CN114870806A - 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法 - Google Patents

一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法 Download PDF

Info

Publication number
CN114870806A
CN114870806A CN202210410703.6A CN202210410703A CN114870806A CN 114870806 A CN114870806 A CN 114870806A CN 202210410703 A CN202210410703 A CN 202210410703A CN 114870806 A CN114870806 A CN 114870806A
Authority
CN
China
Prior art keywords
cyclohexene
cyclohexane
porous material
hybrid porous
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210410703.6A
Other languages
English (en)
Other versions
CN114870806B (zh
Inventor
杨立峰
陈森
邢华斌
崔希利
龙陈琨
陈丽媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Zhejiang Hengyi Petrochemical Research Institute Co Ltd
Original Assignee
Zhejiang University ZJU
Zhejiang Hengyi Petrochemical Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU, Zhejiang Hengyi Petrochemical Research Institute Co Ltd filed Critical Zhejiang University ZJU
Priority to CN202210410703.6A priority Critical patent/CN114870806B/zh
Publication of CN114870806A publication Critical patent/CN114870806A/zh
Application granted granted Critical
Publication of CN114870806B publication Critical patent/CN114870806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及化学工程的技术领域,公开了一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法,所述离子杂化多孔材料为由金属离子M、无机阴离子A和有机配体L通过配位得到。本发明中的离子杂化多孔材料相比传统吸附剂具有孔结构可调、孔容大、与吸附质分子作用力可调、再生温度低等优点,其特殊的阴离子功能位点优先吸附环己烯,高效识别环己烯和环己烷分子;具有高的环己烯吸附容量与高的环己烯/环己烷分离选择性和分离效率,具有良好的应用潜力,并且易于脱附再生,有效降低过程能耗。

Description

一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其 制备方法
技术领域
本发明涉及化学工程的技术领域,尤其是涉及一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法。
背景技术
环己烯作为一种重要的有机合成中间体,广泛应用于医药、食品、农用化学品、饲料、聚酯材料及其他高附加值精细化工产品的生产,也可以用作高辛烷值的汽油稳定剂和石油萃取剂。环己烯的下游产品主要有1,2-环己二醇、环氧环己烷、环己烯酮、环己酮和己二酸等,他们都是重要的化工中间体,具有很高的经济价值。随着下游产品的开发和聚酯工业的发展,环己烯的工业需求量也迅速增长。近年来,新开发的苯加氢制环己烯的方法不可避免地伴随大量副产物环己烷的生成。环己烯与环己烷分子尺寸接近,物理性质相似,二者的分离是制备高纯度环己烯的关键,同时也是一项技术性挑战。
目前,萃取精馏或共沸精馏是工业生产中分离环己烯/环己烷的主要技术手段,但环己烯与环己烷相对挥发度差异小,该技术分离环己烯/环己烷时,往往需要极高的萃取剂或共沸剂消耗量、精馏塔塔板数以及回流比,这导致了高额的能耗与运行成本,再加上该技术的工艺复杂,因此开发高效节能、清洁环保的环己烯/环己烷分离新技术迫在眉睫。
吸附分离是一种高效、节能的分离技术,该技术具有能耗低、成本低、工艺流程简单、产品纯度高等突出优势,体现出巨大的工业应用潜力,且在多种重要分离体系中已实现工业化和大规模应用,获得较高的产品纯度和收率。吸附剂是吸附分离技术的核心,理想的吸附剂应具有高的吸附容量以及吸附选择性,同时脱附再生容易。公开号为CN 113307980A的中国发明专利公开了一种含有多级孔的咔唑基多孔有机聚合物材料用于环己烯/环己烷的分离,但是选择性较低,仅为2.5。公开号为US 4336410 A和US 4313014 A的美国发明专利均公开了采用X型分子筛分离环己烯和环己烷,但是由于强的相互作用,解吸再生操作需要200℃的高温,再生能耗高。还有,使用非晶型无孔的酰胺杯芳烃吸附剂Naphthotubes1b(Angew.Chem.Int.Ed.,2020,59:19945-19950)进行吸附分离,但是对环己烯的吸附容量仅为1.71mmol/g。
发明内容
为了解决现有环己烯/环己烷的分离方法存在分离选择性低、吸附容量低,脱附温度高等不足,本发明提供了一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法,所用离子杂化多孔材料具有高吸附容量和吸附选择性,可实现环己烯/环己烷的选择性高效吸附分离,并且易于脱附再生。
本发明的目的通过以下技术方案予以实现:
第一方面,本发明提供了一种离子杂化多孔材料在分离环己烯和环己烷中的应用,所述离子杂化多孔材料为由金属离子M、无机阴离子A和有机配体L通过配位得到;
所述有机配体L为具有如下式(I)~(IV)任一所示结构的化合物中的至少一种:
Figure BDA0003603549560000021
式(I)、(II)中,R1选自以下基团:
Figure BDA0003603549560000022
本发明所用的离子杂化多孔材料为由金属离子、无机阴离子和有机配体制备得到的非穿插多孔晶体材料,通过金属离子、无机阴离子与有机配体的合理选择调控可获得合适孔径的直通型孔道,便于环己烯分子进入,并且至少两个芳香环的有机配体结构表征材料具有较大的孔径、比表面积和孔容。如果孔径较小,环己烯/环己烷难以进入孔道,或吸附容量较低,当离子杂化材料孔径大于
Figure BDA0003603549560000023
时,可实现环己烯/环己烷的选择性分离。本发明中离子杂化多孔材料孔道中的无机阴离子功能位点可以识别环己烯与环己烷表面电荷差异,主要基于环己烯的烯烃双键氢H-C=C-H和环己烷H-C-C-H之间氢原子酸性差异,对于环己烯/环己烷混合物中的环己烯组分吸附较强,对环己烷吸附较弱,从而获得非常高的吸附容量与分离选择性,实现环己烯与环己烷的分离和纯化。同时该材料对环己烯具有合适的相互作用,有利于降低脱附能耗,在环己烯/环己烷分离中表现出非常好的应用前景。
本发明有机配体与金属离子、无机阴离子制备的离子杂化多孔材料结构如下:
Figure BDA0003603549560000031
作为优选,式(I)~(IV)中,R2~R9分别独立选自H、F、Cl、Br、I、CH3、NH2、OH、SO3H、COOH或CF3
作为优选,所述金属离子M为Mg2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+中的至少一种。
作为优选,所述无机阴离子A为SiF6 2-、NbOF5 2-、TaF7 2-、TiF6 2-、ZrF6 2-、GeF6 2-、AlF5 2-中的至少一种。
有机配体、金属离子、无机阴离子中基团/离子的选择都会对孔径大小、容量大小以及环己烯/环己烷的吸附分离选择性等产生影响。
作为优选,所述应用为:将环己烯与环己烷的混合气体或液体通过离子杂化多孔材料进行吸附分离,吸附完成后,吸附有环己烯的离子杂化多孔材料通过解吸脱附实现再生。
本发明应用中,环己烯/环己烷混合物可以液体形态或气体形态,所述离子杂化多孔材料与环己烯/环己烷混合物的接触方式可为固定床吸附、流化床吸附、模拟移动床吸附中任意一种,吸附操作可以是变温吸附或变压吸附。
作为优选,所述离子杂化多孔材料的环己烯/环己烷分离选择性大于4.9,环己烯吸附容量不低于6mmol/g。本发明优选的离子杂化多孔材料ZU-61的环己烯/环己烷吸附分离选择性为4.94,环己烯吸附容量达到6.11mmol g-1,高于现有报道的所有的环己烯/环己烷吸附剂,主要源自其孔道结构与位点的合理调控。ZU-61配位得到的多孔材料结构具有合适孔径
Figure BDA0003603549560000032
Figure BDA0003603549560000033
的直通型孔道,以及丰富的可识别区分环己烯/环己烷的阴离子功能位点NbOF5 2-
作为优选,所述混合气体或液体中环己烯与环己烷的摩尔比为1:99~99:1。
作为优选,所述吸附的温度为25~100℃,压力为0~5bar;所述脱附的温度为20~100℃,压力为0~1bar;所述吸附有环己烯的离子杂化多孔材料采用常温真空解吸、加热真空解吸和/或加热通惰性气体解吸脱附得到环己烯实现再生。
第二方面,本发明还提供了一种上述应用中离子杂化多孔材料的制备方法,包括如下步骤:以金属离子M、无机阴离子A的前驱体与有机配体L混合,采用水与醇类混合溶剂,包括但不限于甲醇、乙醇、N,N-二甲基甲酰胺,乙二醇、异丙醇等,通过水热合成法制得离子杂化多孔材料。
所述离子杂化多孔材料可采用本领域现有技术常采用的溶剂热法、固相研磨法、界面慢扩散法、室温共沉淀法中的任意一种合成,优选采用上述制备方法。所得离子杂化多孔材料的形状不限,可为无定形颗粒或者成型后的球形、圆柱形颗粒。
作为优选,所述水热合成法中的反应温度为25~85℃,反应时间为1h~48h。
与现有技术相比,本发明具有以下有益效果:
(1)离子杂化多孔材料相比传统吸附剂具有孔结构可调、孔容大、与吸附质分子作用力可调、再生温度低等优点,其特殊的阴离子功能位点优先吸附环己烯,高效识别环己烯和环己烷分子;
(2)离子杂化多孔材料具有高的环己烯吸附容量与高的环己烯/环己烷分离选择性,可以直接得到高纯度的环己烯和环己烷,提高分离效率,具有良好的应用潜力;
(3)离子杂化多孔材料具有较为适中的功能位点强度,吸脱附过程温和,远低于现有使用的分子筛吸附剂,可以有效降低过程能耗。
附图说明
图1为实施例1中离子杂化多孔材料在298K下对环己烯、环己烷的吸附等温线图;
图2为实施例5中离子杂化多孔材料在298K下对环己烯、环己烷的吸附等温线图;
图3为实施例5中离子杂化多孔材料在298K、313K、333K下对环己烯、环己烷的吸附等温线图;
图4为实施例1中环己烯/环己烷的混合气体的蒸汽穿透数据图;
图5为实施例5中环己烯/环己烷的混合气体的蒸汽穿透数据图;
图6为实施例6中环己烯/环己烷的混合气体的蒸汽穿透数据图;
图7为实施例7中含有环己烯与环己烷的混合液体的竞争吸附等温线图;
图8为实施例8中含有环己烯与环己烷的混合液体的液相穿透曲线图;
图9为实施例9中所得到的的蒸汽吸附等温线循环测试曲线图。
具体实施方式
以下用具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此:
实施例1
将0.35g 4,4'-联吡啶溶解在40ml乙二醇中,温度为65℃。在上述溶液中加入20ml以Cu(BF4)2·xH2O(266mg,1.12mmol)和(NH4)2SiF6(199mg,1.12mmol)混合的水溶液,然后在65℃加热搅拌3h。将得到的紫色粉末过滤,用甲醇洗涤,与甲醇交换3天,得到离子杂化多孔材料(SIFSIX-1-Cu)。将该离子杂化多孔材料作为吸附剂,将其装入3cm吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为5:1)以2mL/min流速通入吸附柱,吸附柱操作温度为20℃,流出气体中可获得高纯度的环己烷气体(质量百分比大于99.9%)。待环己烯气体穿透,停止吸附,70℃条件下脱附吸附柱中吸附的环己烯至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
离子杂化多孔材料(SIFSIX-1-Cu)对于环己烯的吸附容量为6.02mmol/g(11kPa),环己烯/环己烷吸附分离选择性为4.92;如图1所示为SIFSIX-1-Cu在298K下对环己烯、环己烷的吸附等温线,如图4所示为实施例1中环己烯/环己烷的混合气体的蒸汽穿透数据。
实施例2
将0.42g 4,4’-二甲基-3,3’-联吡啶溶解在40ml乙二醇溶液中,温度为80℃。在上述溶液中加入20ml以Co(NO3)2·6H2O(257mg,1.12mmol)和(NH4)2TaF7(392mg,1.12mmol)混合的水溶液,然后在80℃加热搅拌12h,产物过滤用甲醇洗涤,与甲醇交换3天,得到离子杂化多孔材料(TaFSEVEN-(4,4’-dime-3,3’-dps)-Co)。将该离子杂化多孔材料作为吸附剂,装入3cm吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为3:1)以5mL/min流速通入吸附柱,吸附柱操作温度为30℃,流出气体中可获得高纯度的环己烷气体;待环己烯气体穿透,停止吸附,通过氮气吹扫真空解吸的方法对吸附柱中的环己烯进行有效脱附至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
离子杂化多孔材料(TaFSEVEN-(4,4’-dime-3,3’-dps)-Co)对于环己烯的吸附容量为6.06mmol/g(11kPa)。
实施例3
将0.4g 1,2-二吡啶乙炔溶解在40ml N,N-二甲基甲酰胺溶液中,温度为80℃。在上述溶液中加入20ml以Mg(NO3)2(200mg,1.12mmol)和(NH4)2GeF6 2-(249mg,1.12mmol)混合的水溶液,然后在80℃加热搅拌24h,产物过滤用甲醇洗涤,与甲醇交换3天,得到离子杂化多孔材料(GeFSIX-(1,2-Di(pyridin-4-yl)ethyne)-Mg)。将该离子杂化多孔材料作为吸附剂,装入3cm吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为2:1)以4mL/min流速通入吸附柱,吸附柱操作温度为40℃,流出气体中可获得高纯度的环己烷气体;待环己烯气体穿透,停止吸附,通过60℃加热真空解吸的方法对吸附柱中的环己烯进行有效脱附至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
离子杂化多孔材料(GeFSIX-(1,2-Di(pyridin-4-yl)ethyne)-Mg)对于环己烯的吸附容量为6.03mmol/g(11kPa)。
实施例4
将0.57g 1,2-二(3-三氟甲基-4-吡啶基)乙烯溶解在40ml异丙醇溶液中,温度为80℃。在上述溶液中加入20ml以Fe(NO3)2·9H2O(452mg,1.12mmol)和(NH4)2ZrF6 2-(270mg,1.12mmol)混合的水溶液,然后在80℃加热搅拌48h,产物过滤用甲醇洗涤,与甲醇交换3天,得到离子杂化多孔材料(ZrFSIX-(1,2-Di(3-trifluoromethyl-4-pyridyl)ethylene)-Fe)。将该离子杂化多孔材料作为吸附剂,装入3cm吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为2:1)以4mL/min流速通入吸附柱,吸附柱操作温度为40℃,流出气体中可获得高纯度的环己烷气体;待环己烯气体穿透,停止吸附,通过60℃加热真空解吸的方法对吸附柱中的环己烯进行有效脱附至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
离子杂化多孔材料(ZrFSIX-(1,2-Di(3-trifluoromethyl-4-pyridyl)ethylene)-Fe)对于环己烯的吸附容量为6.07mmol/g(11kPa)。
实施例5
将0.35g 4,4'-联吡啶溶解在40ml乙二醇中,温度为65℃。在上述溶液中加入20ml的NiNbOF5(包含金属离子与无机阴离子的盐,0.41g)水溶液,然后在65℃加热搅拌1h。产物过滤,用甲醇洗涤,与甲醇交换3天,得到离子杂化多孔材料(ZU-61)。将该离子杂化多孔材料作为吸附剂,装入3cm的吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为1:1)以2.5mL/min流速通入吸附柱,吸附柱操作温度为25℃,流出气体中可获得高纯度的环己烷气体;待环己烯气体穿透,停止吸附,通过80℃加热真空解吸对吸附柱中的环己烯进行有效脱除至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
离子杂化多孔材料(ZU-61)对于环己烯的吸附容量为6.11mmol/g(11kPa);如图2所示为ZU-61在298K下对环己烯/环己烷的混合气体的吸附等温线,如图3所示为ZU-61在298K、313K、333K下对环己烯的吸附等温线,如图5所示为实施例5中环己烯/环己烷的混合气体的蒸汽穿透数据。
实施例6(使用实施例5中的离子杂化多孔材料ZU-61)
将离子杂化多孔材料(ZU-61)装入3cm的吸附柱,将环己烯/环己烷的混合气体(环己烯和环己烷的质量比为4:1)以3.5mL/min流速通入吸附柱,吸附柱操作温度为45℃,流出气体中可获得高纯度的环己烷气体;待环己烯气体穿透,停止吸附,通过80℃加热真空解吸对吸附柱中的环己烯进行有效脱除至10μm Hg,可以得到较高纯度的环己烯,同时吸附柱可以进行下一轮使用。
如图6所示为实施例6中环己烯/环己烷的混合气体的蒸汽穿透数据。
实施例7(使用实施例5中的离子杂化多孔材料ZU-61)
将0.5g离子杂化多孔材料(ZU-61)装入样品瓶中,加入5mL含有环己烯与环己烷的混合液体(异辛烷作为稀释剂,环己烯和环己烷的质量比1:1),环己烯与环己烷的初始质量浓度范围从0.2%阶梯变化至20%,在恒温摇床中维持30℃的温度下以150rpm的速率震荡24h,后用气相色谱GC测定吸附前后环己烯、环己烷的质量浓度。
如图7所示为实施例7中含有环己烯与环己烷的混合液体的竞争吸附数据。
实施例8(使用实施例5中的离子杂化多孔材料ZU-61)
将离子杂化多孔材料(ZU-61)装入20cm长的吸附柱中,将含有环己烯与环己烷的混合液体(环己烯和环己烷质量比为1:1,各组分浓度为0.01mmol/mL,异辛烷为稀释剂),采用高效液相色谱泵泵送,流速为0.2mL/min,采用气相色谱法检测流出液体浓度。
如图8所示为实施例8中含有环己烯与环己烷的混合液体的穿透曲线数据。
实施例9(使用实施例5中的离子杂化多孔材料ZU-61)
使用实施例5中脱附后的ZU-61,继续进行实施例5中同等条件下的环己烯/环己烷的混合气体吸附分离;接着ZU-61在100℃下真空脱气至10μm Hg历时2~15h再生后,继续进行实施例5中同等条件下的环己烯/环己烷的混合气体吸附分离;接着在室温惰性气体吹扫脱气10~24h再生后,继续进行实施例5中同等条件下的环己烯/环己烷的混合气体吸附分离;接着在80℃下氮气吹扫2~15h再生后,继续进行实施例5中同等条件下的环己烯/环己烷的混合气体吸附分离。
如图9所示为实施例9中所得到的蒸汽吸附等温线循环测试曲线图,通过循环吸附测试曲线可发现离子杂化多孔材料可采用不同的再生条件进行再生,可以循环使用,且再生容易。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,
所述离子杂化多孔材料为由金属离子M、无机阴离子A和有机配体L通过配位得到;
所述有机配体L为具有如下式(I)~(IV)任一所示结构的化合物中的至少一种:
Figure FDA0003603549550000011
式(I)、(II)中,R1选自以下基团:
Figure FDA0003603549550000012
2.如权利要求1所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,式(I)~(IV)中,R2~R9分别独立选自H、F、Cl、Br、I、CH3、NH2、OH、SO3H、COOH或CF3
3.如权利要求1所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述金属离子M为Mg2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+中的至少一种。
4.如权利要求1所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述无机阴离子A为SiF6 2-、NbOF5 2-、TaF7 2-、TiF6 2-、ZrF6 2-、GeF6 2-、AlF5 2-中的至少一种。
5.如权利要求1~4之一所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述应用为:将环己烯与环己烷的混合气体或液体通过离子杂化多孔材料进行吸附分离,吸附完成后,吸附有环己烯的离子杂化多孔材料通过解吸脱附实现再生。
6.如权利要求5所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述混合气体或液体中环己烯与环己烷的摩尔比为1:99~99:1。
7.如权利要求5所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述吸附的温度为25~100℃,压力为0~5bar。
8.如权利要求5所述离子杂化多孔材料在分离环己烯和环己烷中的应用,其特征在于,所述脱附的温度为20~100℃,压力为0~1bar;所述吸附有环己烯的离子杂化多孔材料采用常温真空解吸、加热真空解吸和/或加热通惰性气体解吸脱附得到环己烯实现再生。
9.一种如权利要求1~8任一所述应用中离子杂化多孔材料的制备方法,其特征在于,包括如下步骤:以金属离子M、无机阴离子A的前驱体与有机配体L混合,采用水与醇类混合溶剂,通过水热合成法制得离子杂化多孔材料。
10.如权利要求9所述制备方法,其特征在于,所述水热合成法中的反应温度为25~85℃,反应时间为1h~48h。
CN202210410703.6A 2022-04-19 2022-04-19 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法 Active CN114870806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210410703.6A CN114870806B (zh) 2022-04-19 2022-04-19 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210410703.6A CN114870806B (zh) 2022-04-19 2022-04-19 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法

Publications (2)

Publication Number Publication Date
CN114870806A true CN114870806A (zh) 2022-08-09
CN114870806B CN114870806B (zh) 2023-04-18

Family

ID=82672533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210410703.6A Active CN114870806B (zh) 2022-04-19 2022-04-19 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法

Country Status (1)

Country Link
CN (1) CN114870806B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134177A (zh) * 2011-02-28 2011-07-27 河北民海化工有限公司 一种萃取精馏分离环己烷和环己烯的方法
CN105944680A (zh) * 2016-05-17 2016-09-21 浙江大学 一种吸附分离丙烯丙炔的方法
CN109651055A (zh) * 2019-01-29 2019-04-19 浙江大学 一种乙烯乙烷的分离方法
CN109776252A (zh) * 2019-01-29 2019-05-21 浙江大学 一种丙烯丙烷的分离方法
CN111575047A (zh) * 2020-05-08 2020-08-25 浙江大学 一种异构化油的分离方法
CN112661593A (zh) * 2021-02-05 2021-04-16 郑州轻工业大学 一种含离子液体混合溶剂萃取精馏分离苯、环己烯和环己烷的方法
CN113527030A (zh) * 2021-08-19 2021-10-22 浙江大学 一种吸附分离环戊烷和新己烷的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134177A (zh) * 2011-02-28 2011-07-27 河北民海化工有限公司 一种萃取精馏分离环己烷和环己烯的方法
CN105944680A (zh) * 2016-05-17 2016-09-21 浙江大学 一种吸附分离丙烯丙炔的方法
CN109651055A (zh) * 2019-01-29 2019-04-19 浙江大学 一种乙烯乙烷的分离方法
CN109776252A (zh) * 2019-01-29 2019-05-21 浙江大学 一种丙烯丙烷的分离方法
CN111575047A (zh) * 2020-05-08 2020-08-25 浙江大学 一种异构化油的分离方法
CN112645788A (zh) * 2020-05-08 2021-04-13 浙江大学 一种2,2-二甲基丁烷和2,3-二甲基丁烷的分离方法
CN112661593A (zh) * 2021-02-05 2021-04-16 郑州轻工业大学 一种含离子液体混合溶剂萃取精馏分离苯、环己烯和环己烷的方法
CN113527030A (zh) * 2021-08-19 2021-10-22 浙江大学 一种吸附分离环戊烷和新己烷的方法

Also Published As

Publication number Publication date
CN114870806B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US10526260B2 (en) Method for adsorption separation of propylene and propyne
CN111410596B (zh) 一种碳八芳烃同分异构体混合物的分离方法
US20220096992A1 (en) Method for the adsorptive separation of ethylene and ethane using ultramicroporous metal-organic framework
CN109776252B (zh) 一种丙烯丙烷的分离方法
CN109420480B (zh) 一种碳四烯烃混合物的分离方法
CN107805260B (zh) 金属配位化合物、吸附材、分离材以及1,3-丁二烯的分离方法
CN105833662A (zh) 一种吸附分离含硫酸性气体的方法
CN111575047B (zh) 一种异构化油的分离方法
CN112844321B (zh) 系列柱撑型金属有机骨架材料的合成制备及其低碳烃分离应用
WO2021169764A1 (zh) 一种用于吸附分离丙炔丙烯的层状多孔材料及其制备方法和应用
WO2020156423A1 (zh) 一种乙烯乙烷的分离方法
CN114181403B (zh) 四齿配体构筑的阴离子柱撑金属有机框架材料及其应用
CN114870806B (zh) 一种离子杂化多孔材料在分离环己烯和环己烷中的应用及其制备方法
CN113527030B (zh) 一种吸附分离环戊烷和新己烷的方法
CN110193352B (zh) 功能化笼状硼烷阴离子柱撑的超分子微孔框架材料及其制备方法和应用
CN114682231B (zh) 选择性吸附乙炔的氰基MOFs吸附剂、制备方法和应用
CN114452938B (zh) 一种烷烃优先吸附微孔材料及其制备方法和应用
CN111440045B (zh) 一种碳五烯烃混合物的分离方法
CN114433028A (zh) 用于分离正构异构烃混合物的吸附剂及其制备方法和吸附分离正构异构烃混合物的方法
CN114907183B (zh) 一种氯丙烯和氯丙烷混合气体的吸附分离方法
CN116920800A (zh) 乙烯与乙烷的分离方法、所用超微孔材料及其制备方法
CN109422616B (zh) 一种超微孔离子杂化多孔材料分离c4烯烃的方法
CN117753171A (zh) 一种含银离子液体及其制备方法与应用
CN114602437A (zh) 用于从c6烃类中获得高辛烷值组分的吸附剂及制备方法
CN117843987A (zh) 一种稳定的锆基金属有机骨架材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant