WO2010079291A2 - Procédé de préparation de graphènes - Google Patents
Procédé de préparation de graphènes Download PDFInfo
- Publication number
- WO2010079291A2 WO2010079291A2 PCT/FR2010/000024 FR2010000024W WO2010079291A2 WO 2010079291 A2 WO2010079291 A2 WO 2010079291A2 FR 2010000024 W FR2010000024 W FR 2010000024W WO 2010079291 A2 WO2010079291 A2 WO 2010079291A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- sheets
- particles
- carbon
- dispersion
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/04—Specific amount of layers or specific thickness
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/28—Solid content in solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/30—Purity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/32—Size or surface area
Definitions
- the present invention relates to the preparation of graphenes from precursor materials based on carbon multi-layer nanotubes, pure or doped with heteroatoms such as boron, nitrogen, or from a material based on graphite, such as expanded graphite or anthracite, by a method of microwave-assisted heating of a dispersion of the precursor material.
- This process may be catalytic or non-catalytic depending on the precursor materials used.
- Graphene is an individual graphite sheet ("mono-sheet") consisting of carbon atoms in the sp 2 hybridization mode with a two-dimensional hexagonal array arrangement. It is one of the hardest materials known to date. Inside a graphene sheet the hexagonal structure is predominant, however, we can also find the isolated units of pentagonal or heptagonal structure, which constitute the defects of the material inducing deviations from a plane structure consisting exclusively of hexagonal patterns.
- Graphene structures formed of several superimposed sheets are also known; these structures have been called FLG (“few-layer graphene"). The thicker structures have been called NGP ("nano-sized graphene plates"). The distinction between these two terms is not very clear.
- Patent application WO 2005/084172 proposes the term “Carbon nanoflake” (CNF) for planar carbon forms with a thickness not exceeding 10 nm, and the term “Carbon nanosheet” (CNS) for CNFs with a thickness not exceeding not exceeding 2 nm.
- CNF Carbon nanoflake
- CNS Carbon nanosheet
- the first method of obtaining is described in the articles constituting references 1 to 6 (see section "Bibliographical references").
- the second method of obtaining, based on the formation of graphene on a silicon carbide substrate, is described in the articles constituting references 7 and 8.
- the third method is described in articles constituting references 9 to 11 and 17; it is a synthesis in the traditional sense of the term, which proceeds chemically from gaseous compounds of lower molecular weight than the product.
- a hydrocarbon compound is broken down on the surface of a metal to form a solid metal-carbon solution; after heating at high temperature the carbon atoms are segregated on the surface of the metal to form graphene sheets.
- a catalytic vapo-deposition process described in US patent application 2005/0255034 A1 leads to nanofibers composed of thin graphite plates superimposed in a direction perpendicular to the graphitic planes, and not to graphenes.
- a fourth category of processes starts with intercalated graphite, in which the graphitic planes are widely spaced.
- This material is either chemically etched or subjected to high heat to separate the graphitic layers.
- WO 2008/060703 (Directa Plus Patent & Technology Limited) describes a process for preparing very thin sheets of graphite by exposing sheets of graphite interspersed abruptly at temperatures of at least 1300 ° C.
- US patent application 2008/0206124 A1 inventors: Bor Z. Jang et al.
- the material is etched chemically by halogens and then heated.
- the material is interposed by halogens and then subjected, in the liquid phase, to ultrasound.
- US Patent Application Publication No. 2006/0121279 A1 discloses a method for making carbon nanotubes from graphenes by applying high pressure and high temperature.
- Nanotube prices because of its difficulty of obtaining, is one of the most expensive materials. Its price could drop significantly if more efficient synthetic methods were available, similar to what was observed in the field of carbon nanotubes in the late 90s when there was a vertiginous drop Nanotube prices as methods are optimized method for obtaining larger quantities of nanotubes with better selectivity, in this case by CCVD (Catalytic Chemical Vapor Deposition) growth methods.
- CCVD Catalytic Chemical Vapor Deposition
- a first object of the invention is a method of manufacturing a dispersion of sheets or particles of graphene, comprising the following steps:
- the said dispersion of graphene particles or sheets can be applied to a substrate and allowed to evaporate the said aqueous or organic liquid, to form a system composed of a substrate and graphene particles or sheets, which represents another object of the invention.
- said liquid is distilled water, an acid solution, an alcohol solution or a mixture of alcohols, and said liquid may contain an aromatic compound or one or more heteroatoms selected from the group of halogens or alkali metals.
- said liquid is an ammoniacal or nitrogen solution.
- Said graphenes comprise structures with a thickness not exceeding 2 nm and having superposed and substantially parallel graphitic planes.
- the number of parallel graphene sheets is advantageously between 1 and 10 and preferably between 2 and 5.
- Said graphene structures advantageously have a length and / or width of between 5 nm and 10 ⁇ m, preferably between 50 nm and 5 ⁇ m and more preferably between 100 nm and 2 ⁇ m.
- Said carbon-based material is selected from the group consisting of: carbon nanotubes, graphite particles, expanded graphite, anthracite.
- Said carbon nanotubes supplied may comprise a deposition of at least one active phase, preferably a metal, and even more preferably a metal selected from the group consisting of palladium, platinum, iridium, ruthenium, Conductive oxides
- Said active phase may also consist of metals such as iron, cobalt, nickel or any other metal that can be used in the synthesis of carbon nanotubes.
- Said active phase may correspond to a mass of between 0.1% and 13% of the nanotubes, preferably between 1% and 8%, and even more preferably between 3% and 6%. It can include metal nanoparticles.
- the said carbon-based material may at least partly be doped with heteroatoms, preferably with boron and / or nitrogen.
- the concentration of the heteroatoms may be between 0.5% and 18% by weight, preferably between 2% and 10% by weight, and more preferably between 3% and 6% by weight.
- the yield of the process for producing graphene particles or sheets is advantageously greater than 3% by mass of graphene particles or sheets relative to the mass of carbon-based material, preferably greater than 12%, and advantageously greater than 15% in the case where said carbon-based material is carbon nanotubes.
- the carbon-based material used in the process according to the invention is preferably a graphite-based material.
- Figures 1 to 7 relate to the present invention.
- FIG. 1 shows transmission electron microscopy (TEM) images at different resolutions of the graphene planes obtained by the process according to the invention as described in Example 1, starting from the carbon nanotubes in an aqueous medium.
- FIGS. 2 and 3 show TEM images at different resolutions of graphene planes obtained by microwave synthesis from carbon nanotubes in an ethanolic medium. The synthesis was carried out under the following conditions: heating power: 300 Watts, duration: 60 minutes.
- FIG. 4 shows the electrical conductivity of a chloroform solution after addition of a graphene solution containing 0.25 mg of graphene per milliliter of chloroform. The measurements were carried out at room temperature.
- FIG. 5 shows TEM images of samples based on bi-wall carbon nanotubes with or without palladium treated in the microwave under the same conditions.
- (A) 1 (B): Bi-walled carbon nanotubes containing 10% Pd; we see the formation of graphene sheets on the low resolution image.
- FIG 6 shows the behavior of expanded graphite in different liquid media: (A) Water, (B) Ammonia solution (33% ammonia concentration).
- graphene is used here to mean a graphitic structure composed of superimposed and substantially parallel graphitic planes with a thickness not exceeding about 2 nm. This structure can be flat or folded.
- the process according to the invention necessarily involves the heating of a dispersion of carbon-based material, and preferably based on graphite (precursor material) by microwaves.
- the inventors believe that the energy produced by the microwaves in the carbon-based material induces weakening points allowing the peeling of the graphene sheets.
- the inventors believe that in the case where the carbon-based material is carbon nanotubes, graphene is formed by opening the concentric planes of nanotubes. The inventors have discovered that this opening can be facilitated by the presence of active sites of catalysts that help create starting points for opening the walls of the starting carbon nanotubes.
- the starting carbon material is advantageously selected from the group consisting of carbon nanotubes, graphite particles, expanded graphite, anthracite. It is therefore very preferably a material based on graphite, which advantageously comprises a significant proportion of graphite, typically at least 10% by weight, advantageously at least 30% by weight, and even more preferably at least 50% by weight. It is preferably in a finely divided form, such as nanotubes, graphite powder, expanded graphite flakes, expanded graphite powder, anthracite powder. Anthracite gives a yield of graphene comparable to that of expanded graphite, but is about a thousand times less expensive than expanded graphite.
- the graphite material may be at least partially doped with heteroatoms, preferably with boron and / or nitrogen. This does not significantly affect the reactivity of the carbon-based material for conversion to graphene, but allows for doped graphene particles or sheets, which may have physical and chemical properties (such as electrical conductivity, optical absorption, reactivity towards certain molecules) different from those of particles or sheets of pure graphene.
- a catalyst consisting of a set of particles of nanometric metal or oxide is deposited on the surface of the nanotubes. The deposition of the catalyst can be achieved by all the deposition techniques known to those skilled in the art.
- the preferred deposition technique is that of porous volume impregnation of the solid with a solution containing a salt of the active phase followed by a calcination and reduction step.
- the reduction step is not necessary when the active phase is used as an oxide.
- the process according to the invention leads to a dispersion of graphene particles or sheets which can be separated from the starting carbon-based material by any known technique such as decantation, filtration, centrifugation.
- This dispersion of particles or sheets of graphene can be used as it is, for example it can be incorporated into polymers in the liquid phase, or it can be isolated. graphene particles or sheets, for example by evaporation of the solvent, filtration or centrifugation.
- the process for synthesizing graphene from carbon nanotubes is characterized in that it comprises the following successive stages: (a) The precursor starting reagent of graphene is supplied under the form of carbon nanotubes, which can be arranged in a disordered manner or aligned perpendicular to a planar surface.
- Carbon nanotubes can be prepared by any suitable method. For example, they can be prepared by catalytic decomposition of a mixture of hydrocarbon and hydrogen in the presence of an iron-based growth catalyst. This synthetic route has the consequence that the carbon nanotubes contain small metal carbide particles encapsulated in the central channel. This metal comes from the growth catalyst used for the synthesis of nanotubes; it may include iron, cobalt, nickel.
- Thermogravimetry (ATG) analyzes make it possible to quantify the amount of iron encapsulated in the carbon nanotubes which is typically of the order of 0.5 to 3% by weight, advantageously of the order of 1.5% to 2%, 5% and preferably about 1% to 2%; the preferred nature of these fields concerns the process for manufacturing these nanotubes, and not their use as a starting material in the process according to the invention.
- Carbon nanotubes whether they contain particles of metal carbide or not, can be decorated with an active phase based on palladium.
- the palladium may be deposited by impregnation with a solution of an inorganic or metallo-organic precursor (typically a salt) by the porous volume method, followed by calcination in air at about 300 ° C. for about 2 hours and a reduction in hydrogen at about 400 0 C for about 2 hours.
- Transmission electron microscopy (TEM) analyzes indicate that the palladium particles are homogeneously distributed and have sizes of a few nanometers.
- Palladium can also be replaced by any other metal of the family of noble metals such as platinum, iridium, ruthenium or iron, cobalt, nickel.
- the carbon nanotubes, with or without metals, are then dispersed in a liquid medium, the latter may be either aqueous or constituted by other solvents such as alcohols (ethanol for example) or other solvents organic, or in the presence of ionic liquid type compounds.
- a liquid medium such as alcohols (ethanol for example) or other solvents organic, or in the presence of ionic liquid type compounds.
- the graphene synthesis is carried out by heating this mixture under microwave irradiation.
- the synthesis of graphene is then carried out as follows: the solid is immersed in a volume of a liquid, such as water or an organic solvent, as explained in greater detail below, and transferred to a reactor quartz inserted into a second composite reactor to maintain the system under pressure.
- the microwave generating power can be varied between 300 and 1200 Watts, preferably between 400 and 1000 Watts and more especially between 450 and 800 Watts.
- the duration of the synthesis is set between 0.1 and 6 hours, preferably between 1 and 5 hours and more especially between 2 and 4 hours.
- the temperature of the liquid medium is set between 80 ° C. and 250 ° C., more particularly between
- the optimal target temperature depends mainly on the selected carbon-based material, and its concentration in the dispersion, as well as the nature of the aqueous phase.
- a catalyst (“active phase”) is deposited on the surface of the carbon nanotubes before carrying out the irradiation with microwaves.
- This catalyst may be a metal, as explained below. It can be deposited by any known method, for example by impregnating the nanotubes with a solution of a metal salt (for example a nitrate or a salt of an organic acid) followed by the calcination of the nanotubes, which transforms the salt of the metal into an oxide of the metal. Then, the metal oxide is converted into the active phase by reduction.
- a metal salt for example a nitrate or a salt of an organic acid
- Metal is advantageously a transition metal, which can be chosen from those already used in the synthesis of carbon nanotubes from carbon precursors in gaseous form, especially Fe, Ni, Co, but also among noble metals such as Pd, Pt, Ir, Ru.
- the catalyst may be deposited by impregnating the carbon nanotubes with a solution containing the precursor salt of the active phase.
- the solid is dried, for example at about 100 ° C. in air, then calcined, for example at about 300 ° C. for 2 hours, and finally reduced under hydrogen, for example to about 400 ° C. C for 2 hours, to convert the oxide to metal.
- the charge of the metal can be chosen within a fairly wide range, depending on the activity of the metal chosen. Typically, a charge of the metal of between 0.1% and 13% by mass is chosen relative to the mass of the final material, preferably between 1% and 8% and more particularly between 3% and 6% by weight.
- the rate of formation or the rate of oxidation followed by that of propagation of the tear, would be dependent on the nature of the solvent constituting the reaction medium, the activity of the active catalytic site in the decomposition of the water molecule or traces of oxygen present in the synthesis medium and also of the local temperature where the reaction takes place and the absorbency of microwaves by the starting solid, eg. carbon nanotubes, pure or doped, or expanded graphite, as well as the power of the microwaves used.
- the starting solid eg. carbon nanotubes, pure or doped, or expanded graphite
- the method according to the invention can be implemented indifferently with nanotubes mono-sheet, bi-sheet, tri-sheet or multi-sheet; depending on the starting material, found among the particles or sheets of graphene obtained a preponderant fraction of mono-sheet, bi-sheet, tri-sheet or multi-sheet, and the overall yield of graphene is lower with multi nanotubes -leaves with bi-sheet nanotubes.
- the synthesis is carried out from carbon nanotubes containing about 1.5% to 2.5% Fe-C in the central channel, and decorated with about 8% to 12% by weight of palladium on the outer surface.
- the nanotubes contain 2% by weight of Fe-C in the central channel and are decorated with 10% by weight of palladium on their outer surface.
- These carbon nanotubes are dispersed in a volume of appropriate liquid medium, for example distilled water or ethanol, typically with vigorous stirring.
- concentration of carbon nanotubes in water or ethanol is between 0.01 and 0.1 g. ml "1 , preferably between 0.005 and 0.05 g, ml " 1 , and particularly preferably between 0.005 and 0.02 g. ml "1.
- the liquid medium containing the nanotubes is transferred to a quartz reactor of suitable volume, for example of 100 ml.
- the synthesis is carried out by heating under microwave irradiation system with power which is advantageously located between 300 and 900 Watts, for a period which is advantageously between 30 and 180 minutes, and more preferably between 60 and 120 minutes.
- the mixture is sonicated, advantageously for about 10 minutes, in order to desorb the maximum number of compounds weakly adsorbed on the surface of the carbon nanotubes
- the mixture is decanted and the supernatant liquid fraction is then removed for analysis by transmission electron microscopy.
- multi-sheet carbon nanotubes are impregnated by the porous volume method of an iron nitrate solution.
- the solid is dried, for example at about 100 ° C. in an oven, and then calcined in air, for example at about 300 ° C. for 2 hours, in order to decompose the nitrate precursor into its corresponding oxide.
- the theoretical iron load is advantageously set at 5 and 10% by weight.
- Iron oxide is then reduced under hydrogen (150 ml.min -1 ) at 400 ° C. for 2 hours
- the graphene synthesis is then carried out under the conditions similar to those described above.
- carbon nanotubes doped with heteroatoms such as boron and nitrogen
- heteroatoms such as boron and nitrogen
- graphene sheets doped with heteroatoms can be synthesized.
- the introduction of these heteroatoms into the structure of graphene makes it possible to modify the physico-chemical properties of graphene, which gives access to new physical, chemical and mechanical properties.
- the transformation of these dopene-doped carbon nanotubes can be done according to the first embodiment of the invention, as described above.
- the state of the art includes processes in which small graphitic particles are treated with microwaves.
- the patent application US 2005/0271574 (inventors: Jang et al.) Describes a process in which micron graphite particles are irradiated with microwaves to obtain graphite nanosheets with a length and width of less than 100 nm. and comprising about ten layers of thick graphene.
- US patent application 2008/0258359 A1 (inventors: Jang et al.) Discloses a method in which small graphitic particles, such as carbon nanofibers, are irradiated with microwaves; this process starts from sheets exfoliated by intercalation or etching and leads to graphite sheets with a thickness of the order of 3.5 nm (corresponding to a dozen graphitic layers).
- the process uses expanded graphite as starting material.
- This material is known per se, for example from Klatt et al. (reference 12) and Chung (reference 13).
- This second embodiment of the method according to the invention is similar to the first embodiment described above (section 1 of the description): (a) In the process according to this second embodiment, the carbon nanotubes are replaced by expanded graphite whose specific surface area, measured by the BET method, is advantageously between 20 m 2 / g and 100 m 2 / g and typically of the order of 40 m 2 / g. Expanded graphite is prepared by known methods such as exfoliation of graphite intercalation compounds. It is then transformed into flakes or powder, for example by grinding. Expanded graphite may include insertion compounds, such as halogens, mineral acids, organic acids.
- Flakes or expanded graphite powder are dispersed in a liquid medium, which may be aqueous or organic; as such, alcohols (eg ethanol) or other organic solvents are suitable.
- aqueous solvent it is possible to use distilled water, or a mineral acid, for example a solution of HNO 3 : H 2 SO 4 (50:50 v: v) with a concentration of 0.1 M. the flakes or the powder are dispersed with vigorous stirring in said liquid medium, according to known techniques. A particular embodiment in ammoniacal or nitrogen solution is described below.
- Graphene synthesis is carried out by heating the mixture thus prepared under microwave irradiation.
- the synthesis conditions may be the same as those described above, but a power of between 300 and 900 Watts and a duration of between 1 and 180 minutes (for carbon nanotubes, preferably between 30 and 300 nm) is preferred. or (better) 60 minutes and 180 minutes), and a temperature of between 120 and 200 ° C .; a frequency of 2.45 GHz is commonly used in microwave ovens and is suitable in this case. It is noted that the temperatures used here are generally much lower than those of known processes starting from graphite products.
- This second embodiment uses a graphite-based material that is less expensive than the carbon-based material used in the first embodiment (carbon nanotubes).
- the state of the art includes processes in which expanded graphite is produced by irradiating graphite flakes or powders interspersed with microwaves. Such a process is described in patent applications US 2006/0241237 A1 and US 2006/0231792 A1 (Board of Trusted Michigan State University) and in US patent application 2008/0048152 A1 (inventors: Jang et al.) ; the graphite is irradiated dry. In the process described in US patent application 2008/0206124 A1 (Inventors: Jang et al.), the material is etched chemically by halogens and then heated by microwaves. Here too, graphite is dry irradiated.
- graphene is synthesized from expanded graphite by replacing in step (b) the water or the alcohol with an ammoniacal or nitrogen solution.
- the expanded graphite is dispersed in a solution containing nitrogen-containing derivatives such as: an aqueous solution of ammonia, more or less diluted, an aqueous solution containing ammonia derivatives such as urea or any other compound containing nitrogen.
- the inventors believe that the introduction of nitrogen compounds improves the wettability by the liquid of the inter-slip space of the carbon compound; during heating, under microwaves or by any other means allowing a rapid increase in the temperature of the synthesis medium, the liquid would evaporate and decompose into gaseous products (for example, the NH 4 OH liquid decomposes into NH 3 gaseous and H 2 O gas) which would separate the graphene sheets in the expanded graphite, leading to further exfoliation of the expanded graphite with formation of individual graphene sheets. Evaporation of water (or ethanol) molecules in the liquid vapor may also contribute to the exfoliation.
- gaseous products for example, the NH 4 OH liquid decomposes into NH 3 gaseous and H 2 O gas
- Evaporation of water (or ethanol) molecules in the liquid vapor may also contribute to the exfoliation.
- the exfoliation of liquid graphite is a method known to those skilled in the art.
- the present invention provides an improvement in this method by the use of the microwave heating mode.
- the heat is not brought to the solid by conventional conduction but it is directly and almost instantly generated inside the solid by absorption of microwaves.
- This instantaneous heat input in the solid allows a rapid transformation of the trapped liquid in its matrix into its gaseous equivalents which contribute to a violent separation of the graphene planes constituting the expanded graphite.
- the exfoliation can also be improved by increasing the filling of the porosity of the expanded graphite, for example by addition of other compounds, known to those skilled in the art, to promote the wetting of interplanar spaces expanded graphite.
- the method according to the invention has many advantages.
- the process according to the invention first leads to a dispersion of particles or graphene sheets.
- This dispersion can be directly used in the manufacture of graphene-filled polymers, for example polymers having specific electrical conductivity properties.
- This dispersion can also be spread on a flat surface, and the solvent can be evaporated; this makes it possible to deposit particles or sheets of graphene on a solid substrate.
- Such a system of graphene particles or sheets deposited on a planar substrate can be used as a catalyst support, and in particular to catalyze the following reactions: hydrogenation in gaseous or liquid phase, ammonia synthesis in gaseous phase, low temperature oxidation, the coupling of DC bonds in Sonogashira, Heck and Suzuki type reactions or in the field of photocatalysis.
- This system of particles or graphene sheets deposited on a planar substrate can also be used in gas detectors or in photovoltaic devices, or as an optically transparent and electrically conductive thin layer.
- the process according to the invention leads to particles or sheets of graphenes which are easy to separate from the starting material, for example by simple decantation. Their handling is easy and can take place under good safety conditions, namely in dispersion or fixed on a solid substrate: it may be useless to handle particles or loose sheets of graphene.
- the method according to the invention makes it possible to produce graphene crystals, which has a structure in the form of graphene sheets (and in particular graphene comprising structures with a thickness not exceeding a few nanometers and preferably not more than 2 nm and having superimposed and substantially parallel graphene planes) with relatively large dimensions ranging from a few tens of nanometers to a few micrometers or more.
- Some embodiments produce graphene sheets of millimeter size.
- the process according to the invention also makes it possible to improve the yield of graphene, and in particular by starting from carbon nanotubes as a material based on graphite; in this case, the yield can be greatly improved by adding a catalyst on the surface of the nanotubes, which promotes the creation of break points (points of attack) in the graphitic plane constituting the wall of the carbon nanotube.
- the method according to the invention also makes it possible to obtain in a good yield graphene particles or sheets from inexpensive graphite-based materials, such as graphite powders or expanded graphite powders.
- the process for producing graphene sheets according to the invention makes it possible to obtain high yields, of the order of a few percent, and more generally between 3 and 40%; more especially, starting from expanded graphite, the yield can reach 12% and even 15%, whereas starting from carbon nanotubes, the yield can reach 20%.
- These yields can be improved by using the density gradient centrifugation technique, which is well known to those skilled in the art of separation.
- the process according to the invention proceeds at relatively low temperatures, generally below 250 ° C., whereas some methods of the state of the art use high temperatures, generally above 600 ° C., except for that based on exfoliation. graphite.
- the process according to the invention is very easy to industrialize, each step using known and simple techniques.
- the method also allows for fine control of the product obtained through the control of the process parameters and the graphite material of the feed.
- the use of tri-sheet or bi-sheet nanotubes gives graphene sheets which are richer in tri-sheets or bi-sheets, respectively, whereas the use of single-sheet nanotubes favors obtaining of graphene mono-slip.
- some embodiments of the method according to the invention do not use chemical compounds in the synthesis, thus avoiding recycling which can be expensive.
- the graphene sheets thus obtained have relatively large dimensions, from a few tens of micrometers to a hundred micrometers, or even one or more millimeters. These dimensions make it possible to envisage applications in the fields of optoelectronics, thin films that are optically transparent and electrically conductive, or photovoltaic, or their use as gas detectors, with greater ease than with nanoscale sheets. or micrometric where the assembly could represent a difficult step even insurmountable;
- the large size of the graphene sheets obtained by this embodiment facilitates the assembly of said sheets for the manufacture of devices of large size in the applications mentioned above, and reduces problems related to the effects of edges.
- the method according to the invention makes it possible to envisage the industrial use of graphene.
- the product obtained by the process according to the invention has remarkable electrical and thermal conduction properties which make it interesting for applications in many applications. areas such as conductive polymer composites, photovoltaics, catalysis and photocatalysis, gas detection systems and in electronics.
- the method according to the invention makes it possible to obtain graphene sheets of large size. These sheets can then be assembled by various known methods for the realization of devices that can be used in the field of optoelectronics, photovoltaics or as transparent and electrically conductive electrodes.
- One of these methods of assembly is the deposition in "drop-by-drop” mode, possibly followed by spin-coating, then chemical removal of the polymer.
- the deposition of graphene sheets in "drip" mode on the surface of the substrate can be carried out as such followed by drying or a suitable heat treatment to remove impurities present on the surface of the compound.
- the spin-coating technique may be used, using a chemically removable polymer to ensure better adhesion of the compound to the surface of the substrate.
- transparent thin layers of graphene are obtained on a substrate, preferably plane.
- These substrate layers may be the starting material for optoelectronic devices, photovoltaic devices and transparent conductive electrodes.
- Graphene sheets can also be used as antistatic protection material in various components, since a thin layer with these graphene sheets is electrically conductive.
- the large dimensions of the graphene sheets obtained in the present invention make it possible to envisage the implementation of the aforementioned devices with better results given the small influence of the edge effects of the materials constituting the assembly of the device.
- the low temperature required for the removal of impurities adsorbed on the surface of the sheets of graphene eg. ⁇ 200 ° C., makes it possible to envisage the use of graphene as conductive film in a wide range of substrates such as polyethylene (PET), polystyrene (PS), etc.
- the flexibility of the graphene thin films also allows a better resistance of the final device with respect to the mechanical stresses, eg. twisting, folding, etc. , compared to known materials, such as ITO or others, so the cracks caused by such treatment contribute to a drastic decrease in conductivity.
- the size of the primary sheets play a significant role in the implementation of such a device.
- the large size of the sheets constituting the final device also makes it possible to increase this resistance to twisting or folding and could make it possible to envisage the manufacture of new devices that are more resistant than those that are known. at the present time which are derived from the assembly of graphene sheets of smaller dimensions and therefore more fragile to the problems of taking off edges during mechanical stresses or other.
- graphene film-based devices also have excellent transparency, which is not the case with ITO-based or otherwise.
- EXAMPLE 1 Synthesis of qraphene by microwave heating of carbon nanotubes containing as catalysts palladium and iron, in an aqueous medium.
- the starting material was multi-layer carbon nanotubes (outer diameter 80 nm, length 1 to 10 micrometers), which contained on their outer surface a load of 10% by mass of palladium.
- the palladium is deposited by impregnation of the pore volume with an aqueous ethanolic solution (50:50% by volume) containing palladium nitrate. They contained about 0.5% iron in their central channel. This iron originated from the synthesis of nanotubes and is encapsulated by carbon planes; it has not been dissolved during the post-synthesis acidic treatments of nanotubes and would not intervene a priori in the synthesis of graphene.
- a mass of 0.1 g of these nanotubes was placed in a quartz or PTFE reactor, and 10 ml of distilled water was added.
- the synthesis was carried out by heating with microwaves under the following conditions: heating power: 300 Watts, duration: 30 minutes, temperature about 14O 0 C.
- FIG. 1 The images obtained by transmission electron microscopy (TEM) are presented in FIG. 1.
- the low resolution TEM image makes it possible to observe the presence of scattered fragments of average size around 1 ⁇ m wide and a few micrometers long ( Fig. 1A).
- the high resolution TEM images confirm the small thickness of the material which consists of only a few layers of graphene as well as the perfect hexagonal structure of the compound (Figs 1B and C). It is possible that during the preparation of the graphene fragments formed by catalytic opening carbon nanotubes aggregate together to give rise to structures of larger size.
- the yield of the graphene obtained was determined in the following manner: after synthesis the mixture was left decanted for several hours. The clear supernatant solution was removed and then evaporated to dryness and the whitish residue obtained was weighed afterwards. The analyzes carried out by MET above show that this solid is constituted by graphene sheets. The yield was about 4% graphene relative to the mass of the starting carbon nanotube material.
- the synthesis was carried out in a manner similar to that described in Example 1, except that the distilled water was replaced by ethanol and the palladium was replaced by iron.
- the iron is deposited on the surface of the carbon nanotubes in a manner similar to that used to deposit the palladium.
- the images of the graphene fragments obtained are shown in FIG. 2.
- the high-resolution observations confirm the hexagonal structure identical to that already observed in Example 1.
- the graphene yield is about 1%.
- EXAMPLE 3 Synthesis of qraphene by heating microwaves of carbon nanotubes containing as catalysts palladium and iron in an ethanol medium
- the synthesis was carried out in a manner similar to that described in Example 1 except that the distilled water was replaced with ethanol.
- the synthesis was carried out by dispersing an amount of 20 mg of expanded graphite in an aqueous solution of 25 ml.
- the expanded graphite was obtained by an industrial process described in references 12 and 13.
- the mixture was then subjected to heating under microwave with a fixed power equal to 300 Watts.
- the temperature of the aqueous medium was set at 160 c C.
- the duration of the synthesis was 60 minutes.
- the whitish solid supernatant solution was recovered and dried before being analyzed by MET.
- the high resolution TEM image (not shown here) clearly shows the hexagonal structure of the material and confirms the presence of graphene in the synthesis products.
- the yield was about 4%.
- FIG. 4 represents the evolution of the conductivity as a function of the amount of graphene added. After a sharp increase (two orders of magnitude) after the first addition showing the contribution of graphene, it increases almost linearly to finally saturate with a concentration of 1, 4 mg / ml. This saturation is due to the formation of aggregates of graphene on the surface of an electrode which can therefore no longer participate in the conduction of the solution.
- the catalyst was deposited by impregnating the carbon nanotubes with a solution containing palladium nitrate. After impregnation the solid was dried at
- the synthesis of graphene was carried out as follows: the solid was immersed in a volume of distilled water (10 ml) and transferred to a quartz reactor inserted in a second composite reactor to maintain the system under pressure.
- the power of the microwave was fixed at 300 Watts, the duration of the synthesis at 1 hour, and the temperature of the reaction medium at 160 ° C.
- the yield was 6%.
- the same bi-walled but palladium-free carbon nanotubes were also treated under the same conditions.
- FIG. resolution shows the presence of graphene sheets of dimension of a few hundred nanometers (Fig 5A). It is observed that the leaflets show superstructures, probably because of a difference of orientation between the graphene sheets.
- the formation of graphene sheets from the bi-walled carbon nanotubes can be attributed to the formation of the defect points, eg oxidation points, in the graphitic plane, and their propagation along the axis of the tube to give birth to the graphene leaflet. It should be noted, however, that the sheets observed have larger dimensions than those of the starting nanotubes. This could be explained by the fact that during the synthesis the individual sheets could aggregate to form larger sets.
- the carbon nanotubes without Pd having undergone the same treatment under microwave MET images show significant differences compared to those packed with 10% Pd. Indeed, in the case of nanotubes without Pd, the observation by TEM does not reveal the presence of graphene sheets but only entanglements of disordered graphitic planes (FIGS, 5C and D). These graphitic clusters are probably formed by destruction of the bi-wall carbon nanotubes under the effect of microwave irradiation, but without opening of the sheets constituting the wall of the nanotube because of the absence of the catalyst.
- the synthesis was carried out by dispersing amounts of expanded graphite ranging from 20 mg to 200 mg in 20 to 50 ml of an ammonia solution (33% ammonia concentration).
- the synthesis conditions are identical to those described in Example 4. It can be seen that the dimensions of the graphene sheets obtained are proportional to the concentration of ammonia in the solution: the higher the concentration of ammonia in the solution and more graphene sheets obtained are large, thus easily approaching one hundred micrometers.
- the same synthesis carried out for comparison in a purely aqueous medium gives rise to graphene sheets of significantly smaller size, typically of the order of a few micrometers.
- Figure 6 shows that the expanded graphite flakes float in water (A), but fall to the bottom in an ammoniacal solution. This seems to confirm the hypothesis put forward by the present inventors, concerning a better anchorage and therefore filling the interplanar spaces of the expanded graphite with the increasingly concentrated ammonia solution followed by exfoliation of the large sheets by liquid-vapor transformation. The best wetting (and thus the best filling of the pore volume) of the starting graphitic solid by the ammoniacal solution seems to be at the origin of the exfoliation of the large sheets of graphene.
- the transmission electron microscopy (TEM) analysis shows that the graphene sheets obtained are relatively thin and consist of only a few planes; the number of plans does not exceed eight. This is shown in FIG. 7. It should also be noted that the sheets obtained are relatively stable when they are deposited on a substrate, in this case the sample holder based on a copper grid covered by a carbon membrane. hole as is the case here (see Figure 7A).
- a volume of alcohol, in this case ethanol, containing a dispersion of graphene sheets, has been used in the manufacture of a transparent electrode device for photovoltaic applications.
- the graphene sheets were deposited by the conventional drop coating method followed by spin-coating in order to improve the dispersion of the sheets on the surface of the substrate, in this case glass.
- the glass can be replaced by any other transparent solid material that can serve as a rigid substrate in the intended fields of application.
- the electrical conductivity of the device was measured.
- the resulting device is treated under a flow of hydrogen at 150 ° C to remove impurities that could be adsorbed on the surface of graphene, and that could disrupt the good conduction of electrons through the device.
- Electrical conductivity measurements of the device were made by the four-point method, which is known to those skilled in the art. It is found that after heating, the conductivity of the film increases substantially following the removal of impurities adsorbed on its surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Procédé de fabrication d'une dispersion de particules ou feuillets de graphène, comprenant les étapes suivantes : (a) on approvisionne un matériau à base de carbone; (b) on disperse ledit matériau à base de carbone dans un liquide aqueux ou organique pour obtenir une dispersion; (c) on chauffe ladite dispersion par micro-ondes pour obtenir une dispersion contenant des particules ou feuillets de graphène et des matériaux carbonés de départ; (d) on sépare ladite dispersion de graphènes dudit matériau à base de carbone pour obtenir une dispersion de particules ou feuillets de graphène. Les particules de graphènes peuvent être isolées par filtration ou centrifugation, ou par l'évaporation du solvant.
Description
Procédé de préparation de graphènes
Domaine de l'invention
La présente invention concerne la préparation de graphènes à partir de matériaux précurseurs à base de nanotubes multi-feuillets de carbone, purs ou dopés avec des hétéroatomes tels que le bore, l'azote, ou à partir d'un matériau à base de graphite, tels que le graphite expansé ou l'anthracite, par un procédé de chauffage assistée par micro-ondes d'une dispersion du matériau précurseur. Ce procédé peut être catalytique ou non en fonction des matériaux précurseurs utilisés.
Etat de la technique
Le graphène est une feuille de graphite individuelle (« mono-feuillet ») constituée par des atomes de carbone en mode d'hybridation sp2 avec un arrangement selon un réseau hexagonal bi-dimensionnel. C'est un des matériaux les plus durs connus à ce jour. A l'intérieur d'une feuille de graphène la structure hexagonale est prédominante, cependant, on peut y trouver aussi les unités isolées de structure pentagonale ou heptagonale, qui constituent les défauts du matériau induisant des écarts par rapport à une structure plane exclusivement constituée de motifs hexagonaux. On connaît aussi des structures de graphène formées de plusieurs feuillet superposés ; ces structures ont été appelées FLG (« few-layer graphène »). Les structures plus épaisses ont été appelées NGP (« nano-sized graphène plates »). La distinction entre ces deux termes n'est pas très claire. La demande de brevet WO 2005/084172 propose le terme « Carbon nanoflake » (CNF) pour des formes planaires de carbone avec une épaisseur ne dépassant pas 10 nm, et le terme « Carbon nanosheet » (CNS) pour des CNF avec une épaisseur ne dépassant pas 2 nm.
La plupart des méthodes d'obtention de graphène reportées actuellement dans la littérature peuvent être classées en trois catégories :
(i) L'obtention par une exfoliation « micromécanique » à partir de HOPG (highly oriented pyrographite) ;
(ii) L'obtention par chauffage à haute température du carbure de silicium ;
(iii) La synthèse par dépôt sous vide (CVD, Chemical Vapour Déposition) sur un substrat métallique.
La première méthode d'obtention est décrite dans les articles constituant les références 1 à 6 (voir section « Références bibliographiques »). La deuxième méthode d'obtention, basée sur la formation de graphène sur un substrat de carbure de silicium, est décrite dans les articles constituants les références 7 et 8.
La troisième méthode est décrite dans les articles constituants les références de 9 à 11 et 17; il s'agit d'une synthèse au sens traditionnel du terme, qui procède par voie chimique à partir de composés gazeux de masse moléculaire plus faible que celle du produit. Selon un procédé récent décrit dans la référence 17, on décompose un composé hydrocarbure sur la surface d'un métal pour former une solution solide métal - carbone ; après un chauffage à haute température les atomes de carbone segrègent sur la surface du métal pour former des feuillets de graphène.
Un procédé de vapodéposition catalytique décrit dans la demande de brevet US 2005/0255034 A1 (Wang et Baker) conduit à des nanofibres composés de minces plaques de graphite superposées dans un sens perpendiculaire aux plans graphitiques, et non pas à des graphènes.
Une quatrième catégorie de procédés part de graphite intercalé, dans lequel les plans graphitiques sont très espacés. Ce matériau est soit attaqué chimiquement, soit soumis à une forte chaleur pour séparer les couches graphitiques. A titre d'exemple, le document WO 2008/060703 (Directa Plus Patent & Technology Limited) décrit un procédé pour préparer des feuillets très minces de graphite en exposant des feuillets de graphite intercalé brusquement à des températures d'au moins 13000C. Dans le procédé décrit dans la demande de brevet US 2008/0206124 A1 (inventeurs : Bor Z. Jang et al.), le matériau est attaqué chimiquement par des halogènes, puis chauffé. Dans un autre procédé décrit dans le même document, le matériau est intercalé par des halogènes puis soumis, en phase liquide, à des ultrasons. Dans un autre procédé décrit dans le brevet US 7,081 ,258 B1 (Nanotek Instruments), le graphite intercalé est soumis à une attrition mécanique par broyage très fin. Dans encore un autre procédé, décrit dans le document WO 2008/143692 (University of California), une poudre de graphite intercalé est exposé à un chauffage à 800°C pendant 2 minutes sous azote, suivi d'un traitement par ultrasons.
Une cinquième catégorie de procédés utilise des ultrasons : différents produits graphitiques sont dispersés dans un liquide et soumis à des ultrasons à la température ambiante (voir US 2008/0279756 A1 et US 2008/0248275 A1 (inventeurs : Bor Z. Jang ét al.)-
Aucune de ces méthodes n'est sélective pour la synthèse de graphène sous forme de mono-feuillet ou bi-feuillet ou de FLG (few-layer graphène), et conduisent la plupart du temps à des structures où s'empilent plusieurs feuilles, voire même des dizaines de feuillets. De plus, le graphène obtenu par ces méthodes se présente le plus souvent sous la forme de feuillets de petites dimensions, e.g. quelques nanomètres à quelques dizaines de nanomètres, qui sont difficiles à manipuler et difficiles à déposer sur des supports pour une étude plus approfondie par les techniques usuellement employées. De plus, la faible dimension de ces feuillets rend difficiles leurs utilisation dans les applications potentielles, eg. problèmes de jonction et de bords d'assemblage. Ces feuillets ont tendance à se plier pour former des formes complexes (appelés parfois « carbone fractals », voir le document US 2006/0121279 A1 ) ; ceci rend plus difficile l'étude des propriétés fondamentales de ce matériau, et complique les études visant les applications potentielles de ces matériaux. La demande de brevet US 2006/0121279 A1 décrit un procédé pour fabriquer des nanotubes de carbone à partir de graphènes par application d'une haute pression et d'une haute température.
Récemment, Dresselhaus et al. (référence 17) ont décrit un nouveau procédé de synthèse de graphène par la voie CVD (dépôt chimique à partir d'une phase vapeur) sur un substrat revêtu d'un film de nickel. Les feuillets de graphène obtenus par cette méthode possèdent des dimensions relativement importantes, de l'ordre de quelques micromètres. Cependant, la production industrielle de graphène à partir de ce procédé promet d'être difficile et nécessite des méthodes de transfert appropriées.
Le graphène, à cause de sa difficulté d'obtention, est l'un des matériaux les plus chers. Son prix pourrait baisser d'une manière significative si des méthodes de synthèse plus efficaces étaient disponibles, à l'instar de ce qui a été observé dans le domaine des nanotubes de carbone vers la fin des années 90 où on a assisté à une chute vertigineuse de prix des nanotubes au fur et à mesure de l'optimisation des méthodes
de synthèse permettant l'obtention de quantités de nanotubes plus importantes avec une meilleure sélectivité, en l'occurrence par des méthodes de croissance par CCVD (Catalytic Chemical Vapour Déposition).
Malgré l'existence de plusieurs types de procédé de laboratoire permettant d'obtenir de très petites quantités de graphènes, il existe un besoin pour développer de nouvelles méthodes de synthèse de graphène qui présentent un meilleur rendement, et qui permettent d'obtenir des quantités plus importantes de ce matériau remarquable, afin de pouvoir étudier ses propriétés physiques, chimiques et mécaniques ; ces études pourraient permettre de confronter les prédictions de différentes théories à des résultats expérimentaux. Dans ce contexte, il est aussi très intéressant de pouvoir synthétiser des feuillets de graphène de dimensions plus grandes, c'est-à-dire au moins micrométrique, afin de mieux maîtriser leur dépôt sur des surface d'accueil et pour obtenir des résultats plus facilement interprétables et plus facilement comparables à ceux obtenus sur les matériaux carbonés conventionnels. II existe également un besoin pour développer des nouvelles méthodes de synthèse de graphène plus simples et qui présentent la possibilité d'une production industrielle, pour le cas où le graphène trouve des applications industrielles ; de telles méthodes n'existent pas à l'heure actuelle.
Objet de l'invention
Un premier objet de l'invention est un procédé de fabrication d'une dispersion de feuillets ou particules de graphène, comprenant les étapes suivantes :
(a) on approvisionne un matériau à base de carbone ;
(b) on disperse ledit matériau à base de carbone dans un liquide aqueux ou organique pour obtenir une dispersion ;
(c) on chauffe ladite dispersion par micro-ondes pour obtenir une dispersion contenant des particules ou feuillets de graphène ;
(d) on sépare ladite dispersion de graphènes dudit matériau à base de carbone pour obtenir une dispersion de particules ou feuillets de graphène. En ajoutant une cinquième étape de
(e) séparation des particules ou feuillets de graphène dudit liquide aqueux ou organique,
on a un procédé de fabrication de particules ou feuillets de graphène, qui représente le deuxième objet de l'invention.
On peut appliquer ladite dispersion de particules ou feuillets de graphène sur un substrat et laisser évaporer ledit liquide aqueux ou organique, pour former un système composé d'un substrat et de particules ou feuillets de graphène, qui représente un autre objet de l'invention.
Dans ces procédés, ledit liquide est de l'eau distillée, une solution acide, une solution d'alcool ou un mélange d'alcools, et ledit liquide peut contenir un composé aromatique ou un ou plusieurs hétéroatomes sélectionné dans le groupe des halogènes ou des métaux alcalins. Dans un mode de réalisation particulier, ledit liquide est une solution ammoniacale ou azotée.
Lesdites graphènes comprennent des structures d'une épaisseur ne dépassant pas 2 nm et présentant des plans graphitiques superposés et sensiblement parallèles. Le nombre de feuilles de graphène parallèles est avantageusement compris entre 1 et 10 et préférentiellement entre 2 et 5. Lesdites structures de graphène ont avantageusement une longueur et/ou largeur comprise entre 5 nm et 10 μm, de préférence entre 50 nm et 5 μm et plus préférentiellement entre 100 nm et 2 μm.
Ledit matériau à base de carbone est sélectionné dans le groupe constitué par : les nanotubes de carbone, les particules de graphite, le graphite expansé, l'anthracite. Lesdits nanotubes de carbone approvisionnés peuvent comprendre un dépôt d'au moins une phase active, de préférence un métal, et de manière encore plus préférée un métal sélectionné dans le groupe formé par le palladium, le platine, l'iridium, le ruthénium, les oxydes conducteurs Ladite phase active peut être également constituée par des métaux tels que le fer, le cobalt, le nickel ou tout autre métal pouvant servir dans la synthèse des nanotubes de carbone. Ladite phase active peut correspondre à une masse comprise entre 0,1% et 13% des nanotubes, préférentiellement comprise entre 1% et 8%, et encore plus préférentiellement comprise entre 3% et 6%. Elle peut comprendre des nanoparticules de métal.
Ledit matériau à base de carbone peut au moins en partie être dopé avec des hétéroatomes, de préférence avec du bore et/ou de l'azote. La concentration des hétéroatomes peut être comprise entre 0,5% et 18 % atomiques, préférentiellement entre 2% et 10 % atomiques, et plus préférentiellement entre 3% et 6 % atomiques.
Le rendement du procédé de fabrication de particules ou feuillets de graphène est avantageusement supérieur à 3% massiques de particules ou feuillets de graphène par rapport à la masse de matériau à base de carbone, préférentiellement supérieur à 12%, et avantageusement supérieur à 15% dans le cas où ledit matériau à base de carbone sont des nanotubes de carbone.
Le matériau à base de carbone utilisé dans le procédé selon l'invention est de préférence un matériau à base de graphite.
Description des figures
Les figures 1 à 7 se rapportent à la présente invention.
La figure 1 montre des images de microscopie électronique à transmission (MET) à différentes résolutions des plans de graphène obtenus par le procédé selon l'invention tel que décrit à l'exemple 1 , à partir des nanotubes de carbone dans un milieu aqueux. Les figures 2 et 3 montrent des images MET à différentes résolutions des plans de graphène obtenus par synthèse micro-ondes à partir des nanotubes de carbone dans un milieu éthanolique. La synthèse a été réalisée dans les conditions suivantes : puissance de chauffage : 300 Watts, durée : 60 minutes.
La figure 4 montre la conductivité électrique d'une solution de chloroforme après ajout d'une solution de graphène contenant 0.25 mg de graphène par millilitre de chloroforme. Les mesures ont été réalisées à la température ambiante.
La figure 5 montre des images MET d'échantillons à base de nanotubes de carbone bi- paroi avec ou sans palladium traités au micro-ondes dans les mêmes conditions. (A)1(B) : Nanotubes de carbone bi-parois contenant 10% de Pd ; on voit la formation des feuillets de graphène sur l'image basse résolution.
(C)1(D) : Nanotubes de carbone bi-parois sans Pd; la destruction des nanotubes de carbone bi-parois entraine la formation d'amas de graphite de dimension variable mais les feuillets de graphène sont absents dans l'échantillon.
La figure 6 montre le comportement du graphite expansé dans des milieux liquides différents : (A) Eau, (B) Solution ammoniacale (33 % de concentration en ammoniac).
Dans la solution ammoniaquée une grande partie du graphite expansé se trouve au fond de la solution contrairement au cas où le milieu est de l'eau pure. La tendance du
graphite expansé à se trouver au fond dans le cas d'une solution ammoniaquée est expliqué par un meilleur mouillage de l'espace interplanaire du graphite expansé par la solution ammoniaquée tout en tenant compte de la densité plus faible de la solution ammoniaquée (0.89). La figure 7 montre Images de microscopie électronique à transmission (MET) des feuillets de graphène obtenus par chauffage sous micro-ondes du graphite expansé dans une solution ammoniacale de 33 % (voir l'exemple 7 ci-dessous).
(A) Image MET basse résolution montrant les dimensions moyennes des feuillets de graphène obtenus par la méthode de synthèse, typiquement de l'ordre d'une centaine de micromètres.
(B) Image MET à moyenne résolution montrant la microstructure d'un feuillet de graphène avec les bords courbés.
(C) Image MET haute résolution d'un bord du feuillet de graphène montrant le nombre de plans de graphène constituants le feuillet, cinq dans ce cas. Les analyses réalisées sur d'autres feuillets confirment que le nombre de plans de graphène des feuillets ne dépasse pas huit et confirme la grande qualité du matériau ainsi obtenu.
Description
On entend ici par « graphène » une structure graphitique composé de plans graphi- tiques superposés et sensiblement parallèles, d'une épaisseur ne dépassant pas environ 2 nm. Cette structure peut être plane ou pliée.
Le procédé selon l'invention implique nécessairement le chauffage d'une dispersion de matériau à base de carbone, et de préférence à base de graphite, (matériau précurseur) par des micro-ondes. Sans être lié par une explication théorique du procédé selon l'invention, les inventeurs pensent que l'énergie produite par les microondes dans le matériau à base de carbone induit des points de fragilisation permettant le décollement des feuilles de graphène. De même, les inventeurs pensent que dans le cas où le matériau à base de carbone sont des nanotubes de carbone, le graphène est formé par ouverture des plans concentriques de nanotubes. Les inventeurs ont découverts que cette ouverture peut être facilitée par la présence de sites actifs de
catalyseurs qui contribuent à créer des points de départ de l'ouverture des murs des nanotubes de carbone de départ.
Selon l'invention, le matériau à base de carbone du départ est sélectionné avantageusement dans le groupe constitué par les nanotubes de carbone, les particules de graphite, le graphite expansé, l'anthracite. C'est donc très préférentiellement un matériau à base de graphite, qui comporte avantageusement une proportion significative de graphite, typiquement au moins 10% en masse, avantageusement au moins 30% en masse, et encore plus préférentiellement au moins 50% en masse. Il se présente de manière préférée sous une forme finement divisée, telle que les nanotubes, une poudre de graphite, des flocons de graphite expansé, une poudre de graphite expansé, une poudre d'anthracite. L'anthracite donne un rendement en graphène comparable à celui du graphite expansé, mais est environ mille fois moins cher que le graphite expansé. Le matériau à base de graphite peut être au moins en partie dopé avec des hétéroatomes, de préférence avec du bore et/ou de l'azote. Cela n'influe pas de manière notable sur la réactivité du matériau à base de carbone en vue de sa conversion en graphène, mais permet d'obtenir des particules ou feuillets de graphène dopé, qui peut présenter des propriétés physiques et chimiques (telles que la conductivité électrique, l'absorption optique, la réactivité envers certaines molécules) différentes de celles de particules ou feuillets de graphène pur. Dans le cas des nanotubes de carbone, afin de faciliter l'ouverture des parois du nanotube, un catalyseur, constitué par un ensemble de particules de métal ou d'oxyde de dimension nanométrique, est déposé sur la surface des nanotubes. Le dépôt du catalyseur peut être réalisé par toutes les techniques de dépôt connues de l'homme de métier. Dans la présente invention, la technique de dépôt préférée est celle de l'imprégnation par volume poreux du solide par une solution contenant un sel de la phase active suivie d'une étape de calcination et de réduction. L'étape de réduction n'est pas nécessaire lorsque la phase active est utilisée sous forme d'oxyde. Le procédé selon l'invention conduit à une dispersion de particules ou feuillets de graphène qui peut être séparé du matériau à base de carbone de départ par toute technique connue telle que la décantation, la filtration, la centrifugation. Cette dispersion de particules ou feuillets de graphène peut être utilisé telle quelle, par exemple on peut l'incorporer dans des polymères en phase liquide, ou on peut isoler
les particules ou feuillets de graphène, par exemple par évaporation du solvant, filtration ou centrifugation.
Nous décrivons ici en plus grand détail le procédé selon l'invention à partir de nanotubes de carbone et à partir de graphite expansé.
1 Synthèse à partir de nanotubes de carbone
Selon ce premier mode de réalisation de l'invention, le procédé de synthèse du graphène à partir des nanotubes de carbone est caractérisé en ce qu'il comporte les étapes successives suivantes : (a) On approvisionne le réactif de départ précurseur du graphène sous la forme de nanotubes de carbone, qui peuvent être arrangés d'une manière désordonnée ou alignées perpendiculairement par rapport à une surface plane.
Les nanotubes de carbone peuvent être préparés par toute méthode appropriée. A titre d'exemple, ils peuvent être préparés par décomposition catalytique d'un mélange d'hydrocarbure et d'hydrogène en présence d'un catalyseur de croissance à base de fer. Cette voie de synthèse a pour conséquence que les nanotubes de carbone renferment des petites particules de carbure de métal encapsulées dans le canal central. Ce métal provient du catalyseur de croissance utilisé pour la synthèse des nanotubes ; il peut s'agir notamment de fer, cobalt, nickel. Les analyses réalisées par thermogravimétrie (ATG) permettent de quantifier la quantité de fer encapsulé dans les nanotubes de carbone qui est typiquement de l'ordre de 0,5 à 3 % massiques, avantageusement de l'ordre de 1 ,5% à 2,5% et de manière préféré environ 1% à 2% ; le caractère préféré de ces domaines concerne le procédé de fabrication de ces nanotubes, et non pas leur utilisation comme matériau de départ dans le procédé selon l'invention.
Les nanotubes de carbone, qu'ils comportent des particules de carbure de métal ou non, peuvent être décorés avec une phase active à base de palladium. Le palladium peut être déposé par imprégnation avec une solution d'un précurseur inorganique ou métallo-organique (typiquement un sel) par la méthode du volume poreux, suivie d'une calcination sous air à environ 3000C pendant environ 2 heures et d'une réduction sous hydrogène à environ 4000C pendant environ 2 heures. Les analyses par microscopie électronique à transmission (MET) indiquent que les particules de palladium sont réparties de manière homogène et ont des tailles de quelques nanomètres. On dépose
ainsi une quantité de palladium comprise entre environ 2% et 15% massiques, préférentiellement entre 7% et 15%, et encore plus préférentiellement entre environ 8% et 12% massiques sur la surface externe. Le palladium peut être également remplacé par tout autre métal de la famille des métaux nobles tel que le platine, l'iridium, le ruthénium ou par le fer, le cobalt, le nickel.
(b) Les nanotubes de carbone, avec ou sans métaux, sont dispersés ensuite dans un milieu liquide, ce dernier peut être soit aqueux soit constitué par d'autres solvants tels que les alcools (l'éthanol par exemple) ou d'autres solvants organiques, ou en présence de composés de type liquides ioniques. (c) La synthèse de graphène est réalisée en chauffant ce mélange sous irradiation micro-ondes.
La synthèse du graphène est ensuite réalisée de la manière suivante : le solide est immergé dans un volume d'un liquide, tel que de l'eau ou un solvant organique, comme expliqué en plus grand détail ci-dessous, et transvasé dans un réacteur en quartz inséré dans un deuxième réacteur en composite permettant de maintenir le système sous pression. La puissance générateur de micro-ondes peut être variée entre 300 et 1200 Watts, de préférence entre 400 et 1000 Watts et plus spécialement entre 450 et 800 Watts. La durée de la synthèse est fixée entre 0,1 et 6 heures, de préférence entre 1 et 5 heures et plus spécialement entre 2 et 4 heures. La température du milieu liquide est fixée entre 800C et 2500C, plus particulièrement entre
1500C et 1900C et plus spécialement entre 1600C et 180°C, et cette température est mesuré tout au long du traitement micro-ondes, de manière continue ou ponctuellement, et la puissance du générateur de micro-ondes est ajusté en fonction de l'évolution de la température. Le choix de la température de consigne optimale dépend surtout du matériau à base de carbone choisi, et de sa concentration dans la dispersion, ainsi que de la nature de la phase aqueuse.
Dans un mode de réalisation très avantageux, on dépose sur la surface des nanotubes en carbone un catalyseur (« phase active ») avant de procéder à l'irradiation par micro- ondes. Ce catalyseur peut être un métal, comme expliqué ci-dessous. Il peut être déposé par toute méthode connue, par exemple par imprégnation des nanotubes d'une solution d'un sel de métal (par exemple d'un nitrate ou d'un sel d'un acide organique) suivi de la calcination des nanotubes, qui transforme le sel du métal en oxyde du métal. Ensuite, l'oxyde de métal est transformé en phase active par réduction. Le métal
est avantageusement un métal de transition, qui peut être choisi parmi ceux déjà utilisés dans la synthèse des nanotubes de carbone à partir des précurseurs de carbone sous forme gazeux, notamment le Fe, Ni, Co, mais aussi parmi les métaux nobles tels que Pd, Pt, Ir, Ru. Le catalyseur peut être déposé par imprégnation des nanotubes de carbone par une solution contenant le sel précurseur de la phase active. Dans ce mode de réalisation, après imprégnation, le solide est séché, par exemple à environ 1000C sous air, puis calciné, par exemple à environ 3000C pendant 2 heures, et enfin réduit sous hydrogène, par exemple à environ 4000C pendant 2 heures, afin de transformer l'oxyde en métal. La charge du métal peut être choisie dans une fourchette assez large, en fonction de l'activité du métal choisi. Typiquement, on choisit une charge du métal comprise entre 0,1% et 13% massiques par rapport à la masse du matériau final, de préférence entre 1 % et 8% et plus particulièrement entre 3% et 6% massiques.
Sans vouloir s'enfermer dans une explication théorique de l'invention représentée par ce mode de réalisation particulier dans lequel on dépose une phase active sur la surface des nanotubes en carbone, les inventeurs pensent que ce catalyseur se fixe de manière préférentielle sur un site de défaut à la surface du nanotube, et qu'il pourrait décomposer certaines molécules contenues dans la phase liquide du milieu réactionnel, et notamment des espèces polaires telles que l'eau ou un alcool, pour induire une oxydation du carbone se trouvant à son proximité. Les traces d'oxygène présentent dans le milieu de synthèse pourraient également participer dans la réaction d'oxydation du mur du nanotube. Le point d'oxydation servirait ensuite de point de déchirure et la propagation de cette déchirure le long de l'axe du nanotube permettrait de l'ouvrir pour donner naissance à une feuille de graphène ayant les dimensions proches de celle du mono-feuillet constituant le nanotube de carbone de départ. La vitesse de formation, ou la vitesse d'oxydation suivie de celle de propagation de la déchirure, serait dépendante de la nature du solvant constituant le milieu réactionnel, de l'activité du site catalytique actif dans la décomposition de la molécule d'eau ou des traces d'oxygène présentent dans le milieu de synthèse et aussi de la température locale où ayant lieu la réaction et du pouvoir absorbant des micro-ondes par le solide de départ, eg. nanotubes de carbone, purs ou dopés, ou du graphite expansé, ainsi que de la puissance des micro-ondes utilisées.
Le procédé selon l'invention peut être mis en œuvre indifféremment avec des nanotubes mono-feuillet, bi-feuillet, tri-feuillet ou multi-feuillet ; en fonction du matériau de départ, en trouve parmi les particules ou feuillets de graphène obtenus une fraction prépondérante de mono-feuillet, bi-feuillet, tri-feuillet ou multi-feuillet, et le rendement global de graphène est moins élevé avec des nanotubes multi-feuillets qu'avec des nanotubes bi-feuillet.
Ce mode de réalisation particulier est illustré ici par deux exemples :
Dans un mode de réalisation, la synthèse est réalisée à partir de nanotubes de carbone contenant environ 1 ,5% à 2,5% de Fe-C dans le canal central, et décorés avec environ 8% à 12% massiques de palladium sur la surface externe. Par exemple, les nanotubes contiennent 2% massiques de Fe-C dans le canal central et sont décorés avec 10% massiques de palladium sur leur surface externe.
Ces nanotubes de carbone sont dispersés dans un volume de milieu liquide approprié, par exemple d'eau distillée ou d'éthanol, typiquement sous forte agitation. De manière avantageuse, la concentration des nanotubes de carbone dans l'eau ou éthanol est comprise entre 0,01 et 0,1 g. ml"1, de préférence entre 0,005 et 0,05 g. ml"1, et de manière particulièrement préférée entre 0,005 et 0,02 g. ml"1. Le milieu liquide contenant les nanotubes est transféré dans un réacteur en quartz d'un volume adapté, par exemple de 100 ml. La synthèse est réalisée par chauffage du système sous irradiation micro-ondes avec des puissances qui se situent avantageusement entre 300 et 900 Watts, pendant une durée qui se situe avantageusement entre 30 et 180 minutes, et de manière plus préférée entre 60 et 120 minutes. Après synthèse le mélange est soumis à une sonication, avantageuse-ment pendant environ 10 minutes, afin de désorber le maximum de composés faiblement adsorbés sur la surface des nanotubes de carbone. Le mélange est décanté puis la fraction liquide surnageant est prélevée pour être analysé ensuite par microscopie électronique à transmission.
Dans un autre mode de réalisation, on imprègne des nanotubes de carbone multi- feuillets par la méthode du volume poreux d'une solution de nitrate de fer. Après imprégnation le solide est séché, par exemple à environ 100 0C dans un étuve, puis il est calciné sous air, par exemple à environ 3000C pendant 2 heures, afin de décomposer le précurseur nitrate en son oxyde correspondant. La charge en fer théorique est fixée avantageusement à 5 et 10 % massiques. L'oxyde de fer est ensuite réduit sous
hydrogène (150 ml. min"1) à 400 CC pendant 2 heures. La synthèse de graphène est réalisée ensuite dans les conditions similaires que celles décrites ci-dessus.
Dans une variante du premier mode de réalisation, on approvisionne des nanotubes de carbone dopés avec des hétéroatomes, tels que le bore et l'azote, qui peuvent être préparés par tout procédé connu (voir la réf. 14). Ainsi, on peut synthétiser des feuillets de graphène dopés avec des hétéroatomes. L'introduction de ces hétéroatomes dans la structure du graphène permet de modifier les propriétés physico-chimiques du graphène, ce qui donne accès à de nouvelles propriétés physiques, chimiques et mécaniques. La transformation de ces nanotubes de carbone dopés en graphène peut se faire selon le premier mode de réalisation de l'invention, comme décrit ci-dessus.
L'état de la technique comprend des procédés dans lesquels on traite des particules graphitiques de petite taille avec des micro-ondes. La demande de brevet US 2005/0271574 (inventeurs : Jang et al.) décrit un procédé dans lequel on irradie des particules microniques de graphite par des micro-ondes pour obtenir des nanofeuillets de graphite d'une longueur et largeur inférieure à 100 nm, et comprenant une dizaine de couches de graphène d'épaisseur.
La demande de brevet US 2008/0258359 A1 (inventeurs: Jang et al.) décrit un procédé dans lequel on irradie des particules graphitiques de petite taille, tels que des nano- fibres de carbone, avec des micro-ondes ; ce procédé part de feuillets exfoliés par intercalation ou attaque chimique et conduit à des feuillets de graphite d'une épaisseur de l'ordre de 3,5 nm (correspondant à une dizaine de couches graphitiques).
Dans ces deux documents, l'irradiation est effectuée à sec, et le procédé ne fait pas recours à des catalyseurs. De plus, le mécanisme décrit est plutôt du type opérant par décollement des plans de graphite faiblement reliés par des forces de van der Waals que par un procédé d'ouverture de liaisons covalentes des parois des nanotubes de carbone comme dans ce premier mode de réalisation de la présente invention.
2 Synthèse à partir de graphite expansé
Selon un deuxième mode de réalisation, le procédé utilise comme matériau de départ le graphite expansé. Ce matériau est connu en tant que tel, par exemple des articles de Klatt et al. (référence 12) et Chung (référence 13).
Ce deuxième mode de réalisation du procédé selon l'invention est similaire au premier mode de réalisation décrit ci-dessus (section 1 de la description) :
(a) Dans le procédé selon ce second mode de réalisation, les nanotubes de carbone sont remplacés par du graphite expansé dont la surface spécifique, mesurée par la méthode de BET est avantageusement comprise entre 20 m2/g et 100 m2/g et typiquement de l'ordre de 40 m2/g. Le graphite expansé est préparé par les méthodes connues telles que l'exfoliation de composés d'intercalation du graphite. Il est ensuite transformé en flocons ou en poudre, par exemple par broyage. Le graphite expansé peut comporter des composés d'insertion, tels que des halogènes, des acides minéraux, des acides organiques.
(b) Les flocons ou la poudre de graphite expansé sont dispersés dans un milieu liquide, qui peut être aqueux ou organique ; à ce titre, les alcools (par exemple l'éthanol) ou d'autres solvants organiques conviennent. En tant que solvant aqueux, on peut utiliser de l'eau distillé, ou un acide minéral, par exemple une solution de HNO3:H2SO4 (50 :50 v :v) de concentration de 0,1 M. Typiquement, on disperse les flocons ou la poudre sous forte agitation dans ledit milieu liquide, selon des techniques connues. Un mode de réalisation particulier en solution ammoniacale ou azotée est décrit ci-dessous.
(c) La synthèse de graphène est réalisée en chauffant le mélange ainsi préparé sous irradiation micro-ondes. Les conditions de synthèse (puissance et durée) peuvent être les mêmes que celles décrites ci-dessus, mais on préfère une puissance comprise entre 300 et 900 Watts et une durée comprise entre 1 et 180 minutes (pour des nanotubes de carbone de préférence entre 30 ou (mieux) 60 minutes et 180 minutes), et une température comprise entre 120 et 2000C ; une fréquence de 2,45 GHz est couramment utilisée dans les fours à micro-ondes et convient dans le présent cas. On note que les températures utilisées ici sont généralement très inférieures à celles des procédés connus partant de produits à base de graphite. Ce deuxième mode de réalisation utilise un matériau à base de graphite qui est moins cher que le matériau à base de carbone utilisé par le premier mode de réalisation (les nanotubes de carbone).
L'état de la technique comprend des procédés dans lesquels on produit du graphite expansé en irradiant des flocons ou poudres de graphite intercalé avec des microondes. Un tel procédé est décrit dans les demandes de brevet US 2006/0241237 A1 et US 2006/0231792 A1 (Board of Trustées of Michigan State University) ainsi que dans la demande de brevet US 2008/0048152 A1 (inventeurs : Jang et al.) ; le graphite est irradié à sec. Dans le procédé décrit dans la demande de brevet US 2008/ 0206124 A1
(inventeurs : Jang et al.), le matériau est attaqué chimiquement par des halogènes, puis chauffé par des micro-ondes. Ici aussi, le graphite est irradié à sec.
Dans une autre mode de réalisation de l'invention, le graphène est synthétisé à partir de graphite expansé en remplaçant à l'étape (b) l'eau ou l'alcool par une solution ammoniacale ou azotée. Dans cette variante le graphite expansé est dispersé dans une solution contenant des dérivés azotés tels que : une solution aqueuse d'ammoniaque, plus ou moins diluée, une solution aqueuse contenant de dérivés ammoniaques tels que l'urée ou tout autre composé contenant de l'azote. Sans vouloir être liés par une quelconque explication théorique de leurs constatations, les inventeurs pensent que l'introduction des composés azotés améliore la mouillabilité par le liquide de l'espace inter-feuillet du composé carboné ; lors du chauffage, sous microondes ou par tout autre moyen permettant une augmentation rapide de la température du milieu de synthèse, le liquide s'évaporerait et se décomposerait en produits gazeux (à titre d'exemple, le NH4OH liquide se décompose en NH3 gazeux et H2O gazeux) qui permettraient d'écarter les feuillets graphéniques dans le graphite expansé, conduisant à une exfoliation supplémentaire du graphite expansé avec formation des feuillets individuelles de graphène. L'évaporation des molécules d'eau (ou d'éthanol) présentes dans le liquide en vapeur pourrait contribuer également à l'exfoliation. L'exfoliation du graphite par voie liquide est une méthode connue de l'homme du métier. La présente invention apporte une amélioration dans cette méthode par l'utilisation du mode de chauffage par voie micro-ondes. Dans cette synthèse la chaleur n'est pas apportée au solide par voie de conduction classique mais elle est directement et presque instantanément générée à l'intérieur du solide par absorption des micro-ondes. Cet apport de chaleur instantané dans le solide permet une transformation rapide du liquide piégé dans sa matrice en ses équivalents gazeux qui contribuent à une séparation violente des plans de graphène constituant le graphite expansé.
Selon l'invention, l'exfoliation peut être également améliorée en augmentant le remplissage de la porosité du graphite expansé, par exemple en additionnant encore d'autres composés, connus de l'homme du métier, pour favoriser le mouillage des espaces inter-planaires du graphite expansé.
3 Avantages du procédé selon l'invention et utilisation du produit obtenu
Le procédé selon l'invention a de nombreux avantages. Le procédé selon l'invention conduit d'abord à une dispersion de particules ou feuillets de graphène. Cette dispersion peut être directement utilisée dans la fabrication de polymères chargés de graphène, par exemple de polymères présentant des propriétés de conductivité électriques spécifiques.
Cette dispersion peut aussi être étalée sur une surface plane, et le solvant peut être évaporé ; cela permet de déposer des particules ou feuillets de graphène sur un substrat solide. On obtient ainsi un système composé de particules ou feuillets de graphène déposés sur un substrat. Un tel système de particules ou feuillets de graphène déposées sur un substrat plan peut être utilisé comme support de catalyseur, et notamment pour catalyser les réactions suivantes : l'hydrogénation en phase gazeuse ou liquide, la synthèse d'ammoniaque en phase gazeuse, l'oxydation à basse température, le couplage de liaisons C-C dans les réactions de type Sonogashira, Heck et Suzuki ou dans le domaine de la photocatalyse. Ce système de particules ou feuillets de graphène déposées sur un substrat plan peut aussi être utilisé dans des détecteurs de gaz ou dans des dispositifs photovoltaïques, ou en tant que couche mince optiquement transparente et électriquement conductrice.
D'une manière générale, le procédé selon l'invention conduit à des particules ou feuillets de graphènes qui sont faciles à séparer du matériau de départ, par exemple par simple décantation. Leur manipulation est facile et peut se dérouler dans des bonnes conditions de sécurité, à savoir en dispersion ou fixé sur un substrat solide : il peut être inutile de manipuler des particules ou feuillets libres de graphène.
Le procédé selon l'invention permet de produire des cristaux de graphène, qui présente une structure en forme de feuillets de graphène (et notamment de graphène comprenant des structures d'une épaisseur ne dépassant pas quelques nanomètres et de préférence pas plus que 2 nm et présentant des plans de graphène superposés et sensiblement parallèles) avec des dimensions relativement importantes allant de quelques dizaines de nanomètres à quelques micromètres voire plus. Certains modes de réalisation permettent de produire des feuilles de graphène de taille millimétrique.
Le procédé selon l'invention permet également d'améliorer le rendement de graphène, et notamment en partant de nanotubes de carbone comme matériau à base de
graphite ; dans ce cas, le rendement peut être fortement amélioré en ajoutant un catalyseur sur la surface des nanotubes, qui favorise la création de points de cassure (points d'attaque) dans le plan graphitique constituant le mur du nanotube en carbone.
Le procédé selon l'invention permet par ailleurs d'obtenir avec un bon rendement des particules ou feuillets de graphène à partir de matériaux à base de graphite peu chers, tels que les poudres de graphite ou les poudres de graphite expansé. En particulier, le procédé de fabrication de feuillets de graphènes selon l'invention permet d'obtenir des rendements importants, de l'ordre de quelques pourcents, et plus généralement compris entre 3 et 40% ; plus spécialement, en partant du graphite expansé, le rendement peut atteindre 12% et même 15%, alors qu'en partant de nanotubes de carbone, le rendement peut atteindre 20%. Ces rendements peuvent être améliorés en utilisation la technique de centrifugation en gradient de densité, bien connue en tant que telle de l'homme du métier dans le domaine de la séparation.
Le procédé selon l'invention procède à des températures relativement basses, généralement inférieures à 2500C, alors que certains procédés de l'état de la technique utilisent des températures élevées, généralement supérieures à 6000C sauf pour celui basé sur l'exfoliation du graphite. Le procédé selon l'invention est très facile à industrialiser, chaque étape faisant appel à des techniques connues et simples. Le procédé permet également un contrôle fin du produit obtenu par le biais du contrôle des paramètres du procédé et du matériau à base de graphite du départ. A titre d'exemple, l'utilisation de nanotubes tri-feuillet ou bi-feuillet donne des feuillets de graphène plus riches en tri-feuillets ou bi-feuillets, respectivement, alors que l'utilisation de nanotubes mono-feuillet favorise l'obtention de graphène mono-feuillet.
D'une manière générale, par rapport aux méthodes de l'état de la technique, certains modes de réalisation de la méthode selon l'invention n'utilisent pas de composés chimiques dans la synthèse, évitant ainsi leur recyclage qui peut être coûteux.
La demanderesse a trouvé que le mode de réalisation utilisant une solution ammoniacale ou azotée présente des avantages particuliers :
(i) Les feuillets de graphène ainsi obtenus ont des dimensions relativement élevées, de quelques dizaines de micromètres à une centaine de micromètres, voire un ou plusieurs millimètres. Ces dimensions permettent d'envisager des applications dans les domaines de l'optoélectronique, des couches minces optiquement transparentes et électriquement conductrices, ou du photovoltaïque, ou encore leur utilisation comme détecteurs de gaz, avec plus de facilités qu'avec des feuillets de taille nanométrique ou
micrométrique où l'assemblage pourrait représenter une étape difficile voire même insurmontable ;
(H) L'exfoliation supplémentaire par cette méthode conduit à la production de feuillets de graphène de très faible épaisseur, mono- ou bi-feuillets avec un maximum de nombre de feuillets ne dépassant pas huit ; on trouve au fond du réacteur du graphite expansé qui n'a pas réagi.
(iii) II est inutile d'utiliser un catalyseur d'ouverture comme dans le mode de réalisation partant de nanotubes de carbone, décrit ci-dessus. En effet, la diffusion du liquide suivie de la transformation au moins partielle du liquide en vapeur semble être suffisante pour réaliser l'exfoliation supplémentaire de graphite expansé, donnant naissance à des feuillets de graphène de grande dimension et de faible épaisseur. Ainsi, on économise le coût du catalyseur, et n'a pas besoin de le séparer du mélange réactionnel pour le réutiliser.
(iv) La grande dimension des feuillets de graphène obtenus par ce mode de réalisation facilite l'assemblage desdites feuilles en vue de la fabrication des dispositifs de taille importante dans les applications visées ci-dessus, et permet de réduire des problèmes liés aux effets de bords.
(v) Les feuillets obtenus sont très peu contaminés par des composés oxygénés (cela ressort de l'analyse par spectroscopie de photoélectrons induite par des rayons X (XPS) et par spectroscopie infra-rouge) à cause du caractère réducteur du milieu de synthèse ; cela permet de réduire les étapes de traitement post-synthèse qui seraient autrement nécessaires pour éliminer des groupements oxygénés néfastes pour la conductivité du matériau. Il est bien connu de l'homme du métier que les matériaux à base de graphite oxydé (en anglais « graphite oxide ») générés par les méthodes d'exfoliation par voie liquide classique sont électriquement isolants et très difficiles à réduire. Par exemple, il a été reporté que le graphite oxydé, même après un chauffage à plus de 10000C, contient encore des groupements oxygénés expliquant sa conductivité électrique réduite ; le procédé selon l'invention évite totalement ce problème. Dû à ses nombreux avantages, le procédé selon l'invention permet d'envisager l'utilisation industrielle de graphène. En particulier, le produit obtenu par le procédé selon l'invention présente des propriétés de conduction électrique et thermique remarquable qui le rendent intéressant pour des applications dans de nombreux
domaines tels que les composites polymères conducteurs, le photovoltaïque, la catalyse et photocatalyse, les systèmes de détection de gaz et dans l'électronique.
4 Applications dans le domaine d'optoélectronique et comme matériau d'antistatique
Comme indiqué ci-dessus, le procédé selon l'invention permet d'obtenir des feuillets de graphène de dimension importante. Ces feuillets peuvent ensuite être assemblés par diverses méthodes connues en vue de la réalisation des dispositifs qui peuvent être utilisés dans le domaine de l'optoélectronique, du photovoltaïque ou comme électrodes transparentes et électriquement conductrices. Une de ces méthodes d'assemblage est le dépôt en mode « goutte-à-goutte », possiblement suivi d'un spin-coating, puis élimination du polymère par voie chimique. Plus précisément, le dépôt des feuillets de graphène en mode « goutte-à-goutte » sur la surface du substrat peut être réalisé tel quel suivi d'un séchage ou d'un traitement thermique adéquat afin d'éliminer des impuretés présentes à la surface du composé.
En complément ou alternativement, on peut utiliser la technique de spin-coating, en utilisant un polymère éliminable par voie chimique afin d'assurer une meilleure adhésion du composé sur la surface du substrat.
On peut aussi utiliser d'autres techniques connues de l'homme du métier aptes à déposer une suspension sur une surface plane d'un substrat, tel que la technique de Langmuir-Blodgett, le dépôt par spray ou le dépôt d'encre.
Ainsi, on obtient de couches minces transparentes de graphène sur un substrat, de préférence plan. Ces couches sur substrat peuvent être le matériau de départ pour des dispositifs optoélectroniques, dispositifs photovoltaiques et électrodes transparentes conductrices.
Les feuillets de graphène peuvent également être utilisées comme matériau de protection antistatique dans divers composants, dans la mesure où une couche mince comportant ces feuillets de graphène est électriquement conductrice.
Les grandes dimensions des feuillets de graphène obtenus dans la présente invention permettent d'envisager la mise en œuvre des dispositifs pré-cités avec des meilleurs résultats compte tenu de la faible influence des effets de bords des matériaux constituants l'assemblage du dispositif. Il est à noter que la faible température nécessaire pour l'élimination des impuretés adsorbées sur la surface des feuillets de
graphène, eg. < 2000C, permet d'envisager l'utilisation du graphène comme film conducteur dans une large gamme de substrat tels que le polyéthylène (PET), le polystyrène (PS), etc..
La flexibilité des couches minces de graphène permet également une meilleure résistance du dispositif final vis-à-vis des sollicitations mécaniques, eg. torsion, pliage, etc. , par rapport aux matériaux connus, tels que l'ITO ou autres, donc les fissures occasionnées par un tel traitement contribuent à une diminution drastique de la conductivité. Néanmoins, il est à noter que la dimension des feuillets primaires jouent un rôle non négligeable dans la mise en œuvre d'un tel dispositif. En effet, dans la présente invention, la grande dimension des feuillets constituant le dispositif final permet également d'augmenter cette résistance à la torsion ou au pliage et pourrait permettre d'envisager la fabrication des nouveaux dispositifs plus résistants que ceux que l'on connaît à l'heure actuelle qui sont issus de l'assemblage des feuillets de graphène de dimensions moindres et par conséquent, plus fragile aux problèmes de décollage de bords lors des sollicitations mécaniques ou autres. Il est également important de noter que les dispositifs à base de film de graphène présentent également une excellente transparence ce qui n'est pas le cas de ceux à base d'ITO ou autres.
Exemples Les exemples ci-dessous illustrent les différents procédés de synthèse de graphène et de ses composés selon l'invention, mais ne limitent pas la portée de l'invention.
Exemple 1 : Synthèse de qraphène par chauffage sous micro-ondes des nanotubes de carbone contenant comme catalyseurs le palladium et le fer, en milieu aqueux.
Le matériau de départ étaient des nanotubes de carbone multi-feuillets (diamètre externe de 80 nm, longueur de 1 à 10 micromètres), qui contenaient sur leur surface externe une charge de 10 % massiques de palladium. Le palladium est déposé par imprégnation du volume poreux avec une solution aqueuse : éthanolique (50 :50 % en volume) contenant du nitrate de palladium. Ils renfermaient environ 0,5% de fer dans leur canal central. Ce fer provenait de la synthèse des nanotubes et est encapsulé par les plans de carbone ; il n'a pas été dissout lors des traitements acides post-synthèse de nanotubes et n'interviendrait pas à priori dans la synthèse du graphène.
Une masse de 0,1 g de ces nanotubes a été placée dans un réacteur en quartz ou en PTFE, et on a ajouté de 10 ml d'eau distillée. La synthèse a été réalisée en chauffant
avec des micro-ondes dans les conditions suivantes : puissance de chauffage : 300 Watts, durée : 30 minutes, température environ 14O0C.
Les images obtenues par microscopie électronique à transmission (MET) sont présentées sur la Figure 1. L'image MET à basse résolution permet d'observer la présence de fragments dispersés de taille moyenne autour de 1 μm de large et de quelques micromètres de long (Fig. 1A). Les images MET haute résolution confirment la faible épaisseur du matériau qui est constitué par seulement quelques feuillets de graphène ainsi que la structure hexagonale parfaite du composé (Figs. 1B et C). Il est possible que lors de la préparation des fragments de graphène formés par ouverture catalytique des nanotubes de carbone s'aggrègent entre eux pour donner naissance à des structures de plus grande dimension.
Le rendement du graphène obtenu a été déterminé de la manière suivante : après synthèse le mélange a été laissé décanté pendant plusieurs heures. La solution claire surnageante a été prélevée puis évaporée à sec et le résidu blanchâtre obtenu a été pesé ensuite. Les analyses réalisées par MET ci-dessus montrent que ce solide est constitué par des feuillets de graphène. Le rendement était d'environ 4 % de graphène par rapport à la masse du matériau à base de nanotubes de carbone de départ.
Exemple 2 : Synthèse de qraphène par chauffage sous micro-ondes des nanotubes de carbone contenant comme catalyseur le fer dans un milieu éthanolique
Dans cet exemple, la synthèse a été réalisée d'une manière similaire à celle décrite à l'exemple 1 , sauf que l'eau distillée a été remplacée par de l'éthanol et le palladium a été remplacé par le fer. Le fer est déposé sur la surface des nanotubes de carbone d'une manière similaire à celle utilisée pour déposer le palladium. Les images des fragments de graphène obtenus sont présentées sur la Figure 2. Les observations à haute résolution confirment la structure hexagonale identique à celle déjà observée dans l'Exemple 1. Le rendement en graphène est d'environ 1 %.
Exemple 3 : Synthèse de qraphène par chauffage sous micro-ondes des nanotubes de carbone contenant comme catalyseurs le palladium et le fer dans un milieu éthanoligue
Dans cet exemple, la synthèse a été réalisée d'une manière similaire à celle décrite dans l'exemple 1 sauf que l'eau distillée a été remplacée par de l'éthanol.
Les images des fragments de graphène obtenus sont présentées sur la Figure 3. Les observations à haute résolution confirment la structure hexagonale identique à celle déjà observée dans l'Exemple 1. Le rendement était d'environ 3%.
Exemple 4 : Synthèse de qraphène par chauffage sous micro-ondes du graphite expansé dans un milieu agueux
La synthèse a été réalisée en dispersant une quantité de 20 mg de graphite expansé dans une solution aqueuse de 25 ml. Le graphite expansé a été obtenu par un procédé industriel décrit dans les références 12 et 13. Le mélange a été soumis ensuite à un chauffage sous micro-ondes avec une puissance fixe égale à 300 Watts. La température du milieu aqueux était fixée à 160cC. La durée de la synthèse était de 60 minutes. Le solide de couleur blanchâtre surnageant la solution a été récupéré puis séché avant d'être analysé par MET. L'image MET à haute résolution (non montrée ici) fait clairement apparaître la structure hexagonale du matériau et confirme la présence du graphène dans les produits de synthèse. Le rendement était d'environ 4%.
Dans une variante de cet exemple, on a effectué la même procédure avec de l'anthracite. Le rendement obtenu est proche de celui obtenu avec du graphite expansé, mais on trouve une plus forte proportion de particules en suspension.
Exemple 5 : Mesure de la conductivité électrigue d'une solution contenant des fragments de graphène
On sait que le graphite est un très bon conducteur électrique et plus particulièrement dans l'axe des plans des feuillets de graphène (61 x 103 S/m et 1000 fois moins dans l'axe perpendiculaire). On sait également qu'ajouté en très faible quantité dans un milieu non conducteur, une poudre de graphite rend ce milieu conducteur dès que le seuil de percolation est dépassé. A titre d'exemple, Celzard et al. (référence 15) ont montre que l'ajout de 1% volumique de graphite micronique plat (épaisseur 0,1 μm et diamètre 10 μm) permet d'augmenter de manière très significative la conductivité d'une résine époxy ; Lima et al. (référence 16) ont montré que l'ajout de nanotubes de carbone dans du chloroforme rendait la solution conductrice dans des concentrations en nanotubes inférieures à 1 mg/ml de solvant.
Ce type d'expériences a été refait ici en ajoutant les feuillets de graphène en suspension dans du chloroforme (dont la constante diélectrique est élevée, à savoir 4.8069). Ensuite, on a appliqué des ultrasons. Les électrodes en platine étaient séparées de 5 mm (L) et leur surface (S) était de 36 lO/W (6 mm x 6 mm). La mesure a été réalisée par la technique classique à deux contacts en utilisant un potentiostat de marque HEKA et en imposant des potentiels (V) entre les électrodes de 1 à 10 Volts permettant ainsi la mesure du courant (I). La conductivité σ a été calculée par l'équation σ = I x U(V x S) La figure 4 représente l'évolution de la conductivité en fonction de la quantité de graphène ajouté. Après une brusque augmentation (deux ordres de grandeur) après le premier ajout montrant la contribution du graphène, celle-ci augmente quasi linéairement pour enfin saturer avec une concentration de 1 ,4 mg/ml. Cette saturation est due à la formation d'agrégats de graphène sur la surface d'une électrode qui ne peut par conséquent plus participer à la conduction de la solution.
Exemple 6 : Synthèse de qraphène par chauffage sous micro-ondes des nanotubes bi- parois de carbone avec un catalyseur à base de palladium
Le catalyseur a été déposé par imprégnation des nanotubes de carbone par une solution contenant du nitrate de palladium. Après imprégnation le solide a été séché à
100cC sous air puis calciné ensuite à 3000C pendant 2 heures, puis réduit sous hydrogène à 4000C pendant 2 heures afin de transformer l'oxyde en métal. La charge du métal a été fixée à 10% en poids par rapport au poids du matériau final.
La synthèse du graphène a été réalisée de la manière suivante : le solide a été immergé dans un volume d'eau distillée (10 ml) et transvasé dans un réacteur en quartz inséré dans un deuxième réacteur en composite permettant de maintenir le système sous pression. La puissance du micro-ondes a été fixée à 300 Watts, la durée de la synthèse à 1 heure, et la température du milieu réactionnel à 1600C. Le rendement était de 6%. A titre de comparaison les mêmes nanotubes de carbone bi-parois mais sans palladium ont été également traités dans les mêmes conditions.
Les images MET obtenues sur des nanotubes de carbone bi-parois contenant 10% de Pd après traitement aux micro-ondes sont présentées sur la figure 5. L'image à basse
résolution montre la présence de feuillets de graphène de dimension de quelques centaines de nanomètres (Fig. 5A). On observe que les feuillets montrent des superstructures, probablement à cause d'une différence d'orientation entre les feuillets de graphène. La formation des feuillets de graphène à partir des nanotubes de carbone bi-parois peut être attribuée à la formation des points de défaut, e.g. points d'oxydation, dans le plan graphitique, et de leur propagation le long de l'axe du tube pour donner naissance au feuillet de graphène. Il est à noter, cependant, que les feuillets observés ont des dimensions plus importantes que celles des nanotubes de départ. Ceci pourrait être expliqué par le fait que lors de la synthèse les feuillets individuels pourraient s'agrègent pour former des ensembles de taille plus importante.
Les nanotubes de carbone sans Pd ayant subi le même traitement sous micro-ondes les images MET montrent des différences notables par rapport à ceux garnis avec 10% de Pd. En effet, dans le cas des nanotubes sans Pd l'observation par MET ne révèle pas de présence de feuillets de graphène mais seulement des enchevêtrements de plans graphitiques désordonnés (Figs. 5C et D). Ces amas graphitiques sont probablement formés par destruction des nanotubes de carbone bi-parois sous l'effet de l'irradiation micro-ondes, mais sans ouverture des feuillets constituant le mur du nanotube à cause de l'absence du catalyseur.
Exemple 7 : Synthèse de qraphène à partir de graphite expansé dans un milieu ammoniacal
La synthèse a été réalisée en dispersant des quantités de graphite expansé allant de 20 mg à 200 mg dans 20 à 50 ml d'une solution d'ammoniaque (33 % en concentration d'ammoniac). Les conditions de synthèse sont identiques à celles décrites dans l'exemple 4. On constate que les dimensions des feuillets de graphène obtenus sont proportionnelles à la concentration de d'ammoniaque dans la solution : plus la concentration d'ammoniac est élevée dans la solution et plus les feuillets de graphène obtenus sont grands, approchant ainsi aisément la centaine de micromètres. La même synthèse réalisée à titre de comparaison dans un milieu purement aqueux donne naissance à des feuillets de graphène de dimension nettement plus faible, typiquement de l'ordre de quelques micromètres.
La figure 6 montre que les flocons de graphite expansé flottent dans l'eau (A), mais tombent au fond dans une solution ammoniacale. Cela semble confirmer l'hypothèse avancée par les présents inventeurs, concernant un meilleur mouillage et donc
remplissage des espaces interplanaires du graphite expansé par la solution ammoniaquée de plus en plus concentrée suivie par une exfoliation des feuillets de grande dimension par transformation liquide-vapeur. Le meilleur mouillage (et donc le meilleur remplissage du volume poreux) du solide graphitique de départ par la solution ammoniacale semble être à l'origine de l'exfoliation des grands feuillets de graphène. L'analyse par microscopie électrique par transmission (MET) montre que les feuillets de graphène obtenus sont relativement minces et ne sont constitués que par quelques plans ; le nombre de plans n'excède pas huit. Cela est montré la figure 7. Il est à noter également que les feuillets obtenus sont relativement stables lorsqu'ils sont déposés sur un substrat, en l'occurrence le porte échantillon à base d'une grille de cuivre recouverte par une membrane de carbone à trou comme c'est le cas d'ici (voir la figure 7A).
Example 8. Fabrication d'un dispositif d'optoélectronique par assemblage des feuillets de graphène
Dans cet exemple un volume d'alcool, en l'occurrence de l'éthanol, contenant une dispersion de feuillets de graphène, a été utilisé dans la fabrication d'un dispositif d'électrode transparente pour des applications en photovoltaïque. Les feuillets de graphène ont été déposés par la méthode de dépôt à goutte classique suivi par spin- coating afin d'améliorer la dispersion des feuillets sur la surface du substrat, en l'occurrence du verre. On peut remplacer le verre par tout autre matériau solide transparent susceptible de servir comme substrat rigide dans les domaines d'application visés.
Après élimination du polymère utilisé pour l'étape de spin-coating la conductivité électrique du dispositif a été mesurée. Optionnellement, le dispositif obtenu est traité sous un flux d'hydrogène à 150°C afin d'éliminer les impuretés qui pourraient être adsorbées sur la surface du graphène, et qui pourraient perturber la bonne conduction des électrons à travers le dispositif. Les mesures de conductivité électrique du dispositif ont été réalisées par la méthode quatre points, qui est connue de l'homme du métier. On constate qu'après chauffage, la conductivité du film augmente sensiblement suite à l'élimination des impuretés adsorbées sur sa surface.
Les valeurs de conductivité ainsi obtenues sont proches de celles déjà reportées dans la littérature sur les dispositifs d'assemblage à base de feuillets de graphène de
dimension n'excédant pas quelques centaines de nanomètres [18] et confirment le potentiel de ce type de matériau pour des applications déjà citées ci-dessus.
Références bibliographiques Afin de ne pas alourdir le texte de la description, certaines références bibliographiques ont été rassemblées dans cette section séparée.
[I] K.S. Novoselov, A.K. Geim, S.V. Morozov et al. ; Science (2004) 306, 666.
[2] K.S. Novoselov, D. Jiang ét al. ; Proc. Natl.Acad. Sci. USA (2005), 102, 10451.
[3] Y. Zhang, Y. Tan, H.L. Stormer, P. Kim ; Nature (2005), 438, 201. [4] K.S. Novoselov, A.K. Geim et al.; Nature (2005), 438, 197.
[5] K.l. Bolotin, KJ. Sikes, Z. Ziang et al. ; Soi. State Comm. (2008), 146, 351.
[6] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskon et al. ; Science (2007), 317, 1530.
[7] C. Berger, Z.M. Song, X.B. Li et al. ; Science (2006), 312, (5777), 1191.
[8] C. Berger, Z.M. Song, T.B. Li et al. ; J. Phys. Chem. B (2004), 108 (52), 19912. [9] J. Coraux, AT. N'Diaye, C. Busse, T. Michely ; Nanoletters (2008), 8, 565.
[10] J. Vaari, J. Lahtinen, P. Hautojarvi; Catal. Lett. 55, 43 (1997).
[I I] D.E. Starr, E.M. Pazhetnov et al. ; Surface Science 600, 2688 (1006).
[12] M. Klatt, G. Furdin, A. Herold, N. Dupont-Pavlovsky ; Carbon (1986) 24, 731.
[13] D.D.L. Chung ; J. Mater. Sci. (1987), 22, 4190. [14] J. Amadou, K. Chirazi, M. Houllé, I. Janowska, O. Ersen, D. Bégin, C. Pham Huu ;
Cat. Today (2008), 138, 62.
[15] A. Celzard, E. Mc Rae, C. Deleuze, M. Dufort et al. ; Phys Rev B (1996), 53, 6209.
[16] M. D. Lima, MJ. Andrade et al. ; J. Mater. Chem. (2007), 17, 4846.
[17] M. Dresselhaus et al., Nano Letters, article sous presse (2009) [18] Hemandez Y. et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3, 563 (2008).
Claims
1. Procédé de fabrication d'une dispersion de particules ou feuillets de graphène, comprenant les étapes suivantes : (a) on approvisionne un matériau à base de carbone ;
(b) on disperse ledit matériau à base de carbone dans un liquide aqueux ou organique pour obtenir une dispersion ;
(c) on chauffe ladite dispersion par micro-ondes pour obtenir une dispersion contenant des particules ou feuillets de graphène et des matériaux carbonés de départ ;
(d) on sépare ladite dispersion de graphènes dudit matériau à base de carbone pour obtenir une dispersion de particules ou feuillets de graphène.
2. Procédé selon la revendication 1 , caractérisé en ce que ledit liquide est une solution ammoniacale ou azotée.
3. Procédé de fabrication de particules ou feuillets de graphène, comprenant toutes les étapes du procédé selon la revendication 1 ou 2, suivies d'une étape de
(e) séparation des particules ou feuillets de graphène dudit liquide aqueux ou organique.
4. Procédé selon la revendication 2 ou 3, dans lequel à l'étape (e) on applique ladite dispersion de particules ou feuillets de graphène sur un substrat, et on laisse évaporer ledit liquide aqueux ou organique, pour former un système composé d'un substrat et de particules ou feuillets de graphène.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit liquide est de l'eau distillée, une solution acide, une solution d'alcool ou un mélange d'alcools, et en ce qu'elle contient éventuellement un composé aromatique ou un ou plusieurs hétéroatomes sélectionné dans le groupe des halogènes ou des métaux alcalins.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdites graphènes comprennent des structures d'une épaisseur ne dépassant pas 2 nm et présentant des plans de graphène superposés et sensiblement parallèles.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit matériau à base de carbone est sélectionné dans le groupe constitué par : les nanotubes de carbone, les particules de graphite, le graphite expansé, l'anthracite.
8. Procédé selon la revendication 7, caractérisé en ce que lesdits nanotubes de carbone approvisionnés comprennent un dépôt d'au moins une phase active, de préférence un métal, et de manière encore plus préférée un métal sélectionné dans le groupe formé par le palladium, le platine, l'iridium, le ruthénium.
9. Procédé selon la revendication 8, caractérisé en ce que ladite phase active correspond à une masse comprise entre 0,1% et 13% des nanotubes, préférentiellement comprise entre 1% et 8%, et encore plus préférentiellement comprise entre 3% et 6%.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que ladite phase active comprend des nanoparticules de métal.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel ledit matériau à base de carbone est au moins en partie dopé avec des hétéroatomes, de préférence avec du bore et/ou de l'azote.
12. Procédé selon la revendication 11 , caractérisé en ce que la concentration des hétéroatomes est comprise entre 0,5% et 18 % atomiques, préférentiellement entre 2% et 10 % atomiques, et plus préférentiellement entre 3% et 6 % atomiques.
13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que lesdits graphènes comprennent des structures dans lesquelles le nombre de feuilles de graphène parallèles est compris entre 1 et 10 et préférentiellement entre 2 et 5.
14. Procédé selon l'une quelconque des revendications 5 à 13, caractérisé en ce que lesdites structures de graphène ont une longueur et/ou largeur comprise entre 20 nm et 10 μm, de préférence entre 50 nm et 5 μm et plus préférentiellement entre 100 nm et 2 μm.
15. Procédé de fabrication de particules ou feuillets de graphène selon l'une quelconque des revendications 2 à 14, caractérisé en ce que le rendement des particules ou feuillets est supérieur à 3% massiques par rapport à la masse de matériau à base de graphite, préférentiellement supérieur à 12%.
16. Procédé selon la revendication 15, caractérisé en ce que le rendement est supérieur à 15% dans le cas où ledit matériau à base de carbone sont des nanotubes de carbone.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0900100A FR2940965B1 (fr) | 2009-01-12 | 2009-01-12 | Procede de preparation de graphenes |
FR0900100 | 2009-01-12 | ||
FR0902936 | 2009-06-17 | ||
FR0902936 | 2009-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010079291A2 true WO2010079291A2 (fr) | 2010-07-15 |
WO2010079291A3 WO2010079291A3 (fr) | 2010-12-16 |
Family
ID=42316902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/000024 WO2010079291A2 (fr) | 2009-01-12 | 2010-01-12 | Procédé de préparation de graphènes |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010079291A2 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102897753A (zh) * | 2012-09-11 | 2013-01-30 | 华侨大学厦门园区 | 一种高导热石墨的制备方法 |
CN102910622A (zh) * | 2012-10-25 | 2013-02-06 | 常州大学 | 一种二维纳米石墨烯的制备方法 |
CN103073009A (zh) * | 2012-12-20 | 2013-05-01 | 华南理工大学 | 阴离子粘土/石墨烯纳米复合材料及其制备方法 |
CN103145120A (zh) * | 2013-03-19 | 2013-06-12 | 苏州格瑞丰纳米科技有限公司 | 一种多孔石墨烯的制备方法 |
CN103433079A (zh) * | 2013-09-06 | 2013-12-11 | 苏州大学张家港工业技术研究院 | 联吡啶钌络合物共价功能化石墨烯光催化剂及其制备方法 |
CN103833028A (zh) * | 2013-12-31 | 2014-06-04 | 深圳粤网节能技术服务有限公司 | 一种基于无烟煤的石墨烯及氧化石墨烯的制备方法 |
WO2015100682A1 (fr) * | 2013-12-31 | 2015-07-09 | 深圳粤网节能技术服务有限公司 | Procédé à base d'anthracite pour la préparation de graphène et d'oxyde de graphène |
CN114864880A (zh) * | 2022-06-22 | 2022-08-05 | 安徽理工大学环境友好材料与职业健康研究院(芜湖) | 基于石墨烯的锂离子电池复合负极材料的制备方法 |
CN116574010A (zh) * | 2023-05-15 | 2023-08-11 | 西安交通大学 | 一种合成氨及有机胺氮化物的方法、装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005084172A2 (fr) | 2003-10-03 | 2005-09-15 | College Of William & Mary | Nanostructures de carbone et procedes de fabrication et d'utilisation associes |
US20050255034A1 (en) | 2004-05-14 | 2005-11-17 | Haiyou Wang | Process for producing narrow platelet graphite nanofibers |
US20050271574A1 (en) | 2004-06-03 | 2005-12-08 | Jang Bor Z | Process for producing nano-scaled graphene plates |
US20060121279A1 (en) | 2004-12-07 | 2006-06-08 | Petrik Viktor I | Mass production of carbon nanostructures |
US7081258B2 (en) | 2001-09-28 | 2006-07-25 | Lg Household & Health Care Ltd. | Composition for promoting hair growth |
US20060231792A1 (en) | 2002-09-12 | 2006-10-19 | Board Of Trustees Of Michigan State University | Expanded graphite and products produced therefrom |
US20060241237A1 (en) | 2002-09-12 | 2006-10-26 | Board Of Trustees Of Michigan State University | Continuous process for producing exfoliated nano-graphite platelets |
US20080048152A1 (en) | 2006-08-25 | 2008-02-28 | Jang Bor Z | Process for producing nano-scaled platelets and nanocompsites |
WO2008060703A2 (fr) | 2006-06-08 | 2008-05-22 | Directa Plus Patent & Technology Limited | Production de nanostructures |
US20080206124A1 (en) | 2007-02-22 | 2008-08-28 | Jang Bor Z | Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites |
US20080248275A1 (en) | 2007-04-09 | 2008-10-09 | Jang Bor Z | Nano-scaled graphene plate films and articles |
US20080258359A1 (en) | 2007-04-17 | 2008-10-23 | Aruna Zhamu | Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites |
US20080279756A1 (en) | 2007-05-08 | 2008-11-13 | Aruna Zhamu | Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets |
WO2008143692A1 (fr) | 2006-10-31 | 2008-11-27 | The Regents Of The University Of California | Nanoplaquettes de graphite pour des applications thermiques et électriques |
-
2010
- 2010-01-12 WO PCT/FR2010/000024 patent/WO2010079291A2/fr active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7081258B2 (en) | 2001-09-28 | 2006-07-25 | Lg Household & Health Care Ltd. | Composition for promoting hair growth |
US20060241237A1 (en) | 2002-09-12 | 2006-10-26 | Board Of Trustees Of Michigan State University | Continuous process for producing exfoliated nano-graphite platelets |
US20060231792A1 (en) | 2002-09-12 | 2006-10-19 | Board Of Trustees Of Michigan State University | Expanded graphite and products produced therefrom |
WO2005084172A2 (fr) | 2003-10-03 | 2005-09-15 | College Of William & Mary | Nanostructures de carbone et procedes de fabrication et d'utilisation associes |
US20050255034A1 (en) | 2004-05-14 | 2005-11-17 | Haiyou Wang | Process for producing narrow platelet graphite nanofibers |
US20050271574A1 (en) | 2004-06-03 | 2005-12-08 | Jang Bor Z | Process for producing nano-scaled graphene plates |
US20060121279A1 (en) | 2004-12-07 | 2006-06-08 | Petrik Viktor I | Mass production of carbon nanostructures |
WO2008060703A2 (fr) | 2006-06-08 | 2008-05-22 | Directa Plus Patent & Technology Limited | Production de nanostructures |
US20080048152A1 (en) | 2006-08-25 | 2008-02-28 | Jang Bor Z | Process for producing nano-scaled platelets and nanocompsites |
WO2008143692A1 (fr) | 2006-10-31 | 2008-11-27 | The Regents Of The University Of California | Nanoplaquettes de graphite pour des applications thermiques et électriques |
US20080206124A1 (en) | 2007-02-22 | 2008-08-28 | Jang Bor Z | Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites |
US20080248275A1 (en) | 2007-04-09 | 2008-10-09 | Jang Bor Z | Nano-scaled graphene plate films and articles |
US20080258359A1 (en) | 2007-04-17 | 2008-10-23 | Aruna Zhamu | Low-temperature method of producing nano-scaled graphene platelets and their nanocomposites |
US20080279756A1 (en) | 2007-05-08 | 2008-11-13 | Aruna Zhamu | Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets |
Non-Patent Citations (18)
Title |
---|
A. CELZARD; E. MC RAE; C. DELEUZE; M. DUFORT ET AL., PHYS REV B, vol. 53, 71219, pages 6209 |
C. BERGER; Z.M. SONG; T.B. LI ET AL., J. PHYS. CHEM. B, vol. 108, no. 52, 10420, pages 19912 |
C. BERGER; Z.M. SONG; X.B. LI ET AL., SCIENCE, vol. 312, no. 5777, 10620, pages 1191 |
D.D.L. CHUNG, J. MATER. SCI., vol. 22, 70319, pages 4190 |
D.E. STARR; E.M. PAZHETNOV ET AL., SURFACE SCIENCE, vol. 600, pages 2688 |
F. MIAO; S. WIJERATNE; Y. ZHANG; U. C. COSKON ET AL., SCIENCE, vol. 317, 10720, pages 1530 |
HERNANDEZ Y. ET AL.: "High-yield production of graphene by liquid-phase exfoliation of graphite", NATURE NANOTECHNOLOGY, vol. 3, 10820, pages 563, XP002612448, DOI: doi:10.1038/nnano.2008.215 |
J. AMADOU; K. CHIRAZI; M. HOULLÉ; 1. JANOWSKA; O. ERSEN; D. BÉGIN; C. PHAM HUU, CAT. TODAY, vol. 138, 10820, pages 62 |
J. CORAUX; A.T. N'DIAYE; C. BUSSE; T. MICHELY, NANOLETTERS, vol. 8, 10820, pages 565 |
J. VAARI; J. LAHTINEN; P. HAUTOJÂRVI, CATAL. LETT., vol. 55, 80119, pages 43 |
K.I. BOLOTIN; K.J. SIKES; Z. ZIANG ET AL., SOL. STATE COMM, vol. 146, 10820, pages 351 |
K.S. NOVOSELOV; A.K. GEIM ET AL., NATURE, vol. 438, 10520, pages 197 |
K.S. NOVOSELOV; A.K. GEIM; S.V. MOROZOV ET AL., SCIENCE, vol. 306, 10420, pages 666 |
K.S. NOVOSELOV; D. JIANG ET AL., PROC. NATL.ACAD. SCI. USA, vol. 102, 10520, pages 10451 |
M. D. LIMA; M.J. ANDRADE ET AL., J. MATER. CHEM., vol. 17, 10720, pages 4846 |
M. DRESSELHAUS ET AL., NANO LETTERS, ARTICLE SOUS PRESSE, 10920 |
M. KLATT; G. FURDIN; A. HEROLD; N. DUPONT-PAVLOVSKY, CARBON, vol. 24, 70219, pages 731 |
Y. ZHANG; Y. TAN; H.L. STORMER; P. KIM, NATURE, vol. 438, 10520, pages 201 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102897753A (zh) * | 2012-09-11 | 2013-01-30 | 华侨大学厦门园区 | 一种高导热石墨的制备方法 |
CN102910622A (zh) * | 2012-10-25 | 2013-02-06 | 常州大学 | 一种二维纳米石墨烯的制备方法 |
CN103073009A (zh) * | 2012-12-20 | 2013-05-01 | 华南理工大学 | 阴离子粘土/石墨烯纳米复合材料及其制备方法 |
CN103145120A (zh) * | 2013-03-19 | 2013-06-12 | 苏州格瑞丰纳米科技有限公司 | 一种多孔石墨烯的制备方法 |
CN103145120B (zh) * | 2013-03-19 | 2015-11-18 | 苏州格瑞丰纳米科技有限公司 | 一种多孔石墨烯的制备方法 |
CN103433079A (zh) * | 2013-09-06 | 2013-12-11 | 苏州大学张家港工业技术研究院 | 联吡啶钌络合物共价功能化石墨烯光催化剂及其制备方法 |
CN103833028B (zh) * | 2013-12-31 | 2015-04-22 | 深圳粤网节能技术服务有限公司 | 一种基于无烟煤的石墨烯及氧化石墨烯的制备方法 |
WO2015100682A1 (fr) * | 2013-12-31 | 2015-07-09 | 深圳粤网节能技术服务有限公司 | Procédé à base d'anthracite pour la préparation de graphène et d'oxyde de graphène |
CN103833028A (zh) * | 2013-12-31 | 2014-06-04 | 深圳粤网节能技术服务有限公司 | 一种基于无烟煤的石墨烯及氧化石墨烯的制备方法 |
EP3081530A4 (fr) * | 2013-12-31 | 2017-06-21 | Shenzhen Cantonnet Energy Services Co. , Ltd. | Procédé à base d'anthracite pour la préparation de graphène et d'oxyde de graphène |
US9938150B2 (en) | 2013-12-31 | 2018-04-10 | Shenzhen Cantonnet Energy Services Co., Ltd. | Preparation method of graphene as well as graphene oxide based on anthracite |
CN114864880A (zh) * | 2022-06-22 | 2022-08-05 | 安徽理工大学环境友好材料与职业健康研究院(芜湖) | 基于石墨烯的锂离子电池复合负极材料的制备方法 |
CN116574010A (zh) * | 2023-05-15 | 2023-08-11 | 西安交通大学 | 一种合成氨及有机胺氮化物的方法、装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2010079291A3 (fr) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010079291A2 (fr) | Procédé de préparation de graphènes | |
US11676773B2 (en) | Carbon-titania nanocomposite thin films and applications of the same | |
Prekodravac et al. | A comprehensive review on selected graphene synthesis methods: From electrochemical exfoliation through rapid thermal annealing towards biomass pyrolysis | |
Raya et al. | A review of gas sensors based on carbon nanomaterial | |
Low et al. | Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed | |
US11970399B2 (en) | Three-dimensional (3D) printing of graphene materials | |
Khan et al. | Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (Miswak) extract | |
Steiner III et al. | Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single-and multiwall carbon nanotubes | |
Peng et al. | Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes | |
Kumar et al. | Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications | |
Kaniyoor et al. | Wrinkled graphenes: a study on the effects of synthesis parameters on exfoliation-reduction of graphite oxide | |
EP2719662B1 (fr) | Utilisation d'un solvant polaire aprotique pour la solubilisation d'un composé d'intercalation du graphite | |
EP2496520B1 (fr) | Préparation de graphène par amincissement mécanique de matériaux graphitiques | |
Bojdys et al. | Exfoliation of crystalline 2D carbon nitride: thin sheets, scrolls and bundles via mechanical and chemical routes | |
CN106660800B (zh) | 剥离的纳米碳材料的水性和有机悬浮液、其制备方法及其用途 | |
Sun et al. | Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide–methanol solution | |
Singh et al. | Graphene: Potential material for nanoelectronics applications | |
Ma et al. | Spiers memorial lecture advances of carbon nanomaterials | |
FR2984922A1 (fr) | Procede de co-production de nanotubes de carbone et de graphene | |
Shima et al. | Carbon-ZnO core-shell nanospheres: Facile fabrication and application in the visible-light photocatalytic decomposition of organic pollutant dyes | |
Singh et al. | Facile synthetic route to exfoliate high quality and super-large lateral size graphene-based sheets and their applications in SERS and CO 2 gas sensing | |
KR101442328B1 (ko) | 수소환원을 이용한 금속 나노입자와 환원된 산화그래핀의 하이브리드 물질의 제조방법 | |
FR2940965A1 (fr) | Procede de preparation de graphenes | |
Tewari et al. | Graphene-MWNTs composite coatings with enhanced electrical conductivity | |
Timm et al. | Critical view on graphene oxide production and its transfer to surfaces aiming electrochemical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10702522 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10702522 Country of ref document: EP Kind code of ref document: A2 |