CN114864880B - 基于石墨烯的锂离子电池复合负极材料的制备方法 - Google Patents

基于石墨烯的锂离子电池复合负极材料的制备方法 Download PDF

Info

Publication number
CN114864880B
CN114864880B CN202210712819.5A CN202210712819A CN114864880B CN 114864880 B CN114864880 B CN 114864880B CN 202210712819 A CN202210712819 A CN 202210712819A CN 114864880 B CN114864880 B CN 114864880B
Authority
CN
China
Prior art keywords
graphene
sulfide
lithium ion
ion battery
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210712819.5A
Other languages
English (en)
Other versions
CN114864880A (zh
Inventor
葛涛
李丙国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology
Original Assignee
Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology filed Critical Institute of Environment Friendly Materials and Occupational Health of Anhui University of Sciece and Technology
Priority to CN202210712819.5A priority Critical patent/CN114864880B/zh
Publication of CN114864880A publication Critical patent/CN114864880A/zh
Application granted granted Critical
Publication of CN114864880B publication Critical patent/CN114864880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供基于石墨烯的锂离子电池复合负极材料的制备方法,涉及锂电池制备领域。该基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:步骤一、提取硫化物;步骤二、冲击融合;步骤三、制备电极初体;步骤四、对电极初体进行处理。过渡金属硫化物具有无毒、低成本、理论容量高等优点,利用材料纳米化和与碳材料复合可以解决充放电过程中体积变化大、电导率低的缺点,石墨烯片层两侧同时可以储存锂离子,并且锂可能以共价分子的形式嵌入无序碳材料形成L i C2,以此种储锂机制得到的石墨烯理论比容量为1116mA·h/g。石墨烯的锂离子存储能力远高于石墨。

Description

基于石墨烯的锂离子电池复合负极材料的制备方法
技术领域
本发明涉及锂电池制备技术领域,具体为基于石墨烯的锂离子电池复合负极材料的制备方法。
背景技术
锂离子电池作为一种化学电源的能源形式,具有工作电压高、能量密度大、重量轻、体积小、安全性好、绿色环保等优点,已经在便携式移动设备、电动汽车(EV)、混合动力车(HEV)等领域得到广泛应用。
刻蚀多壁碳纳米管(CNTs)与纳米ZnS复合的锂离子电池负极材料ZnS-CNTs能够显著增加电化学反应面积,具有典型的比容量恢复现象,且在长期循环过程中具有良好的稳定性,目前硫化物负极材料都是通过化学方法合成,合成条件相对复杂,耗时长、成本高,而且其存在充放电过程中体积变化大、电导率低等缺点,严重制约了其在锂离子电池中的商业应用。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了基于石墨烯的锂离子电池复合负极材料的制备方法,解决了硫化物负极在放电过程积极变化大的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:
步骤一、提取硫化物
选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;
步骤二、冲击融合
将步骤一中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;
步骤三、制备电极初体
将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;
步骤四、对电极初体进行处理
将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极。
优选的,所述静电吸引复合-微波加热法的具体步骤为:
1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;
2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结合,形成结团物质,剩余的改性剂利用氩气气氛管式炉进行热解处理;
3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料。
优选的,所述步骤四中等离子体处理装置中的气压为1Pa~100Pa,温度为-30~80℃,等离子体处理的功率为1W~21000W/cm。
(三)有益效果
本发明提供了基于石墨烯的锂离子电池复合负极材料的制备方法。具备以下有益效果:
1、本发明,过渡金属硫化物具有无毒、低成本、理论容量高等优点,利用材料纳米化和与碳材料复合可以解决充放电过程中体积变化大、电导率低的缺点。
2、本发明,石墨烯片层两侧同时可以储存锂离子,并且锂可能以共价分子的形式嵌入无序碳材料形成LiC2,以此种储锂机制得到的石墨烯理论比容量为1116mA·h/g。石墨烯的锂离子存储能力远高于石墨。
3、本发明,硫化物负极材料目前都是通过化学方法合成,合成条件相对复杂,耗时长、成本高。而自然界中的天然硫化物矿物种类多、储量丰富、成本低,选择合适的硫化物矿物为原料,通过设计合理的合成制备及性能调控工艺,可以有效降低硫化物负极材料的成本。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
石墨烯(NG)除了具有尺寸和形貌的优势以及高导电性、高强度、超轻薄、韧性好、高比表面积、导热系数高、化学性质稳定等优点,还具有一些独特的性能,如量子隧道效应、半整数量子霍尔效应等。这些优异的特性使石墨烯在材料学、电子、能源、信息、生物医学等领域具有广泛应用。相比石墨和碳纳米管等其他碳材料,石墨烯纳米片层可以更有效地提高材料的电化学性能。超薄且具有柔韧性的石墨烯在充当导电基质的同时,可以作为纳米颗粒的负载和支撑,防止团聚现象的发生并有效缓解锂离子脱嵌过程中电极材料的体积膨胀效应。同时,石墨烯的加入还可以有效克服硅基、锡基和过渡金属材料作为负极材料在反复充放电后的粉化和脱落,从而导致循环性能差的缺陷。
实施例一:
本发明实施例提供基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:
步骤一、提取硫化物
选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;
步骤二、冲击融合
将步骤一中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;
所述静电吸引复合-微波加热法的具体步骤为:
1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;
2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结合,形成结团物质,剩余的改性剂利用氩气气氛管式炉进行热解处理;
3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料。
步骤三、制备电极初体
将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;
步骤四、对电极初体进行处理
将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极,等离子体处理装置中的气压为1Pa~100Pa,温度为-30~80℃,等离子体处理的功率为1W~21000W/cm。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (2)

1.基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:包括以下步骤:
步骤一、提取硫化物
选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;
步骤二、冲击融合
将步骤一中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;
所述静电吸引复合-微波加热法的具体步骤为:
1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;
2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结合,形成结团物质,剩余的改性剂利用氩气气氛管式炉进行热解处理;
3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料
步骤三、制备电极初体
将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;
步骤四、对电极初体进行处理
将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极。
2.根据权利要求1所述的基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:所述步骤四中等离子体处理装置中的气压为1Pa~100Pa,温度为-30~80℃,等离子体处理的功率为1W~21000W/cm。
CN202210712819.5A 2022-06-22 2022-06-22 基于石墨烯的锂离子电池复合负极材料的制备方法 Active CN114864880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210712819.5A CN114864880B (zh) 2022-06-22 2022-06-22 基于石墨烯的锂离子电池复合负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210712819.5A CN114864880B (zh) 2022-06-22 2022-06-22 基于石墨烯的锂离子电池复合负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN114864880A CN114864880A (zh) 2022-08-05
CN114864880B true CN114864880B (zh) 2023-01-03

Family

ID=82626204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210712819.5A Active CN114864880B (zh) 2022-06-22 2022-06-22 基于石墨烯的锂离子电池复合负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN114864880B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180964A (zh) * 2017-06-26 2017-09-19 厦门大学 一种微波法制备掺杂金属氧化物/石墨烯复合纳米材料的方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079291A2 (fr) * 2009-01-12 2010-07-15 Centre National De La Recherche Scientifique Procédé de préparation de graphènes
CN105304862B (zh) * 2015-10-10 2017-12-05 岭南师范学院 一种类石墨烯MoS2/氮、磷共掺杂石墨烯电化学储锂复合电极的制备方法
CN112436113A (zh) * 2020-11-13 2021-03-02 内蒙古杉杉科技有限公司 一种钠离子电池负极材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180964A (zh) * 2017-06-26 2017-09-19 厦门大学 一种微波法制备掺杂金属氧化物/石墨烯复合纳米材料的方法及应用

Also Published As

Publication number Publication date
CN114864880A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Mi et al. A self-sacrifice template strategy to fabricate yolk-shell structured silicon@ void@ carbon composites for high-performance lithium-ion batteries
Shangguan et al. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries
Dang et al. Controlled synthesis of hierarchical Cu nanosheets@ CuO nanorods as high-performance anode material for lithium-ion batteries
He et al. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries
Qin et al. High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries
Zhang et al. Cobalt disulfide nanoparticles/graphene/carbon nanotubes aerogels with superior performance for lithium and sodium storage
Choi et al. Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries
US20230197929A1 (en) Method of making electrodes containing carbon sheets decorated with nanosized metal particles and electrodes made therefrom
CN108448080B (zh) 一种石墨烯包覆硅/金属复合负极材料及其制备方法
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
Li et al. Synthesis of Sn/MoS 2/C composites as high-performance anodes for lithium-ion batteries
Geng et al. Highly dispersed sulfur in multi-walled carbon nanotubes for lithium/sulfur battery
US9441113B2 (en) Pyrolytic carbon black composite and method of making the same
Shi et al. One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance
Liu et al. Fe 3 O 4 nanoparticles encapsulated in multi-walled carbon nanotubes possess superior lithium storage capability
Shao et al. Facile Synthesis of FeS2 Quantum‐Dots/Functionalized Graphene‐Sheet Composites as Advanced Anode Material for Sodium‐ion Batteries
Li et al. A modified synthesis process of three-dimensional sulfur/graphene aerogel as binder-free cathode for lithium‑sulfur batteries
Zhang et al. Si@ Cu3Si nano-composite prepared by facile method as high-performance anode for lithium-ion batteries
Zhao et al. Chloride ion-doped polypyrrole nanocomposite as cathode material for rechargeable magnesium battery
Wang et al. Self-assembly of Fe2O3 nanotubes on graphene as an anode material for lithium ion batteries
Su et al. Facile situ synthesis of C@ SnO2/Sn@ rGO hybrid nanosheets as high performance anode materials for lithium-ion batteries
Mu et al. Sandwich-like Co3O4/graphene nanocomposites as anode material for lithium ion batteries
CN105870435B (zh) 一种MoO2@CNTs复合材料及其制备方法
Zhe et al. Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries
Liu et al. Solvent-controlled synthesis of mesoporous CoO with different morphologies as binder-free anodes for lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant