CN114849648B - 一种高效去除重金属Cr(VI)的吸附剂制备方法 - Google Patents

一种高效去除重金属Cr(VI)的吸附剂制备方法 Download PDF

Info

Publication number
CN114849648B
CN114849648B CN202210681344.8A CN202210681344A CN114849648B CN 114849648 B CN114849648 B CN 114849648B CN 202210681344 A CN202210681344 A CN 202210681344A CN 114849648 B CN114849648 B CN 114849648B
Authority
CN
China
Prior art keywords
eggshell membrane
biochar
pei
magnetic
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210681344.8A
Other languages
English (en)
Other versions
CN114849648A (zh
Inventor
陈波
刘洋
李娟�
冯翔
于凤玲
潘学军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202210681344.8A priority Critical patent/CN114849648B/zh
Publication of CN114849648A publication Critical patent/CN114849648A/zh
Application granted granted Critical
Publication of CN114849648B publication Critical patent/CN114849648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4881Residues from shells, e.g. eggshells, mollusk shells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法,其特征在于,包括通过超声和静置反应的方式将PEI负载到蛋壳膜磁性生物炭上,合成一种负载PEI蛋壳膜磁性生物炭;蛋壳膜粉末热解产生的生物炭具有良好的孔隙结构和含氧官能团,Fe3O4纳米颗粒嵌入使生物炭具有磁性,便于吸附剂对Cr(VI)的吸附回收,防止二次污染,生物炭上的含氧官能团和PEI为吸附Cr(VI)提供了丰富的活性位点,显著提高对Cr(VI)的吸附能力,从而达到对Cr(VI)的最大吸附量为417mg·g‑1

Description

一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法
技术领域
本发明属于水处理领域,具体涉及一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法。
背景技术
铬是广泛使用的金属,经常在工业废水中被发现。含铬废水未经处理排放到河流中,不仅对水生生物构成威胁,而且对整个食物链构成威胁,这些金属离子在整个食物链中积累到较高的浓度后,无法被生物降解,最终严重威胁人类的健康。一些传统的方法,如还原法、反渗透法、电渗析法、离子交换法和吸附法,已经被用来去除污染废水中的重金属离子。但这些方法中,单独达到排放标准的少之又少,有的甚至产生了严重的二次污染。
铬在水溶液中的物理化学性质差异较大,Cr(VI)主要以阴离子形式存在,如HCrO4 -、Cr2O7 2-等,给Cr(VI)在水体系的处理带来了更大的挑战。为了克服这一技术瓶颈,有效的途径之一是开发对有毒金属具有高选择性的吸附剂将金属络合原理引入传统技术,各种官能团,包括羧基、羟基、磷酸盐、巯基、酰胺和氨基,被化学接枝到宿主吸附剂上,以提高其对有毒金属的选择性。
蛋壳膜是位于石灰壳与蛋白之间的一种薄膜,是一种成本低廉、绿色环保和容易取得的生物材料。蛋壳膜是禽蛋类产品的副产物之一,按照蛋壳膜占蛋壳比重计算,根据每年世界蛋产品协会统计数据计算得到蛋壳膜约有3万余吨。蛋壳膜具有复杂的网状结构,主要成分为蛋白质,约占蛋壳膜总重量的90%-93%左右,并且含有氨基酸、脂质体和糖类等其它成分。蛋壳膜具有极其特殊的性质,如高比表面积、不溶于水、耐有机溶剂、低浓度的酸碱对蛋壳膜结构影响较小、优越的化学稳定性以及丰富的表面功能基团氨基、酞胺基和羧基等。因此,蛋壳膜可作为一种“绿色”资源进行再利用。
氨基功能化材料有望成为去除重金属的有效材料,因为阴离子金属的去除可以通过静电作用、离子交换或氢键来实现。近年来,随着磁性材料的发展,磁性材料在磁场作用下具有可分离的特性,磁分离技术被证明是一种非常有前景的固-液相分离方法。功能化纳米Fe3O4在医学、诊断、细胞生物学、分析化学、采矿、环境技术等领域都有广泛的应用。
因此,本发明提供一种负载PEI蛋壳膜磁性生物炭的制备方法,以生物碳吸附去除Cr(VI),以解决上述的Cr(VI)处理过程中排放不达标、容易造成二次污染的问题。
发明内容
为了解决上述技术问题,本发明提供了一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法。
为了达到解决上述技术问题的技术效果,本发明是通过以下技术方案实现的:一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法,其特征在于,具体包括以下步骤:
S1、收集食堂废弃生鸡蛋壳作为原材料,用清水冲洗过后,再用稀盐酸浸泡24h,最后撕下蛋壳内层的生物膜并烘干,得到蛋壳膜材料;
S2、称取适量破碎后的蛋壳膜粉、K2CO3和Fe3O4,再加入水将其搅拌均匀后放入60℃的烘箱中烘干;
S3、将烘干后的混合物放入管式炉中,在N2的氛围下800℃热解1.5h,得到带磁性的蛋壳膜生物炭;将磁性蛋壳膜生物炭用去离子水洗涤数遍直到洗液为中性,最后放入烘箱中烘干备用;
S4、称取适量的蛋壳膜磁性生物碳加入到去离子水中进行超声处理,至其在水中均匀分散,再加入适量PEI后超声处理1h,静置反应24h,最后分离洗涤后的材料,并将其材料并放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭(PEI-MBC);
进一步的,所述S2中蛋壳膜粉和K2CO3的质量比为1:2,分别加入包括5g蛋壳膜粉和10g K2CO3,所述Fe3O4的加入量包括为0.25g;
进一步的,所述S4中磁性蛋壳膜生物炭(MBC)和PEI的质量比为1:3,分别加入包括0.4g MBC和1.2g PEI,且超声时间为1h。
本发明的有益效果是:
本发明通过超声和静置反应的方式将PEI负载到蛋壳膜磁性生物炭上,合成一种负载PEI蛋壳膜磁性生物炭,蛋壳膜粉末热解产生的生物炭具有良好的孔隙结构和含氧官能团,Fe3O4纳米颗粒嵌入使生物炭具有磁性,便于吸附剂对Cr(VI)的吸附回收,防止二次污染,生物炭上的含氧官能团和PEI为吸附Cr(VI)提供了丰富的活性位点,显著提高对Cr(VI)的吸附能力,而达到对Cr(VI)的最大吸附量为417mg·g-1
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种高效去除Cr(VI)吸附剂的制备方法中得到的对比蛋壳膜粉、纯蛋壳膜生物炭、蛋壳膜+K2CO3生物炭、蛋壳膜+K2CO3+Fe3O4生物炭、蛋壳膜+K2CO3+Fe3O4+PEI生物炭的SEM图;
图2是本发明中不同热解条件和不同原料配比制备的吸附剂对Cr(VI)的吸附容量;
图3是本发明中不同pH条件下不同材料的吸附容量对比的示意图;
图4是本发明中不同接触时间下PEI-MBC对Cr(VI)吸附容量的影响及拟一级、拟二级动力学模型拟合以及颗粒内扩散模型拟合;
图5是本发明中不同接触时间下PEI-MBC对Cr(VI)吸附容量的影响及拟二级动力学模型拟合以及颗粒内扩散模型拟合;
图6是本发明中PEI-MBC对不同初始浓度Cr(VI)吸附容量的变化以及Langmuir等温线模型、Freundlich等温线模型、Liu等温线模型拟合。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种高效去除Cr(VI)吸附剂的制备方法,包括以下步骤:
步骤一:称取5g破碎后的蛋壳膜粉、10g K2CO3和0.25g Fe3O4,再加入少量的水将其搅拌均匀后放入60℃的烘箱中烘干;。
步骤二:将烘干后的混合物放入管式炉中,在N2的氛围下800℃热解1.5h,得到带磁性的蛋壳膜生物炭。将磁性蛋壳膜生物炭用去离子水洗涤数遍直到洗液为中性,最后放入烘箱中烘干备用;
步骤三:称取0.4g烘干后的蛋壳膜磁性生物炭加入到200mL去离子水中超声1h使其在水中均匀分散,再加入1.2g PEI后超声1h后静置反应24h,将其洗涤数遍后分离出材料并放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭(PEI-MBC)。
经检测,所述吸附剂的比表面积891.3962m2·g-1,总孔体积为0.4981cm2·g-1,平均孔径为2.51nm。由图1可知,生物炭的外表面有很多不规则的微孔,整体呈现为蜂窝状,由于丰富的孔隙结构,能增加其比表面积。
实施例2
一种高效去除Cr(VI)吸附剂的制备方法,包括以下步骤:
探究K2CO3的比例对于吸附实验的影响,包括以下步骤:
(1)材料制备:固定Fe3O4的质量为0.25g,分别称取蛋壳膜粉和K2CO3的比例为1:0、1:1、2:1、1:2,再加入少量的水将其搅拌均匀后放入60℃的烘箱中烘干;将烘干后的混合物放入管式炉中,在N2的氛围下800℃热解1.5h,得到带磁性的蛋壳膜生物炭。最后在超声的作用下负载一定量的PEI,放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭(PEI-MBC)。
(2)实验过程:配制Cr(VI)浓度为100mg/L,调节pH值为2;称取材料0.01g放入100mL磨口锥形瓶中,倒入Cr(VI)溶液30mL;25℃、在转速为180r/min的摇床中振荡吸附24h。
(3)实验结果表明,当蛋壳膜粉和K2CO3的比例为1:2时,其吸附效果较好。
探究Fe3O4的量对于吸附实验的影响,包括以下步骤:
(1)材料制备:通过控制变量法,固定称取5g破碎后的蛋壳膜粉、10g K2CO3,改变Fe3O4的质量为0、0.25、0.5g,再加入少量的水将其搅拌均匀后放入60℃的烘箱中烘干;将烘干后的混合物放入管式炉中,在N2的氛围下800℃热解1.5h,得到带磁性的蛋壳膜生物炭。最后在超声的作用下负载一定量的PEI,放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭(PEI-MBC)。
(2)实验过程:配制Cr(VI)浓度为100mg/L,调节pH值为2;称取材料0.01g放入100mL磨口锥形瓶中,倒入Cr(VI)溶液30mL;25℃、在转速为180r/min的摇床中振荡吸附24h。
(3)实验结果表明:当Fe3O4的质量为0.25g的时候,其吸附效果较好。
探究PEI的比例对于吸附实验的影响,包括以下步骤:
(1)材料制备:PEI对于吸附实验的影响:固定蛋壳膜粉和K2CO3的比例为1:2,固定Fe3O4的质量为0.25g,改变磁性蛋壳膜生物炭和PEI的比例为1:0、1:1、1:2、1:3,在超声的作用下负载PEI,放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭(PEI-MBC)。
(2)实验过程:配制Cr(VI)浓度为100mg/L,调节pH值为2;称取材料0.01g放入100mL磨口锥形瓶中,倒入Cr(VI)溶液30mL;25℃、在转速为180r/min的摇床中振荡吸附24h。
(3)实验结果,当PEI的比例为1:3时,吸附效果较好。
(4)剩余浓度测定方法:吸附后的溶液,将吸附剂与溶液分离后,稀释定容到比色管中,依次加入1:1H2SO4和1:1H3PO4各0.5mL,再加入2mL显色剂,显色剂为2g·L-1的二苯基碳酰二肼溶液,显色5-10min后在540nm的波长下用分光光度计进行测定。
实施例3
一种高效去除Cr(VI)吸附剂的制备方法,包括以下步骤:
(1)配制浓度为100mg/L的Cr(VI)溶液,并用1M的NaOH、1M的HCl调节pH,pH范围为1至9;
(2)称取实施例1中所制得的PEI-MBC材料0.01g,放入磨口锥形瓶中,不同pH条件下分别设置两个平行样;
(3)向(2)中倒入30mL(1)中配制的溶液,放入摇床中,转速为180r/min下振荡吸附24h。
实验结果表明:PEI-MBC吸附剂在pH为2时吸附量达到417mg·g-1
剩余浓度测定方法,Cr(VI)的测定,其具体测定内容:吸附后的溶液,将吸附剂与溶液分离后,稀释定容到比色管中,依次加入1:1H2SO4和1:1H3PO4各0.5mL,再加入2mL显色剂,显色剂为2g·L-1的二苯基碳酰二肼溶液,显色5-10min后在540nm的波长下用分光光度计进行测定。
实施例4
一种高效去除Cr(VI)吸附剂的制备方法,包括:
(1)配制Cr(VI)浓度为100mg/L,并用1M的NaOH、1M的HCl调节pH,pH为2;
(2)称取实施例1中所制得的PEI-MBC材料0.01g,放入磨口锥形瓶中,不同吸附时间下分别设置两个平行样;
(3)向(2)中倒入(1)中溶液各30mL,放入摇床中,振荡时间分别为1、5、10、20、30、40、50、60、90、120、150、180、210、240min,转速为180r/min;
实验结果表明:PEI-MBC对Cr(VI)的吸附作用大约在接触60min后基本达到吸附平衡。
剩余浓度测定方法,Cr(VI)的测定,其具体测定内容:吸附后的溶液,将吸附剂与溶液分离后,稀释定容到比色管中,依次加入1:1H2SO4和1:1H3PO4各0.5mL,再加入2mL显色剂,显色剂为2g·L-1的二苯基碳酰二肼溶液,显色5-10min后在540nm的波长下用分光光度计进行测定。
为了进一步理解吸附的过程以及吸附机理,使用准一级动力学方程、准二级动力学方程和粒子内扩散模型(Weber-Morris模型)对动力学数据进行了拟合:
准一级动力学方程:
准二级动力学方程:
粒子内扩散模型(Weber-Morris模型):
其中,qt(mg g-1)和qe(mg g-1)分别为目标污染物在t时刻和平衡时的吸附量;k1(min-1)和k2(g mg-1min-1)分别为准一级和准二级动力学吸附速率常数;ki(mg g-1min-1/2)表示粒子内扩散速率常数。
实施例5
一种高效去除Cr(VI)吸附剂的制备方法,包括:
(1)分别配制Cr(VI)浓度为20、50、100、150、200、250、300、350、400、450、500mg/L,并用1M的NaOH、1M的HCl调节pH,pH为2;
(2)称取实施例1中所制得的PEI-MBC材料0.01g,放入磨口锥形瓶中,不同吸附时间下分别设置两个平行样;
(3)向(2)中倒入(1)中溶液各30mL,放入摇床中,振荡时间为24h,转速为180r/min;
实验结果表明:Langmuir模型计算获得Cr(VI)在298K时的最大吸附量为417mg·g-1
剩余浓度测定方法,Cr(VI)的测定,其具体测定内容:吸附后的溶液,将吸附剂与溶液分离后,稀释定容到比色管中,依次加入1:1H2SO4和1:1H3PO4各0.5mL,再加入2mL显色剂,显色剂为2g·L-1的二苯基碳酰二肼溶液,显色5-10min后在540nm的波长下用分光光度计进行测定。
为了进一步描述PEI-MBC对Cr(VI)的吸附行为,通过Langmuir等温线模型、Freundlich等温线模型和Liu等温线模型(Langmuir和Freundlich等温模型的结合)对等温线数据进行了非线性拟合。各模型的方程式如下:
Langmuir等温线模型:
Freundlich等温线模型:
Liu等温线模型:
其中Ce(mg·L-1)和qe(mg·g-1)分别表示Cr(VI)的平衡浓度和吸附量;qmax(mg·g-1)为吸附剂的最大吸附量;KL(L·mg-1)、KF(mg(1-1/n).L1/n·g-1)和Kg(L·mg-1)分别表示Langmuir、Freundlich和Liu平衡常数。nF和nL分别是Freundlich和Liu模型中的无量纲常数。
工作原理:
由图1可知:图1(a)展示了蛋壳膜生物质的表面形貌图,可以观察到蛋壳膜生物质呈现纤维状,表面光滑,由不规则的纤维丝状物组成。图1(b)为纯蛋壳膜生物质热解后的外表面电镜图,可以看到纯蛋壳膜生物质热解后的生物炭外表面比较光滑,因为没加入K2CO3,所以表面无孔隙结构。图1(c)为蛋壳膜+K2CO3热解后产生的生物炭,由于K2CO3的加入,在生物炭表面产生了很多孔隙结构,大大的增加了生物炭的比表面积,这是由于K2CO3热解会产生CO2气体,从而起到了凿孔的作用。图1(d)为蛋壳膜+K2CO3+Fe3O4热解后的生物炭,可以观察到在生物炭表面有很多球形小颗粒,这些球形小颗粒是Fe3O4负载后产生的金属球,使得材料有了磁性,便于回收。图1(e-i)为蛋壳膜+K2CO3+Fe3O4+PEI热解后的生物炭,可以看到最终材料PEI-MBC整体呈现蜂窝状,有较好的孔隙结构。同时通过图1(h,i)的局部放大图可以观察到,在生物炭的外表附着很多絮状物质,这正是PEI,PEI的加入为Cr(VI)的吸附提供了丰富的吸附位点,有利于污染物的附着。
由图2可知:PEI-MBC的最佳热解温度为800℃,最佳热解时间为1.5h,蛋壳膜粉和K2CO3的比例为1:2,Fe3O4的质量为0.25g,磁性蛋壳膜生物炭和PEI的比例为1:3,制备得到最优材料PEI-MBC。
由图3可得:PEI-MBC吸附剂在pH为2时吸附量达到最大,这表明其可以作为去除Cr(VI)的高效吸附剂。
由图4可得:准一级和准二级方程非线性拟合曲线如图4所示,由计算可知,准二级动力学的相关系数(R2=0.9997)远高于准一级动力学方程的相关系数(R2=0.8638)。准一级动力学方程拟合得到的平衡吸附量为(qe,cal=287mg·g-1),准二级动力学方程的平衡吸附量为(qe,cal=297mg·g-1)。因此,准二级动力学模型可以更好地描述PEI-MBC对Cr(VI)的吸附过程。
由于PEI-MBC复合吸附剂为多孔材料,因此,吸附过程的速率可能由粒子内扩散控制。通过粒子内扩散模型进一步分析了动力学数据。如图4所示,拟合图分为三段直线,这意味着Cr(VI)的吸附涉及多个步骤,且粒子内扩散不是唯一的限速步骤。三段直线的粒子内扩散速率常数值由大到小的顺序为ki,1>ki,2>ki,3。数值最大的ki,1=13.979对应吸附第一阶段,即前20min,此阶段Cr(VI)分子向吸附剂表面的扩散,吸附速率最快;随之而来的第二阶段ki,2=2.0305为内部扩散,即Cr(VI)分子逐渐占据了吸附剂的内部吸附位点;而最后阶段ki,3=0.302得到的拟合直线斜率几乎为0,表明吸附达到平衡。以上结论说明,PEI-MBC对Cr(VI)的吸附是一个较为复杂的过程,分为多个步骤完成。
由图5可得:图5中可以看到,在不同温度下(298、308和318K),qe随着Ce的增加而增加,但这种增加并非线性,表明粒子内扩散不是吸附的控制因素。此外,温度的升高有助于吸附量的提高,说明该吸附过程为吸热反应。通过拟合得到相关的拟合参数,其中Langmuir等温线模型对应的相关系数R2最大,说明其最适合描述Cr(VI)在PEI-MBC上的吸附过程。此外,基于Langmuir模型计算得到获得的Cr(VI)在298K时的最大吸附量为417mg·g-1,体现出对Cr(VI)的高效吸附能力。
上述现象表明:本发明无毒、环境友好,通过简单的热解,超声作用制备PEI-MBC功能材料。吸附剂PEI-MBC针对重金属Cr(VI)污染物对应的特异性吸附位点,对Cr(VI)达到快速高效吸附效果,从而达到对Cr(VI)的最大吸附量为417mg·g-1
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (1)

1.一种高效去除重金属Cr(Ⅵ)的吸附剂制备方法,其特征在于,具体包括以下步骤:
S1、收集食堂废弃生鸡蛋壳作为原材料,用清水冲洗过后,再用稀盐酸浸泡24h,最后撕下蛋壳内层的生物膜并烘干,得到蛋壳膜材料;
S2、称取适量破碎后的蛋壳膜粉、K2CO3和Fe3O4,再加入水将其搅拌均匀后放入60℃的烘箱中烘干;
S3、将烘干后的混合物放入管式炉中,在N2的氛围下800℃热解1.5h,得到带磁性的蛋壳膜生物炭;将磁性蛋壳膜生物炭用去离子水洗涤数遍直到洗液为中性,最后放入烘箱中烘干备用;
S4、称取适量的磁性蛋壳膜生物炭加入到去离子水中进行超声处理,至其在水中均匀分散,再加入适量PEI后超声处理1h,静置反应24h,最后分离洗涤后的材料,并将其材料并放入-40℃冷冻干燥机中干燥24h,得到负载PEI的磁性蛋壳膜生物炭PEI-MBC;
所述S2中蛋壳膜粉和K2CO3的质量比为1:2,分别加入5g蛋壳膜粉和10g K2CO3,所述Fe3O4的加入量为0.25g;
所述S4中磁性蛋壳膜生物炭MBC和PEI的质量比为1:3,分别加入0.4g MBC和1.2g PEI,且超声时间为1h。
CN202210681344.8A 2022-06-15 2022-06-15 一种高效去除重金属Cr(VI)的吸附剂制备方法 Active CN114849648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210681344.8A CN114849648B (zh) 2022-06-15 2022-06-15 一种高效去除重金属Cr(VI)的吸附剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210681344.8A CN114849648B (zh) 2022-06-15 2022-06-15 一种高效去除重金属Cr(VI)的吸附剂制备方法

Publications (2)

Publication Number Publication Date
CN114849648A CN114849648A (zh) 2022-08-05
CN114849648B true CN114849648B (zh) 2023-11-21

Family

ID=82624755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210681344.8A Active CN114849648B (zh) 2022-06-15 2022-06-15 一种高效去除重金属Cr(VI)的吸附剂制备方法

Country Status (1)

Country Link
CN (1) CN114849648B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115920896A (zh) * 2022-11-16 2023-04-07 昆明理工大学 一种降解环丙沙星的催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076275A (zh) * 2016-06-29 2016-11-09 山东农业大学 一种多孔磁性六价铬吸附剂及其制备方法
CN106268635A (zh) * 2016-08-10 2017-01-04 广州市金龙峰环保设备工程有限公司 一种铁炭生物颗粒及其制备方法和应用
CN107638873A (zh) * 2017-08-23 2018-01-30 南昌大学 一种用于六价铬吸附的磷氮共掺杂生物质基多孔炭材料的制备方法
CN110614083A (zh) * 2019-09-23 2019-12-27 长安大学 一种聚乙烯亚胺改性木屑重金属吸附剂及其制备方法
CN111392710A (zh) * 2020-04-03 2020-07-10 成都农业科技中心 一种基于废弃鸡蛋壳的生物炭及其制备方法和应用
CN112547015A (zh) * 2020-12-07 2021-03-26 西安工业大学 一种pei改性生物炭的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076275A (zh) * 2016-06-29 2016-11-09 山东农业大学 一种多孔磁性六价铬吸附剂及其制备方法
CN106268635A (zh) * 2016-08-10 2017-01-04 广州市金龙峰环保设备工程有限公司 一种铁炭生物颗粒及其制备方法和应用
CN107638873A (zh) * 2017-08-23 2018-01-30 南昌大学 一种用于六价铬吸附的磷氮共掺杂生物质基多孔炭材料的制备方法
CN110614083A (zh) * 2019-09-23 2019-12-27 长安大学 一种聚乙烯亚胺改性木屑重金属吸附剂及其制备方法
CN111392710A (zh) * 2020-04-03 2020-07-10 成都农业科技中心 一种基于废弃鸡蛋壳的生物炭及其制备方法和应用
CN112547015A (zh) * 2020-12-07 2021-03-26 西安工业大学 一种pei改性生物炭的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Polyehyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(VI) from water";Bin Liu et al.;《Journal of Materials Chemistry》;第21卷;17413-17418 *
"改性方法对辣木籽壳生物炭吸附亚甲基蓝的影响";董程等;《食品与机械》;第37卷(第11期);12-18 *
"聚乙烯亚胺修饰磁性碳纳米管对水中六价铬的吸附";岳文丽等;《工业水处理》;第37卷(第11期);70-74 *

Also Published As

Publication number Publication date
CN114849648A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Ibrahim et al. Biosorption of toxic heavy metals from aqueous solution by Ulva lactuca activated carbon
Bai et al. Adsorption of Cr (III) and Pb (II) by graphene oxide/alginate hydrogel membrane: Characterization, adsorption kinetics, isotherm and thermodynamics studies
Xie et al. Polyethyleneimine modified activated carbon for adsorption of Cd (II) in aqueous solution
Al-Othman et al. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies
Babaei et al. Optimization of cationic dye adsorption on activated spent tea: equilibrium, kinetics, thermodynamic and artificial neural network modeling
Gautam et al. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration
Wang et al. Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes
Cheung et al. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char
Azlan et al. Chitosan and chemically modified chitosan beads for acid dyes sorption
Bayramoglu et al. Synthesis of Cr (VI)-imprinted poly (4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: its adsorption propensity to Cr (VI)
Kamboh et al. Synthesis and application of p-tert-butylcalix [8] arene immobilized material for the removal of azo dyes
Kaur et al. Batch sorption dynamics, kinetics and equilibrium studies of Cr (VI), Ni (II) and Cu (II) from aqueous phase using agricultural residues
Sarker et al. Evaluation of the adsorption of sulfamethoxazole (SMX) within aqueous influents onto customized ordered mesoporous carbon (OMC) adsorbents: Performance and elucidation of key adsorption mechanisms
Zhang et al. Fabrication of zinc oxide/polypyrrole nanocomposites for brilliant green removal from aqueous phase
Ecer et al. A response surface approach for optimization of Pb (II) biosorption conditions from aqueous environment with Polyporus squamosus fungi as a new biosorbent and kinetic, equilibrium and thermodynamic studies.
CN110756166A (zh) 一种玉米芯负载镁改性吸附材料及其制备方法与应用
Madhavakrishnan et al. Adsorption of crystal violet dye from aqueous solution using Ricinus communis pericarp carbon as an adsorbent
Moon et al. Use of curdlan and activated carbon composed adsorbents for heavy metal removal
Liu et al. An efficient adsorption of manganese oxides/activated carbon composite for lead (II) ions from aqueous solution
CN114849648B (zh) 一种高效去除重金属Cr(VI)的吸附剂制备方法
Yadla et al. Adsorption performance of fly ash for the removal of lead
Oyelude et al. Removal of methylene blue from aqueous solution using alkali-modified malted sorghum mash
CN110918057A (zh) 一种用于吸附去除镉的水热炭材料制备方法及其应用
Biftu et al. Effective de-fluoridation of water using Leucaena luecocephala active carbon as adsorbent
Yao et al. Biosorption of Cr (III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant