CN114836717B - 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法 - Google Patents

具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法 Download PDF

Info

Publication number
CN114836717B
CN114836717B CN202210384326.3A CN202210384326A CN114836717B CN 114836717 B CN114836717 B CN 114836717B CN 202210384326 A CN202210384326 A CN 202210384326A CN 114836717 B CN114836717 B CN 114836717B
Authority
CN
China
Prior art keywords
auti
pulse
enhanced raman
deposition
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210384326.3A
Other languages
English (en)
Other versions
CN114836717A (zh
Inventor
申益
周咏芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sino Singapore International Joint Research Institute
Original Assignee
Sino Singapore International Joint Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino Singapore International Joint Research Institute filed Critical Sino Singapore International Joint Research Institute
Priority to CN202210384326.3A priority Critical patent/CN114836717B/zh
Publication of CN114836717A publication Critical patent/CN114836717A/zh
Application granted granted Critical
Publication of CN114836717B publication Critical patent/CN114836717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法,过程如下:将钛片利用乙醇、丙酮和水交替洗涤多次;将晾干的钛片裁剪后放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间,制备得到Au膜。将得到的AuTi作为电化学脉冲沉积的沉积电极,在氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,调节氯化镍、氯化钴和硝酸铜的浓度、脉冲次数、占空比的脉冲电压、工作状态、静止状态、镍和钴的脉冲电位、铜的脉冲电位。反应完成后,将制备的电极洗净,干燥。本发明制备所得M@AuTi自支撑电极具有表面增强拉曼效果,用于催化HMF电氧化制备高附加值产物及催化机理研究。

Description

具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法
技术领域
本发明涉及纳米催化剂技术领域,具体涉及一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法。
背景技术
5-羟甲基糠醛(HMF)是生物质衍生的己糖和戊糖的酸催化脱水产物,氧化为增值化学品是该领域研究的最突出的反应之一。通过连续电化学氧化HMF的羟甲基和醛基可以得到一系列不同的产品,其中2,5-呋喃二甲酸(FDCA)有望替代化石级对苯二甲酸(通常由石脑油产生)在聚酯和其他聚合物中的应用。虽然HMF向FDCA的转化早已通过热催化确立,但其通过电化学氧化的生成却鲜为人知。电化学以其温和的反应条件、良好的产物选择性、低廉的催化剂价格越来越受到广泛的关注。目前,电化学催化HMF氧化研究的重点除了寻找高活性的催化剂外,对HMF电催化机制的研究也需要重点关注。非贵金属镍基、钴基、铜基催化剂对HMF电化学氧化性能优越,但对在这些金属表面发生的表面动力学的机理研究很少,并且还有许多知识空白需要填补。相比之下,水电解和二氧化碳还原等反应的原位光谱研究极大地丰富了该领域对这些反应体系的了解,从而加快了对这些反应的研究进展。最近,有研究者利用原位表面增强拉曼光谱研究探测到在Au表面上HMF可以转化为2,5-二甲酰基呋喃(DFF),并提供了氧结合表面中间体的证据。表面增强拉曼光谱是通过在具有大量自由电子密度(例如Au和Ag)的等离子体材料表面处增强的局部电磁场以及基板和化学吸附分子之间的电荷转移效应来实现的,所有这些都可能使合成的拉曼强度增加几个数量级。因此,该技术特别适用于探测多相催化,因为信号增强会随着远离基板(2nm)的距离而迅速衰减,从而使表面增强拉曼光谱成为一种固有的表面敏感探针。
尽管Au是一种优秀的模型系统和表面增强拉曼光谱基底,但其在碱性溶液中对这种电化学HMF氧化的活性较弱。相反,一些常见的非贵金属如Ni、Co和Cu等在碱性电解液种具有较好的反应活性。因此,可以在原位拉曼基底的基础上引入非贵金属,制备同时具备高性能和表面增强拉曼效果的电极用于HMF的电化学氧化。这样制备的电极既可以用于生物质HMF的电化学转化同时也可以用于原位拉曼检测分析其反应机理。
发明内容
本发明的第一个目的是为了解决现有技术中的上述缺陷,提供一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法。该制备方法采用离子溅射和电化学脉冲沉积相结合的方法,以Au箔作为离子溅射源,以均匀涂附在Ti电极片的Au纳米粒作为表面增强拉曼光谱的增强基底,硝酸铜、氯化镍和氯化钴作为合成的前驱体溶液,水作为反应溶剂,调节反应pH值,通过电化学脉冲沉积反应,合成出均匀附着在表面增强拉曼光谱基底上的Ni、Co和Cu纳米颗粒。
本发明的另一目的在于提供一种通过上述方法制备得到的具有表面增强拉曼光谱效应的M@AuTi自支撑电极。
本发明第一个目的通过以下技术方案实现:
一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法,所述制备方法包括以下步骤:
S1、将钛片利用乙醇、丙酮和水交替洗涤多次,晾干后作为制备Au表面增强拉曼基底的前体;
S2、将步骤S1中得到的钛片裁剪成1.5×1.5cm规格大小,放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间,制备得到的Au纳米颗粒均匀附着在钛片上,溅射完成后成Au膜,记为AuTi;
S3、利用步骤S2中得到的AuTi作为电化学脉冲沉积的沉积电极,在氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,调节脉冲次数、脉冲电压的占空比、工作状态时间和静止状态时间,限定镍、钴和铜的脉冲电位的变化区间,限定氯化镍和氯化钴沉积液的pH区间以及硝酸铜沉积液的pH区间,反应完成后,将制备的电极用去离子水洗净,干燥,记为M@AuTi。
进一步地,所述步骤S2中通过离子溅射进行镀膜,其中,镀膜时间为10~180s。镀膜时间的长短直接影响膜表面纳米颗粒的大小和成膜厚度,这为表面增强拉曼基底的有效建立具有决定性影响。
进一步地,所述步骤S3中氯化镍、氯化钴和硝酸铜的浓度为5~100mM。这三种金属前驱体的选择对下一步电化学沉积影响很大,用这3种金属前驱体可以很好的保证金属颗粒的均匀生成及负载。
进一步地,所述步骤S3中调节脉冲次数为50~1000次。脉冲沉积次数关系到得到的金属颗粒的大小和分布均匀情况。
进一步地,所述步骤S3中脉冲电压的占空比为5%~20%。占空比调控沉积速度及成核速度。
进一步地,所述步骤S3中工作状态时间为10~90ms,静止状态时间为10~90ms。工作状态时间和静止状态时间的选择影响沉积的成核率。
进一步地,所述步骤S3中限定镍和钴的脉冲电位为介于-1.6V和-1.1V间变化,限定铜的脉冲电位为介于-0.3V和0.3V间变化。脉冲电位的选择直接关系到电沉积得到的金属的价态,在这个电位区间内可以保证生成的是金属颗粒而不是金属氧化物或氢氧化物等。
进一步地,所述步骤S3中限定氯化镍和氯化钴沉积液的pH为2.0~6.0,硝酸铜沉积液的pH为1.0~4.0。沉积液的pH值对能否生成金属纳米颗粒起关键作用。
本发明另一个目的通过以下技术方案实现:
一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极,通过上述制备方法制备得到。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明采用的离子溅射和电化学脉冲沉积相结合的制备方法制备具有表面增强拉曼效应的M@AuTi自支撑电极,该法工艺简单,原料易得,具有成本低、绿色环保等优点。首先选用离子溅射技术制备表面增强拉曼基底,可以很好的控制Au纳米颗粒的成核及生成,利于形成Au纳米颗粒均匀分布的膜层。另外,通过该技术还可以轻松的控制成膜的厚度和均匀程度,进而可轻易调节所制备拉曼基底的表面增强效果。其次,选用电化学脉冲沉积法制备过渡金属纳米颗粒,可通过调节脉冲次数、沉积电位、沉积液的pH值等条件对金属颗粒的成核速度、金属颗粒的大小尺寸进行直接调节,方法简单易操作。与其他水热、溶剂热等方法相比,该法操作简便,反应时间极短,在几十秒的时间内即可制得金属纳米颗粒,且反应过程不涉及任何还原剂、表面活性剂及其他有机试剂,绿色环保。另外该法值得的金属纳米颗粒原位负载在表面增强拉曼基底上,可以直接用于电催化过程,不需要繁琐的清洗和催化剂涂敷步骤,节省了大量时间。表面增强拉曼基底的制备,可以有效的增强金属纳米颗粒的拉曼信号,提高检测的灵敏度。
(2)本发明制备的具有表面增强拉曼光谱效应的M@AuTi自支撑电极呈纳米颗粒状态,均匀附着在AuTi表面增强拉曼基底上,原位生长,不易脱落。所制备的纳米颗粒与金纳米粒子间存在强相互作用,在电催化过程中,长时间使用之后也保持着原来的颗粒形貌和催化效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例3制备的具有表面增强拉曼光谱效应的Ni@AuTi自支撑电极的原子力显微照片图;
图2是本发明实施例3制备的具有表面增强拉曼光谱效应的Co@AuTi自支撑电极的原子力显微照片图;
图3是本发明实施例3制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极的原子力显微照片图;
图4是本发明实施例3制备的具有表面增强拉曼光谱效应的Ni@AuTi自支撑电极的截面轮廓图,该图由图1计算得到;
图5是本发明实施例3制备的具有表面增强拉曼光谱效应的Co@AuTi自支撑电极的截面轮廓图,该图由图2计算得到;
图6是本发明实施例3制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极的截面轮廓图,该图由图3计算得到;
图7是本发明实施例3中钛基底上不同浓度刚果红的拉曼检测信号;
图8是本发明实施例3中制备的具有表面增强拉曼光谱效应的Ni@AuTi自支撑电极上不同浓度刚果红的拉曼检测信号示意图;
图9是本发明实施例3中制备的具有表面增强拉曼光谱效应的Co@AuTi自支撑电极上不同浓度刚果红的拉曼检测信号示意图;
图10是本发明实施例3中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极上不同浓度刚果红的拉曼检测信号示意图;
图11是本发明实施例3中制备的具有表面增强拉曼光谱效应的Ni@AuTi自支撑电极在0.1MKOH+10mMHMF溶液中的电氧化CV曲线图,其中,扫速是50mV/s;
图12是本发明实施例3中制备的具有表面增强拉曼光谱效应的Co@AuTi自支撑电极在0.1MKOH+10mMHMF溶液中的电氧化CV曲线图,其中,扫速是50mV/s;
图13是本发明实施例3中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极在0.1MKOH+10mMHMF溶液中的电氧化CV曲线图,其中,扫速是50mV/s;
图14是本发明实施例3中制备的具有表面增强拉曼光谱效应的Ni@AuTi自支撑电极对HMF氧化的原位拉曼信号图;
图15是本发明实施例3中制备的具有表面增强拉曼光谱效应的Co@AuTi自支撑电极对HMF氧化的原位拉曼信号图;
图16是本发明实施例3中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极对HMF氧化的原位拉曼信号图;
图17是本发明实施例3中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极的扫描电镜图;
图18是本发明实施例2中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极的扫描电镜图;
图19是本发明实施例1中制备的具有表面增强拉曼光谱效应的Cu@AuTi自支撑电极的扫描电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例公开了一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法,包括以下步骤:
S1、将钛片利用乙醇、丙酮和水交替洗涤多次,晾干后作为制备Au表面增强拉曼基底的前体。
S2、将步骤S1得到的钛片裁剪成1.5×1.5cm规格大小,放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间为10s,制备得到的Au纳米颗粒均匀附着在钛片上,溅射完成后成Au膜,记为AuTi。
S3、利用步骤S2得到的AuTi作为电化学脉冲沉积的沉积电极,在100mM氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,调节脉冲次数为100次,5%占空比的脉冲电压,工作状态为10ms,静止状态为90ms,镍和钴的脉冲电位为-1.4~-1.1V,铜的脉冲电位为-0.2~0.2V。氯化镍和氯化钴沉积液的pH为4.5,硝酸铜沉积液的pH为1.5。反应完成后,将制备的电极用去离子水洗净,干燥,记为M@AuTi。
实施例2
本实施例公开了一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法,包括以下步骤:
S1、将钛片利用乙醇、丙酮和水交替洗涤多次,晾干后作为制备Au表面增强拉曼基底的前体。
S2、将步骤S1得到的钛片裁剪成1.5×1.5cm规格大小,放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间为60s,制备得到的Au纳米颗粒均匀附着在钛片上,溅射完成后成Au膜,记为AuTi。
S3、利用步骤S2得到的AuTi作为电化学脉冲沉积的沉积电极,在10mM氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,调节脉冲次数为300次,10%占空比的脉冲电压,工作状态为20ms,静止状态为80ms,镍和钴的脉冲电位为-1.3~-1.1V,铜的脉冲电位为-0.1~0.2V。氯化镍和氯化钴沉积液的pH为3.5,硝酸铜沉积液的pH为3.0。反应完成后,将制备的电极用去离子水洗净,干燥,记为M@AuTi。
实施例3
本实施例公开了一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法,包括以下步骤:
S1、将钛片利用乙醇、丙酮和水交替洗涤多次,晾干后作为制备Au表面增强拉曼基底的前体。
S2、将步骤S1得到的钛片裁剪成1.5×1.5cm规格大小,放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间为90s,制备得到的Au纳米颗粒均匀附着在钛片上,溅射完成后成Au膜,记为AuTi。
S3、将步骤S2得到的AuTi作为电化学脉冲沉积的沉积电极,在10mM氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,调节脉冲次数为300次,5%占空比的脉冲电压,工作状态为10ms,静止状态为90ms,镍和钴的脉冲电位为-1.4~-1.2V,铜的脉冲电位为-0.1~0.1V。氯化镍和氯化钴沉积液的pH为3.5,硝酸铜沉积液的pH为1.5。反应完成后,将制备的电极用去离子水洗净,干燥,记为M@AuTi。
本实施例制备的M@AuTi自支撑电极的原子力显微镜照片(AFM)图如图1、2和3所示。由图1、2和3可见,本发明所得Ni@AuTi、Co@AuTi和Cu@AuTi自支撑电极均呈纳米颗粒分布,且良好的附着在AuTi基底上。图4、5和6所示的截面轮廓图表明,所得Ni、Co和CuNPs的平均直径分别为66±2、180±5和275±5nm。为了验证合成后的表面增强拉曼基底的拉曼增强效应,使用浓度范围为1ppb至10g/L的刚果红溶液作为模型物质,其拉曼光谱如图7、8、9、10所示。原始钛板的检测限为10ppm(见图7),远大于镍(1ppb,见图8)、钴(1ppm,见图9)和铜(10ppb,见图10)涂层电极的检测限,表明所制备的表面增强拉曼基底具有出色的拉曼增强,为构建原位电化学表面增强拉曼系统提供了一个有前景的拉曼增强基底。所得Ni@AuTi、Co@AuTi和Cu@AuTi自支撑电极在0.1MKOH+10mMHMF溶液中的电氧化CV曲线图分别如图11、12、13所示,扫速是50mV/s。由图11、12、13可见,本发明所得的M@AuTi自支撑电极具有良好的HMF电化学催化效果。其对HMF氧化的电流远远高于析氧反应的电流。使用原位拉曼光谱技术检测到Ni@AuTi、Co@AuTi和Cu@AuTi自支撑电极催化HMF电氧化的活性位是NiOOH、CoO2和Cu(OH)2,分别如图14、15和16所示。
由实施例3制备的CuNPs均匀分布(见图17),颗粒大小保持在275nm左右,而实施例2制备的CuNPs虽然分布均匀,但单个颗粒较大,且聚集严重(见图18)有明显的纳米线形成,不利于拉曼检测。由实施例1制备的CuNPs颗粒太小,且不能很好的铺满整个拉曼基底(见图19),严重影响HMF的电催化效果和拉曼检测效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极的制备方法,其特征在于,所述制备方法包括以下步骤:
S1、将钛片利用乙醇、丙酮和水交替洗涤多次,晾干后作为制备Au表面增强拉曼基底的前体;
S2、将步骤S1中得到的钛片裁剪成1.5×1.5 cm规格大小,放进以Au箔作为离子溅射源的离子溅射自动镀膜仪中,调节镀膜时间,其中,镀膜时间为90 s,制备得到的Au纳米颗粒均匀附着在钛片上,溅射完成后成Au膜,记为AuTi;
S3、利用步骤S2中得到的AuTi作为电化学脉冲沉积的沉积电极,在氯化镍、氯化钴和硝酸铜金属前驱体溶液中进行电化学脉冲沉积反应,其中,氯化镍、氯化钴和硝酸铜的浓度为10 mM,调节脉冲次数、脉冲电压的占空比、工作状态时间和静止状态时间,限定镍、钴和铜的脉冲电位的变化区间,限定氯化镍和氯化钴沉积液的pH区间以及硝酸铜沉积液的pH区间,其中,调节脉冲次数为300次,脉冲电压的占空比为5%,工作状态时间为10 ms,静止状态时间为90 ms,限定镍和钴的脉冲电位为介于-1.4V和-1.2 V间变化,限定铜的脉冲电位为介于-0.1 V和0.1 V间变化,限定氯化镍和氯化钴沉积液的pH为3.5,硝酸铜沉积液的pH为1.5,反应完成后,将制备的电极用去离子水洗净,干燥,记为M@AuTi。
2.一种具有表面增强拉曼光谱效应的M@AuTi自支撑电极,其特征在于,通过权利要求1所述的制备方法制备得到。
CN202210384326.3A 2022-04-13 2022-04-13 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法 Active CN114836717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210384326.3A CN114836717B (zh) 2022-04-13 2022-04-13 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210384326.3A CN114836717B (zh) 2022-04-13 2022-04-13 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法

Publications (2)

Publication Number Publication Date
CN114836717A CN114836717A (zh) 2022-08-02
CN114836717B true CN114836717B (zh) 2023-12-05

Family

ID=82564772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210384326.3A Active CN114836717B (zh) 2022-04-13 2022-04-13 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法

Country Status (1)

Country Link
CN (1) CN114836717B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
CN102044673A (zh) * 2006-04-07 2011-05-04 三菱化学株式会社 锂二次电池正极材料用锂镍锰钴系复合氧化物粉体
KR20130016933A (ko) * 2011-08-09 2013-02-19 광주과학기술원 사이클로덱스트린을 이용하여 표면증강라만산란 활성을 갖는 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자를 포함하는 바이오센서
CN103926235A (zh) * 2014-05-04 2014-07-16 广东工业大学 一种鉴定希瓦氏菌的表面增强拉曼散射方法
JP2015068736A (ja) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 表面増強分光基板
CN104549555A (zh) * 2014-12-31 2015-04-29 江苏大学 一种多孔材料负载纳米合金催化剂及其制备方法和用途
CN105543935A (zh) * 2016-02-01 2016-05-04 同济大学 一种表面增强拉曼散射基底及其生产方法和应用
CN108020537A (zh) * 2018-01-02 2018-05-11 中国计量大学 一种大面积表面增强拉曼散射基底的制备方法
CN108321404A (zh) * 2018-03-01 2018-07-24 哈尔滨工业大学 一种金属或金属氧化物/掺杂型石墨烯核壳型催化剂载体与担载型催化剂及其制备方法
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN111579543A (zh) * 2020-05-15 2020-08-25 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种超低温增强拉曼光谱信号的检测方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201496A1 (en) * 2008-02-11 2009-08-13 Shuit-Tong Lee Surface-enhanced raman scattering based on nanomaterials as substrate
US11305344B2 (en) * 2016-10-26 2022-04-19 Council Of Scientific & Industrial Research Process for the preparation of bimetallic core/shell nanoparticles and their catalytic applications

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044673A (zh) * 2006-04-07 2011-05-04 三菱化学株式会社 锂二次电池正极材料用锂镍锰钴系复合氧化物粉体
CN101101263A (zh) * 2007-07-20 2008-01-09 苏州大学 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
KR20130016933A (ko) * 2011-08-09 2013-02-19 광주과학기술원 사이클로덱스트린을 이용하여 표면증강라만산란 활성을 갖는 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자를 포함하는 바이오센서
JP2015068736A (ja) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 表面増強分光基板
CN103926235A (zh) * 2014-05-04 2014-07-16 广东工业大学 一种鉴定希瓦氏菌的表面增强拉曼散射方法
CN104549555A (zh) * 2014-12-31 2015-04-29 江苏大学 一种多孔材料负载纳米合金催化剂及其制备方法和用途
CN105543935A (zh) * 2016-02-01 2016-05-04 同济大学 一种表面增强拉曼散射基底及其生产方法和应用
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN108020537A (zh) * 2018-01-02 2018-05-11 中国计量大学 一种大面积表面增强拉曼散射基底的制备方法
CN108321404A (zh) * 2018-03-01 2018-07-24 哈尔滨工业大学 一种金属或金属氧化物/掺杂型石墨烯核壳型催化剂载体与担载型催化剂及其制备方法
CN111579543A (zh) * 2020-05-15 2020-08-25 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种超低温增强拉曼光谱信号的检测方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ag核Au壳双金属复合纳米线的制备及其表面增强拉曼光谱研究;凌丽等;《化学学报》;第65卷(第9期);第779-784页 *
Physical properties and metal ion specific scanning tunneling microscopy images of metal(II) tetraphenylporphyrins deposited from vapor onto gold (111);L. Scudiero等;《JOURNAL OF PHYSICAL CHEMISTRY B》;第104卷(第50期);第11899-11905页 *
Surface-enhanced vibrational study of azabipiridyl and its Co(II), Ni(II) and Cu(II) complexes;M.Campos-Vallette等;《VIBRATIONAL SPECTROSCOPY》;第27卷(第1期);第15-27页 *
表面增强拉曼散射中贵金属纳米材料的研究进展;郑华军等;《材料导报》;第30卷(第S1期);第17-23页 *

Also Published As

Publication number Publication date
CN114836717A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
Guo et al. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution
Gong et al. High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition
Ding et al. Nanoporous metals for catalytic and optical applications
CN101623762B (zh) 金核/银铂合金壳结构的岛状多孔三金属纳米棒及其制法
Gunji et al. Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction—selectivity depending on secondary elements
Hossain et al. Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2
Zhao et al. Electrochemical controlled synthesis and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction
Gougis et al. Laser synthesis and tailor-design of nanosized gold onto carbon nanotubes for non-enzymatic electrochemical glucose sensor
Vilana et al. Influence of the composition and crystalline phase of electrodeposited CoNi films in the preparation of CoNi oxidized surfaces as electrodes for urea electro-oxidation
Mosali et al. Electrocatalytic CO2 reduction to formate on Cu based surface alloys with enhanced selectivity
Trafela et al. Controllable voltammetric formation of a structurally disordered NiOOH/Ni (OH) 2 redox pair on Ni-nanowire electrodes for enhanced electrocatalytic formaldehyde oxidation
CN110743565A (zh) 一种负载型钯-超薄CoNi-LDH纳米片复合材料及其制备方法和应用
Yüksel et al. The effect of 3D silver nanodome size on hydrogen evolution activity in alkaline solution
Telli et al. Electrocatalytic oxidation of methanol on Ru deposited NiZn catalyst at graphite in alkaline medium
Perales-Rondon et al. Effect of chloride and pH on the electrochemical surface oxidation enhanced Raman scattering
Zou et al. One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation
Zhou et al. Mechanistic study on electro-oxidation of 5-hydroxymethylfurfural and water molecules via operando surface-enhanced Raman spectroscopy coupled with an Fe3+ probe
Xu et al. One-step deposition of NixCu1− x alloys with both composition gradient and morphology evolution by bipolar electrochemistry
CN114836717B (zh) 具有表面增强拉曼光谱效应的M@AuTi自支撑电极及制备方法
Lawrence et al. Insight into the activity and selectivity of nanostructured copper titanates during electrochemical conversion of CO2 at neutral pH via in situ X-ray absorption spectroscopy
Zhang et al. High throughput screening driven discovery of Mn5Co10Fe30Ni55Ox as electrocatalyst for water oxidation and electrospinning synthesis
Gómez et al. Electrodeposition of CoNi alloys in a biocompatible DES and its suitability for activating the formation of sulfate radicals
Wang et al. Atomic-scale interfacial engineering enables high-performance electrochemical glucose detection
Mei et al. Simple electrodeposition of hierarchical gold-platinum nanothorns and their applications in electrocatalysis and SERS
Qu et al. Insights into the Pd nanocatalysts directed by morphology effect for CO and methyl nitrite coupling to dimethyl oxalate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant