CN114849659A - 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用 - Google Patents

一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用 Download PDF

Info

Publication number
CN114849659A
CN114849659A CN202210586167.5A CN202210586167A CN114849659A CN 114849659 A CN114849659 A CN 114849659A CN 202210586167 A CN202210586167 A CN 202210586167A CN 114849659 A CN114849659 A CN 114849659A
Authority
CN
China
Prior art keywords
lanthanum
iron
phosphate
chitosan
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210586167.5A
Other languages
English (en)
Inventor
杨春平
蓝志聪
林燕
邬鑫
邹俊聪
李翔
童设华
叶建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202210586167.5A priority Critical patent/CN114849659A/zh
Publication of CN114849659A publication Critical patent/CN114849659A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0207Compounds of Sc, Y or Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用。包括以下步骤:(1)称取氯化铁完全溶于纯水中,在搅拌下,将壳聚糖溶于酸性溶液中,继续搅拌1~6h,得到Fe/壳聚糖混合液;(2)将镧盐溶于步骤(1)所述的Fe/壳聚糖混合液,搅拌1~6h,得到La‑Fe/壳聚糖混合液;(3)将步骤(2)所述La‑Fe/壳聚糖混合液通过注射泵逐滴滴入0.5~4M NaOH溶液中,静置8~12h,过滤并洗涤至中性,冷冻干燥4~12h后得到镧铁负载壳聚糖微球。本发明制备的毫米尺寸微球具有不同的金属活性位点,既能高效单独吸附水中的重金属镉阳离子或磷酸盐阴离子,又能在“重金属镉‑磷酸盐”体系中同时高效吸附,且易于回收再生利用。

Description

一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附 剂的制备方法及应用
技术领域
本发明涉及吸附材料技术领域,具体涉及一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用。
背景技术
近年来长江沿岸冶炼、金属加工、采矿等重工业快速发展,以及农业废水和城市生活污水的排放,使得周边水域存在着重金属超标和富营养化的复合污染的风险。其中,重金属阳离子(如镉)和含氧酸根阴离子(如磷酸盐)是洞庭湖水域的主要污染物。目前吸附剂的开发大多针对去除单一或同一种污染物,而在这类重金属阳离子型和含氧酸根阴离子型共存的复杂水体中,同时或选择性高效吸附两类污染物并逐一选择性分离出来是一个挑战。
采用吸附法去除水中重金属镉和磷酸盐污染物常面临以下问题:(1)传统吸附材料通常只对水中阳离子型或阴离子型污染物有较好的吸附能力,难以实现对二者的同时高效吸附;(2)纳米粉体材料在水中易发生团聚,难以实现对吸附位点的高效利用,且粉体材料回收困难,易造成二次污染;(3)吸附材料在实际应用中需要考虑回收再生率不高或解吸流程复杂的处理难题。因此,制备一种具有高效吸附重金属阳离子和含氧酸根阴离子,且能够有效分离再生的吸附剂具有重大意义。
发明内容
本发明针对现有技术的上述不足,提供了一种利用镧铁负载壳聚糖微球吸附水中重金属镉和磷酸盐的方法,该吸附剂制备简便,能高效吸附水中重金属镉阳离子、磷酸盐阴离子污染物,且易于分离再生。
一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,包括以下步骤:
步骤1)称取氯化铁完全溶于纯水中,在搅拌下,将壳聚糖溶于酸性溶液中,继续搅拌1~6h,得到Fe/壳聚糖混合液;
步骤2)将镧盐溶于步骤1)所述的Fe/壳聚糖混合液,搅拌1~6h,得到La-Fe/壳聚糖混合液;
步骤3)将步骤2)所述La-Fe/壳聚糖混合液通过注射泵逐滴滴入0.5~4M NaOH溶液中,静置8~12h,过滤并洗涤至中性,冷冻干燥4~12h后得到镧铁负载壳聚糖微球。
上述的镧铁负载壳聚糖微球吸附剂的制备方法及应用,进一步改进的,所述镧铁负载壳聚糖微球粒径范围为0.5~1.5mm。
上述的镧铁负载壳聚糖微球吸附剂的制备方法及应用,进一步改进的,所述氯化铁溶液的浓度为0.1~0.5mol/L;所述壳聚糖和水的质量比为1:20~50。
上述的镧铁负载壳聚糖微球吸附剂的制备方法,进一步改进的,所述镧盐为硝酸镧或氯化镧;所述的镧盐和铁盐摩尔比为1:1~20。
上述的镧铁负载壳聚糖微球吸附剂的制备方法及应用,进一步改进的,所述镧铁负载壳聚糖微球吸附剂应用于吸附水体中的重金属镉和磷酸盐。
上述的镧铁负载壳聚糖微球吸附剂的制备方法及应用,进一步改进的,所述镧铁负载壳聚糖微球吸附剂吸附饱和后通过解吸液A和解吸液B进行解吸;所述解吸液A为0.5MNaNO3(pH 6~7);所述解吸液B为质量百分比浓度为5-15%的NaCl-NaOH二元混合溶液;所述解吸液A和B的解吸时间为2~4h和10~12h。
本发明具有以下优点:
本发明采用浸渍法制备大小可控的微球状吸附剂,制备方法简便可行,易于大规模工业生产;该材料以壳聚糖为载体,金属离子均匀分布,从而实现吸附位点的有效利用;该吸附剂在单独吸附磷酸盐或重金属镉时均具有优异的吸附能力;在“重金属镉-磷酸盐”体系中,通过“La-P-Cd”三元配合物的形成,进一步提高了对镉的吸附;由于壳聚糖对金属离子的化学交联作用,材料在pH>4时化学性质稳定,避免了金属浸出对环境的危害;该毫米尺寸的纳米复合材料吸附剂易于分离再生并循环使用。
附图说明
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
图1为实施例1制备的镧铁负载壳聚糖微球(A1)表面及截面形貌的扫描电镜图。
图2为实施例1制备的镧铁负载壳聚糖微球(A1)的表面及内部的EDS信息。
图3为实施例1制备的镧铁负载壳聚糖微球(A1)的XRD衍射图谱。
图4为实施例1制得的镧铁负载壳聚糖微球(A1)对水体中重金属镉和磷酸盐的吸附效果图。
图5为不同金属摩尔比的镧铁负载壳聚糖微球(A0、A1、A2、A3)对水体中重金属镉和磷酸盐的吸附效果图。
图6为镧铁负载壳聚糖微球(A1)单独去除或同时去除水体中重金属镉和磷酸盐的吸附效果图。
图7为不同pH条件下的镧铁负载壳聚糖微球(A1)对水体中重金属镉和磷酸盐的吸附效果图。
图8为镧铁负载壳聚糖微球(A1)对水体中重金属镉和磷酸盐的吸附循环使用图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。
本发明实施例中,所采用的原料和仪器均为市售。若无特别说明,所采用工艺为常规工艺,所采用设备为常规设备,且所得数据均是两次以上重复实验的平均值。
实施例1
取三组浓度为1mg Cd/L,20mg P/L以及1mg Cd/L+20mg P/L的500mL溶液于1000mL锥形瓶中,调节pH至6.5±0.1,加入2.5g吸附材料,于温度为25℃、转速为100r/min的水浴摇床中吸附24h。在一定的间隔时间取样,水样经0.45μm滤膜后测定浓度。
本实施例中,采用浸渍法制备镧铁负载壳聚糖微球(A1),包括以下步骤:
将8mmol FeCl3溶于50mL纯水,搅拌至完全溶解,在不断搅拌下,取1.5g壳聚糖粉末溶解,搅拌3h后,再取2mmol硝酸镧溶于混合液中,室温搅拌2h充分混合,将混合液转移至注射器中,通过注射泵逐滴滴入1M NaOH中,静置过夜,再将微球水洗至中性后冷冻干燥6h。
对本发明实施例1中制备的镧铁负载壳聚糖微球用扫描电镜观察、EDS能谱扫描和X射线衍射分析,结果如图1-3所示。
图1为本发明实施例1中制备的镧铁负载壳聚糖微球的表面及截面的扫描电镜图。制得的红褐色微球直径约1mm,其表面褶皱似脑层状,内部具有微米尺寸的径向孔道,有利于污染物向内部扩散。
图2为本发明实施例1中制备的镧铁负载壳聚糖微球的表面及内部的EDS图谱。测得微球的表面镧和铁的元素质量分数为13.8%和21.5%,内部镧和铁的元素质量分数7.6%和15.7%,与ICP-OES测得的10.3%和19.9%相近,表明金属元素的近似均匀分布,壳聚糖的化学交联作用一定程度上解决了金属团聚问题。
图3为本发明实施例1中制备的镧铁负载壳聚糖微球的XRD谱图。检测到水铁矿的(110)和(115)晶面,但金属(氢)氧化物结晶度并不高,这是由于金属离子与壳聚糖的基团配位,晶体的形成受到抑制。
图4为本发明实施例1中制备的镧铁负载壳聚糖微球的在不同时间对重金属镉,磷酸盐以及复合体系中污染物的吸附效果图。在4h内,材料基本上可以实现对镉的吸附平衡;而对磷酸盐的吸附则是较慢的过程;在“重金属镉-磷酸盐”体系中,磷酸盐的优先吸附延缓了镉的吸附平衡时间(材料pHPZC=7.27),但也增大了对镉的吸附。
实施例2
考察本发明不同金属摩尔比的镧铁负载壳聚糖微球对水中磷酸盐的吸附能力,包括以下步骤:
取磷酸盐浓度为20mg/L的100mL溶液于250mL锥形瓶中,加入0.5g镧铁负载壳聚糖微球吸附剂(A0、A1、A2、A3),于温度为25℃,转速为100r/min的水浴摇床中吸附24h,水样过0.45μm滤膜后测定浓度。
本实施例中,所用的吸附剂A0、A2、A3制备方法与实施例1中吸附剂A1基本相同,区别仅在于:实施例2的制备吸附剂A0、A2、A3时,镧和铁总物质的量为10mmol,其金属摩尔比为1:1、1:9、1:19。
本实施例中,比较不同金属摩尔比的镧铁负载壳聚糖微球对水中磷酸盐的吸附效果,结果如图5所示。由图5可知,随着镧铁摩尔比的增大,材料对磷酸盐的吸附量先增大后基本不变。镧对磷酸盐的亲和力远高于铁,因此镧的掺杂能提高材料对磷酸盐的吸附能力,但当镧铁摩尔比由1:4增加到1:1时,提升效果不明显。
实施例3
考察本发明镧铁负载壳聚糖微球在单独和同时吸附重金属镉和磷酸盐的适用性,包括以下步骤:
研究材料对重金属镉的吸附容量以及体系中磷酸盐对重金属镉吸附的影响时,在不同重金属镉浓度下,通过添加磷酸盐(0、10、20mg/L)进行批次实验;研究材料对磷酸盐的吸附容量以及体系中重金属镉对磷酸盐吸附的影响时,在不同重金属镉浓度下,通过添加磷酸盐(0、1、5mg/L)进行批次实验。取100mL含有相应浓度要求的溶液于250mL锥形瓶中,调节pH至6.5±0.1,加入0.5g实施例1中制得的镧铁负载壳聚糖微球(A1),于温度为25℃、转速为100r/min的水浴摇床中吸附24h,取样经过0.45μm滤膜后测定浓度。
本实施例中,比较了镧铁负载壳聚糖微球单独去除和同时去除水体中重金属镉和磷酸盐的吸附容量,结果如图6所示。由图6可知,在吸附单一污染物时,经朗缪尔等温线拟合,材料在近中性条件下(pH=6.5)对重金属镉的最大吸附容量为35.3mg/g,对磷酸盐的最大吸附容量为52.0mg/g。在“重金属镉-磷酸盐”体系中,从实验数据上看,重金属镉的引入对磷酸盐吸附影响不大,然而磷酸盐的存在大大增加了材料对重金属镉的吸附。这是由于微球的镧活性位点对磷酸盐的吸附,使得吸附重金属镉的活性位点的增多,进一步加强了对重金属镉的吸附。
实施例4
考察本发明镧铁负载壳聚糖微球在不同pH下吸附重金属镉和磷酸盐的适用性,包括以下步骤:
取1mg Cd/L,20mg P/L以及1mg Cd/L+20mg P/L的100mL溶液于250mL锥形瓶中,调节初始pH 3~10,加入0.5g实施例1中制得的镧铁负载壳聚糖微球(A1),于温度为25℃、转速为100r/min的水浴摇床中吸附24h,取样经过0.45μm滤膜后测定浓度。
本实施例中,比较在不同pH下的镧铁负载壳聚糖微球对水体中重金属镉和磷酸盐的吸附容量,结果如图7所示。由图7可知,在吸附单一污染物时,材料对重金属镉的吸附容量随着pH的增加而增加,而对磷酸盐的吸附呈现则相反的趋势。在“重金属镉-磷酸盐”二元系统中,由于吸附在La和Fe位点上的磷酸盐也能捕获镉,形成三元阳离子-阴离子表面配合物,因此对重金属镉的吸附量增大。
实施例5
考察本发明镧铁负载壳聚糖微球的可重复利用性,包括以下步骤:
取实施例1中制得的镧铁负载壳聚糖微球(A1)0.5g,在1mg Cd/L+20mg P/L的100mL溶液中吸附饱和后,将吸附剂简单过滤,分别经过解吸液A和解吸液B进行解吸,水洗3次后进行冷冻干燥,循环试验进行4次。
上述解吸液A为0.5M NaNO3(pH=6.5);上述解吸液B为质量百分比浓度为5-15%的NaCl-NaOH二元混合溶液;上述解吸液A和B的解吸时间为2h和10h。
本实施例中,比较各个解吸循环后镧铁负载壳聚糖微球对水体中重金属镉和磷酸盐的再吸附能力,结果如图8所示。由图8可知,在连续四个吸附-解吸循环后,镧铁负载壳聚糖微球对磷酸盐和镉仍有78.5%和85.1%的吸附能力,表明镧铁负载壳聚糖微球具有较高的再生能力和应用前景。
以上实施例仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,包括以下步骤:
步骤1)称取氯化铁完全溶于纯水中,在搅拌下,将壳聚糖溶于酸性溶液中,继续搅拌1~6h,得到Fe/壳聚糖混合液;
步骤2)将镧盐溶于步骤1)所述的Fe/壳聚糖混合液,搅拌1~6h,得到La-Fe/壳聚糖混合液;
步骤3)将步骤2)所述La-Fe/壳聚糖混合液转通过注射泵逐滴滴入0.5~4M NaOH溶液中,静置8~12h,过滤并洗涤至中性,冷冻干燥4~12h后得到镧铁负载壳聚糖微球。
2.根据权利要求1所述的一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,所述镧铁负载壳聚糖微球粒径范围在0.5~1.5mm。
3.根据权利要求1所述的一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,步骤1)所述氯化铁溶液的浓度为0.1~0.5mol/L;所述的壳聚糖和水的质量比为1:20~50。
4.根据权利要求1所述的一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,步骤2)所述镧盐为硝酸镧或氯化镧;所述的镧盐和铁盐摩尔比为1:1~20。
5.根据权利要求1所述的一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,所述镧铁负载壳聚糖微球吸附剂应用于吸附水体中的重金属镉和磷酸盐。
6.根据权利要求5所述的一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用,其特征在于,所述镧铁负载壳聚糖微球吸附剂吸附饱和后通过解吸液A和解吸液B进行解吸;所述解吸液A为0.5M NaNO3(pH 6~7);所述的解吸液B为质量百分比浓度为5-15%的NaCl-NaOH二元混合溶液;所述解吸液A和B的解吸时间为2~4h和10~12h。
CN202210586167.5A 2022-05-27 2022-05-27 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用 Pending CN114849659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210586167.5A CN114849659A (zh) 2022-05-27 2022-05-27 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210586167.5A CN114849659A (zh) 2022-05-27 2022-05-27 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN114849659A true CN114849659A (zh) 2022-08-05

Family

ID=82642207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210586167.5A Pending CN114849659A (zh) 2022-05-27 2022-05-27 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114849659A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532235A (zh) * 2022-10-17 2022-12-30 湖南大学 一种镧基吸附剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495035A (zh) * 2011-12-06 2012-06-13 江南大学 磷酸根离子的快速、高效荧光检测方法
CN103240058A (zh) * 2013-05-14 2013-08-14 上海先德净水技术有限公司 制备镧铁复合吸附除磷剂的方法
CN104275162A (zh) * 2013-07-08 2015-01-14 南开大学 一种分子印迹强化胺化改性壳聚糖吸附剂的制备方法
WO2018122871A1 (en) * 2016-12-30 2018-07-05 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Chitosan reinforced mixed oxyhydroxide nanocomposite for fluoride and arsenic removal from water and a device thereof
CN108607517A (zh) * 2018-05-14 2018-10-02 中国人民大学 一种镧负载壳聚糖磁性微球复合物及其制备方法与应用
CN109248661A (zh) * 2017-07-13 2019-01-22 湖州欧美新材料有限公司 一种壳聚糖-金属氢氧化物复合材料、制备方法及应用
CN110465273A (zh) * 2018-05-09 2019-11-19 湖州欧美新材料有限公司 一种壳聚糖除磷材料的制备方法及壳聚糖除磷材料
CN110548490A (zh) * 2018-05-31 2019-12-10 华中科技大学 一种可回收的镧改性膨润土除磷材料的制备方法及其应用
CN112930321A (zh) * 2018-06-30 2021-06-08 迈·阿蒂亚 去除含磷酸盐的物料中镉和其他金属及杂质的方法
CN113578263A (zh) * 2021-07-26 2021-11-02 重庆工商大学 吸附材料制备方法及废水除磷工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495035A (zh) * 2011-12-06 2012-06-13 江南大学 磷酸根离子的快速、高效荧光检测方法
CN103240058A (zh) * 2013-05-14 2013-08-14 上海先德净水技术有限公司 制备镧铁复合吸附除磷剂的方法
CN104275162A (zh) * 2013-07-08 2015-01-14 南开大学 一种分子印迹强化胺化改性壳聚糖吸附剂的制备方法
WO2018122871A1 (en) * 2016-12-30 2018-07-05 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Chitosan reinforced mixed oxyhydroxide nanocomposite for fluoride and arsenic removal from water and a device thereof
CN109248661A (zh) * 2017-07-13 2019-01-22 湖州欧美新材料有限公司 一种壳聚糖-金属氢氧化物复合材料、制备方法及应用
CN110465273A (zh) * 2018-05-09 2019-11-19 湖州欧美新材料有限公司 一种壳聚糖除磷材料的制备方法及壳聚糖除磷材料
CN108607517A (zh) * 2018-05-14 2018-10-02 中国人民大学 一种镧负载壳聚糖磁性微球复合物及其制备方法与应用
CN110548490A (zh) * 2018-05-31 2019-12-10 华中科技大学 一种可回收的镧改性膨润土除磷材料的制备方法及其应用
CN112930321A (zh) * 2018-06-30 2021-06-08 迈·阿蒂亚 去除含磷酸盐的物料中镉和其他金属及杂质的方法
CN113578263A (zh) * 2021-07-26 2021-11-02 重庆工商大学 吸附材料制备方法及废水除磷工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JAYARAM PREETHI ET AL.: "Performance of chitosan engraved iron and lanthanum mixed oxyhydroxide for the detoxification of hexavalent chromium", 《INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES》, vol. 130, 19 February 2019 (2019-02-19), pages 2 *
ZHICONG LAN ET AL.: "Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions", 《CHEMICAL ENGINEERING JOURNAL》, vol. 448, 14 April 2022 (2022-04-14), pages 137519 *
可欣等: "铁-镧/壳聚糖复合材料在宽域pH范围内高效去除废水中的砷酸盐", 《环境科学学报》, vol. 42, no. 12, 31 December 2022 (2022-12-31), pages 49 - 60 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532235A (zh) * 2022-10-17 2022-12-30 湖南大学 一种镧基吸附剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US11135565B2 (en) Metal organic framework (MOF) composite materials, methods, and uses thereof
Wang et al. Lead and uranium sorptive removal from aqueous solution using magnetic and nonmagnetic fast pyrolysis rice husk biochars
Li et al. Coadsorption of Cu (II) and tylosin/sulfamethoxazole on biochar stabilized by nano-hydroxyapatite in aqueous environment
Fan et al. Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions
Zhao et al. Efficient removal of mercury ions with MoS2-nanosheet-decorated PVDF composite adsorption membrane
US20220219142A1 (en) Polymeric lanthanum nanocomposite, and preparation method and application thereof
Ji et al. Sorption enhancement of nickel (II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): Mechanism and kinetic study
Lin et al. Fabrication of lignin-based biochar containing multi-metal ferrite and efficient removal for oxytetracycline hydrochloride
CN112342378A (zh) 一种锂离子吸附剂及其制备方法
CN113908815B (zh) 一种高分子改性吸附剂及其制备方法和其应用
Liu et al. Synergistically adsorbing and reducing Uranium from water by a novel nano zero-valent copper/MXene 0D/2D nanocomposite
Huang et al. In situ decoration of La (OH) 3 on polyethyleneimine-linked dendritic mesoporous silica nanospheres targeting at efficient and simultaneous removal of phosphate and Congo red
CN114849659A (zh) 一种去除水中重金属镉和磷酸盐的镧铁负载壳聚糖微球吸附剂的制备方法及应用
Wu et al. Solid-phase synthesis of bi-functionalized porous organic polymer for simultaneous removal of Hg (II) and Pb (II)
Lu et al. Novel Fe–Mn oxide/zeolite composite material for rapid removal of toxic copper ions from aqueous solutions
Zhu et al. Synthesis and properties of porous δ-MnO2/polymer millimeter-sized beads for Ni (II) removal
Li et al. Adsorption of heavy metals and antibacterial activity of silicon-doped chitosan composite microspheres loaded with ZIF-8
CN113578263A (zh) 吸附材料制备方法及废水除磷工艺
Leiviskä Vanadium (V) removal from water by sorption
CN111282541A (zh) 一种除砷复合材料及其制备方法
CN111036171A (zh) 一种磁性粘土矿物材料及其制备方法和应用
CN113559825B (zh) 一种zif-8/钠基膨润土复合材料的制备方法及产品和应用
CN110975798B (zh) 一种FeO(OH)-硅藻土复合吸附剂的制备方法及应用和再生方法
CN202219115U (zh) 一种氧化铁改性石英砂滤材
Peng et al. Simple and selective method for simultaneous removal of mercury (ii) and recovery of silver (i) from aqueous media by organic ligand 4, 4′-azo-1, 2, 4-triazole

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination