素红初始浓度对吸附-光催化降解茜素红去除率的影响曲线图。
图15是实施例11茜素红初始浓度对光催化降解茜素红降解率的影响曲线图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:制备PANI/GO材料
在20mL样品瓶中加入1.394g D-樟脑磺酸、11.6mg苯胺二聚体和1.5mL去离子水,超声溶解,得到草绿色溶液。再加入196μL重新蒸馏的苯胺,放入25℃的恒温水浴锅中磁力搅拌0.5h,使其混合均匀。称量0.49g过硫酸铵,加1mL去离子水,超声溶解,分5次加入上述样品瓶中,每次间隔0.5h。过硫酸铵全部加完后关闭搅拌,反应静置20h,得到PANI纳米纤维,放入60℃烘箱中烘干备用。
称量0.2g PANI纳米纤维和0.1g羧基化氧化石墨烯,放入100mL圆底烧瓶中,加入50mL水,超声使其混合均匀。用盐酸和氢氧化钠调节溶液呈中性,磁力搅拌12h,使其充分反应,得到PANI/GO复合材料,放入60℃烘箱中烘干备用。
如图1为PANI/GO复合材料的扫描电子显微镜图,由图1可知,聚苯胺纳米纤维(直径50nm左右)在氧化石墨烯片上分散均匀,紧密结合。
实施例2:制备PANI/CNTs材料
在20mL样品瓶中加入1.394g D-樟脑磺酸、11.6mg苯胺二聚体、10mL去离子水和100mg CNTs,超声分散。再加入196μL重新蒸馏的苯胺,放入25℃的恒温水浴锅中磁力搅拌0.5h,使其混合均匀。称量0.49g过硫酸铵,加1mL去离子水,超声溶解,分5次加入上述样品瓶中,每次间隔0.5h。过硫酸铵全部加完后关闭搅拌,反应静置20h,得到PANI/CNTs复合材料,放入60℃烘箱中烘干备用。
如图2为PANI/CNTs复合材料的透射电子显微镜图,由图2可知,聚苯胺均匀地包裹在直径约为20nm的空心碳纳米管表面。
如图3为PANI/GO和PANI/CNTs复合材料的红外图,由图3可知,在PANI/GO复合材料中检测到PANI的所有特征峰,略有偏移,而GO在1719cm-1的羧基官能团峰有明显减弱,说明PANI的-NH+=与GO的-COO-结合,成功制备PANI/GO复合材料。CNTs在1670cm-1的特征峰为羧酸(-COOH)基团的C=O峰。在PANI/CNTs复合材料中检测到PANI和CNTs的所有特征峰,略有偏移,这证实了PANI与CNTs的复合。图1-3证明实施例1和2成功制备了吸附-光催化剂。
实施例3:吸附-光催化剂的用量对茜素红的去除率的影响
分别准确称取0.2mg、0.5mg、1mg、2mg、4mg、8mg和12mg实施例1和2中制备的吸附-光催化剂加入到5mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH=6,置于25℃恒温水浴锅中进行搅拌吸附。5h后,取样离心,取上清液测定其吸光度值,并计算去除率,结果如图4所示。由图4可知,随着吸附-光催化剂量的增加,对茜素红的去除率逐渐增加,当吸附-光催化剂量为12mg时,对茜素红的去除率在97%以上,可视为完全去除。PANI/GO和PANI/CNTs的吸附性能优于其单一组分。
实施例4:吸附温度对茜素红的去除率的影响
准确称取2mg实施例1和2中制备的吸附-光催化剂加入到5mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH=6,置于恒温水浴锅中进行搅拌吸附,分别调节温度为10℃、20℃、、30℃、40℃、50℃。5h后,取样离心,取上清液测定其吸光度值,并计算去除率,结果如图5所示。由图5可知,吸附-光催化剂对茜素红的去除率受温度影响较小,PANI/GO的去除率在50%左右,PANI/CNTs的去除率在90%左右。
实施例5:pH对茜素红的去除率的影响
准确称取2mg实施例1和2中制备的吸附-光催化剂加入到5mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH分别为3、5、6、7、9、11,置于25℃恒温水浴锅中进行搅拌吸附。5h后,取样离心,取上清液测定其吸光度值,并计算去除率,结果如图6所示。由图6可知,酸性条件有利于吸附-光催化剂对茜素红的去除,吸附-光催化剂对茜素红的去除率随pH的增大而降低,当pH在3-9范围,去除率缓慢减小,但pH为11时,去除率骤降,分别由51.6%、84.9%降到15.3%、35.4%。
实施例6:吸附时间对茜素红的去除率的影响
准确称取40mg实施例1和2中制备的吸附-光催化剂加入到100mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH=6,置于25℃恒温水浴锅中进行搅拌吸附。隔一段时间,取4mL的悬浮液离心,取上清液测定其吸光度值,并计算去除率,结果如图7所示。由图7可知,在初始的20min内吸附-光催化剂对茜素红的去除率急剧增大;20min后,去除率增加速度变缓;在5h基本达到吸附平衡。
实施例7:茜素红溶液初始浓度对去除率的影响
准确称取2mg实施例1和2中制备的吸附-光催化剂加入到5mL浓度分别为25、50、100、150、200和300mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH=6,置于25℃恒温水浴锅中进行搅拌吸附。5h后,取样离心,取上清液测定其吸光度值,并计算去除率,结果如图8所示。由图8可知,随着初始浓度的增加,吸附-光催化剂对茜素红的去除率不断减小。PANI/GO对于初始浓度为25mg/L的茜素红溶液,去除率高达85.0%;对于初始浓度较高的茜素红溶液,去除率仍有43.9%。PANI/CNTs对于初始浓度为25mg/L的茜素红溶液,去除率高达96.8%;对于初始浓度较高的茜素红溶液,去除率仍有59.6%。
实施例8:光照时间对光催化降解茜素红的影响
准确称取20mg实施例1和2中制备的吸附-光催化剂加入到50mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH=6,置于25℃恒温水浴锅中进行避光搅拌吸附直至吸附平衡。打开光源(350W氙灯),隔一段时间,取4mL的悬浮液进行离心,取上清液测定其吸光度值,并计算去除率,结果如图9所示。由图9可知,避光吸附平衡时的去除率比不避光做吸附试验时稍低,可能是日光下的光催化造成的影响。随着光照时间的增加,吸附-光催化剂对茜素红的去除率不断增加,经过5h的光催化降解后,PANI/GO的去除率由47.3%提升到67.1%,PANI/CNTs的去除率由87.5%提升到91.0%。
实施例9:pH对光催化降解茜素红的影响
准确称取4mg实施例1和2中制备的吸附-光催化剂加入到10mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH分别为3、5、6、7、9、11,置于25℃恒温水浴锅中进行避光搅拌吸附。吸附平衡后打开光源(350W氙灯),光照3h。在光照前后分别取样离心,取上清液测定其吸光度值,并计算去除率,结果如图10所示(图中实线指光照后的茜素红去除率,虚线指暗吸附的茜素红去除率)。由图10可知,随着pH的增加,去除率的增幅减小,即光催化降解的茜素红变少。
比较光催化前后的去除率,可以计算PANI/GO和PANI/CNTs对茜素红的降解率,结果如图11所示。由图11可知,随着pH的增加,降解率也随之减小,降解性能减弱。pH的范围在3~5时,降解效率较高。
降解率的计算通式为D=(ct0-ct)/ct0×100%,ct0为暗吸附后的茜素红浓度;ct为光催化后的茜素红浓度。也可转换为D=(R2-R1)/(1-R1),R1为暗吸附后的去除率;R2为光催化后的去除率。
实施例10:吸附-光催化剂用量对光催化降解茜素红的影响
分别准确称取0.4mg、1mg、2mg、4mg、8mg和16mg实施例1和2中制备的吸附-光催化剂加入到10mL浓度为100mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH为6,置于25℃恒温水浴锅中进行避光搅拌吸附。吸附平衡后打开光源(350W氙灯),光照3h。在光照前后分别取样离心,取上清液测定其吸光度值,并计算去除率,结果如图12所示(图中实线指光照后的茜素红去除率,虚线指暗吸附的茜素红去除率)。由图12可知,随着吸附-光催化剂量的增加,去除率的提升幅度有所增加,直至去除率接近100%。
比较光催化前后的去除率,可以计算PANI/GO和PANI/CNTs对茜素红的降解率(计算公式同上),结果如图13所示。由图13可知,随着吸附-光催化剂量从0.4mg增加到16mg,光降解率从几乎为0分别增加到27.0%、88.7%、80.6%。但是降解率并不是与吸附-光催化剂量呈正比关系,PANI/CNTs对茜素红的降解率的增幅先增大后减小,其用量范围值在4~8mg最优。
实施例11:茜素红初始浓度对光催化降解茜素红的影响
准确称取4mg实施例1和2中制备的吸附-光催化剂加入到10mL浓度分别为25mg/L、50mg/L、100mg/L、150mg/L、200mg/L、300mg/L的茜素红溶液,用盐酸和氢氧化钠溶液调节pH为6,置于25℃恒温水浴锅中进行避光搅拌吸附。吸附平衡后打开光源(350W氙灯),光照3h。在光照前后分别取样离心,取上清液测定其吸光度值,并计算去除率,结果如图14所示(图中实线指光照后的茜素红去除率,虚线指暗吸附的茜素红去除率)。由图14可知,去除率经过光照有所提升,但仍随着染料初始浓度的增加而减小。
比较光催化前后的去除率,可以计算PANI/GO和PANI/CNTs对茜素红的降解率,结果如图15所示。由图15可知,随着染料初始浓度的增加,降解率也随之减小。对于低浓度的茜素红,PANI/CNTs能吸附90%左右,光催化优势不明显,但对较高浓度的茜素红PANI/CNTs仍有50%以上的降解率。
综上所述,本案制得的复合材料是以吸附和光催化联用来处理茜素红染料废水的,染料废水的去除率较高。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (4)

1.一种吸附和光催化联用处理茜素红废水的方法,其特征在于,包括如下步骤:
向含25~300mg/L的茜素红废水中按每10ml添加4~16mg的吸附-光催化剂,在pH为3~6,温度为10~50℃,自然光照条件下处理2~5h;其中,所述吸附-光催化剂为PANI/CNTs复合材料或PANI/GO复合材料;制备过程如下:
PANI/CNTs复合材料:将水、D-樟脑磺酸、苯胺、苯胺二聚体和碳纳米管超声混合,取得混合液;将混合液和过硫酸铵混合进行反应,得PANI/CNTs复合材料;
PANI/GO复合材料:将水、D-樟脑磺酸、苯胺和苯胺二聚体超声混合,取得混合液,加入过硫酸铵混合进行反应,得聚苯胺纳米纤维;将聚苯胺纳米纤维与羧基化氧化石墨烯加入水中共混反应,得PANI/GO复合材料。
2.如权利要求1所述的吸附和光催化联用处理茜素红废水的方法,其特征在于,所述PANI/CNTs复合材料制备过程中,水、樟脑磺酸、苯胺、苯胺二聚体、碳纳米管和过硫酸铵的质量体积比为10ml:1.3~1.5g:190~200μL:10~12mg:100mg:0.4~0.5g。
3.如权利要求1所述的吸附和光催化联用处理茜素红废水的方法,其特征在于,所述PANI/GO复合材料制备过程中,水、D-樟脑磺酸、苯胺、苯胺二聚体和过硫酸铵的质量体积比为10ml:1.3~1.5g:190~200μL:10~12mg:0.4~0.5g;聚苯胺纳米纤维与羧基化氧化石墨烯的质量比为2:1。
4.如权利要求1所述的吸附和光催化联用处理茜素红废水的方法,其特征在于,所述吸附-光催化剂为PANI/CNTs复合材料。
CN202210576402.0A 2022-05-25 2022-05-25 一种吸附和光催化联用处理茜素红废水的方法 Active CN114873681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210576402.0A CN114873681B (zh) 2022-05-25 2022-05-25 一种吸附和光催化联用处理茜素红废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210576402.0A CN114873681B (zh) 2022-05-25 2022-05-25 一种吸附和光催化联用处理茜素红废水的方法

Publications (2)

Publication Number Publication Date
CN114873681A true CN114873681A (zh) 2022-08-09
CN114873681B CN114873681B (zh) 2023-04-25

Family

ID=82676922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210576402.0A Active CN114873681B (zh) 2022-05-25 2022-05-25 一种吸附和光催化联用处理茜素红废水的方法

Country Status (1)

Country Link
CN (1) CN114873681B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065402A1 (en) * 2012-09-02 2014-03-06 Technion Research And Development Foundation Ltd. Hybrid pani/carbon nano-composites for production of thin, transparent and conductive films
CN104801284A (zh) * 2015-04-30 2015-07-29 重庆工商大学 茜素红吸附剂的制备方法及产品和应用
US20160243523A1 (en) * 2013-09-30 2016-08-25 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
US20180008953A1 (en) * 2016-07-08 2018-01-11 Soochow University Composite with synergistic effect of adsorption and visible light catalytic degradation and preparation method and application thereof
CN113956473A (zh) * 2021-08-16 2022-01-21 丽水学院 一种利用光催化吸附并降解废水中抗生素的埃洛石纳米管复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065402A1 (en) * 2012-09-02 2014-03-06 Technion Research And Development Foundation Ltd. Hybrid pani/carbon nano-composites for production of thin, transparent and conductive films
US20160243523A1 (en) * 2013-09-30 2016-08-25 Council Of Scientific & Industrial Research Magnetic nanoparticles decorated activated carbon nanocomposites for purification of water
CN104801284A (zh) * 2015-04-30 2015-07-29 重庆工商大学 茜素红吸附剂的制备方法及产品和应用
US20180008953A1 (en) * 2016-07-08 2018-01-11 Soochow University Composite with synergistic effect of adsorption and visible light catalytic degradation and preparation method and application thereof
CN113956473A (zh) * 2021-08-16 2022-01-21 丽水学院 一种利用光催化吸附并降解废水中抗生素的埃洛石纳米管复合材料及其制备方法

Also Published As

Publication number Publication date
CN114873681B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
Song et al. Photodegradation of perfluorooctanoic acid by synthesized TiO2–MWCNT composites under 365 nm UV irradiation
Liu et al. Removal of humic acid using TiO2 photocatalytic process–Fractionation and molecular weight characterisation studies
Dong et al. Preparation and photocatalytic performance of Fe (III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation
Sarro et al. ZnO-based materials and enzymes hybrid systems as highly efficient catalysts for recalcitrant pollutants abatement
CN107244723B (zh) 一种具有光催化和混凝复合性能的污水净化剂及其应用
Nguyen et al. Enhanced visible photocatalytic degradation of diclofen over N-doped TiO2 assisted with H2O2: A kinetic and pathway study
CN109806900B (zh) 一种分子印迹型Ag/Ag3VO4/CN纳米片复合光催化剂的制备方法及应用
Álvarez-Uriarte et al. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter
Semeraro et al. Removal from wastewater and recycling of azo textile dyes by alginate-chitosan beads
CN116173914A (zh) 一种仿生聚合物包裹的壳聚糖磁性吸附剂及其制备方法与应用
Li et al. Hollow C, N-TiO2@ C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine
CN113231055A (zh) 复合催化剂及其协同电子束辐照降解高分子有机化合物的方法及其在污水处理中的应用
Liu et al. Removal of antibiotics from black water by a membrane filtration-visible light photocatalytic system
CN112058099B (zh) 一种改性的pvdf膜及制备方法
CN114873681A (zh) 一种吸附和光催化联用处理茜素红废水的方法
Li et al. Efficient removal of Cr (VI) from wastewater by ZnO-polyacrylic acid/cellulose fiber/polyethylene glycol hydrogel: Synergistic effect of adsorption and photocatalytic reduction
CN113231059B (zh) 用于电子束污水处理的复合催化剂及其制备方法和应用
Bahrudin et al. Effects of montmorillonite on the enhancement of physicochemical, optical and photocatalytic properties of TiO 2/chitosan bilayer photocatalyst
CN112892599B (zh) 一种IL/GO/铁基MOFs复合光催化材料及其制备方法与应用
CN106378202A (zh) 一种H‑CNCs/TiO2复合光催化剂及其制备方法和应用
Zhao et al. Degradation of carbamazepine by MWCNTs-promoted generation of high-valent iron-oxo species in a mild system with O-bridged iron perfluorophthalocyanine dimers
CN111921501B (zh) 载铁腐植酸及其制备方法、应用及应用方法
CN109225341B (zh) 可见光响应磁性金属有机骨架材料的制备方法及其应用
CN108502870B (zh) 改性碳纳米管材料及其制备方法和应用
CN113171795A (zh) 一种碳化钛/苝酰亚胺超分子复合光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant