CN114836655B - 一种高铝Inconel 625合金及制备方法 - Google Patents

一种高铝Inconel 625合金及制备方法 Download PDF

Info

Publication number
CN114836655B
CN114836655B CN202210479101.6A CN202210479101A CN114836655B CN 114836655 B CN114836655 B CN 114836655B CN 202210479101 A CN202210479101 A CN 202210479101A CN 114836655 B CN114836655 B CN 114836655B
Authority
CN
China
Prior art keywords
alloy
reaction
preparation
inconel
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210479101.6A
Other languages
English (en)
Other versions
CN114836655A (zh
Inventor
喇培清
杜明宸
金静
杨鹏辉
盛捷
余海存
高云滕
杜琳琳
柏泽民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN202210479101.6A priority Critical patent/CN114836655B/zh
Publication of CN114836655A publication Critical patent/CN114836655A/zh
Priority to US17/989,959 priority patent/US11814705B1/en
Application granted granted Critical
Publication of CN114836655B publication Critical patent/CN114836655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

一种高铝Inconel 625合金及制备方法,按质量百分比计,组分为:Cr 13~5,Fe 5,Nb 4.15,Mo 10,Al 5~9,余量为Ni。制备方法的步骤为:步骤(1)按预设比例称取反应物料,将反应物料置于行星球磨机中球磨;步骤(2)把球磨好的反应物料在压力机上压成直径为80 mm、高度约50 mm饼状坯;步骤(3)将饼状坯放入反应釜中,把引燃剂置于坯体上,充入保护气体洗气后,再充入保护气体保压,继续升温至体系发生自蔓延反应,得到母材合金;步骤(4)将母材合金进行真空感应二次熔炼,得到铸锭;步骤(5)将铸锭在1150℃进行30min固溶处理,水冷。

Description

一种高铝Inconel 625合金及制备方法
技术领域
本发明涉及高铝Inconel 625合金的制备技术。
背景技术
熔盐光热发电(Concentrated solar power,CSP)技术不但可以有效地提供电力,而且可以在全球范围内大幅减少CO2排放,作为化石燃料最具竞争力的替代品之一,它受到越来越多的关注。氯化物熔盐以低成本、低熔点、沸点高、传热性能好等优点,已经被提议作为下一代CSP发电站中传热流体(Heat transfer fluids,HTF)和热能储存(Thermalenergy storage,TES)的候选介质材料。然而,氯化物熔盐对储热、传热系统管材有极强的腐蚀性,现有结构材料在高温下耐氯化物熔盐腐蚀性差。因此,开发在高温氯化物熔盐腐蚀环境下服役的新型合金意义重大。
镍基高温合金在高温下具有良好的强度、耐蚀性和抗氧化性能,在高温合金领域中应用广泛。其不但有良好的高温抗氧化和抗腐蚀能力,还有较高的蠕变强度和持久性能,已被看作下一代CSP的结构候选材料。相关研究指出,Al元素能很好的提高合金的抗高温熔盐腐蚀性能,主要是由于其形成的氧化铝薄膜有很好的致密性,在高温氯化物熔盐中不易脱落,而Cr元素在氯化物熔盐中优先溶解会降低抗腐蚀性。因此,本发明在Inconel 625合金标准成分的基础上提高Al含量,降低了Cr含量,制备了高铝Inconel 625合金。
发明内容
本发明的目的是提供一种高铝Inconel 625合金及制备方法。
本发明是一种高铝Inconel 625合金及制备方法,高铝Inconel 625合金,按质量百分比计,组分为:Cr 13~5,Fe 5,Nb 4.15,Mo 10,Al 5~9,余量为Ni。
上述高铝Inconel 625合金的制备方法,其步骤为:
步骤(1)按预设比例称取反应物料,将反应物料置于行星球磨机中球磨;
步骤(2)把球磨好的反应物料在压力机上压成直径为80 mm、高度约50 mm饼状坯;
步骤(3)将饼状坯放入反应釜中,把引燃剂置于坯体上,充入保护气体洗气后,再充入保护气体保压,继续升温至体系发生自蔓延反应,得到母材合金;
步骤(4)将母材合金进行真空感应二次熔炼,得到铸锭;
步骤(5)将铸锭在1150 ℃进行30 min固溶处理,水冷。
本发明的有益效果为:简化了生产设备,操作简单;与目前使用的VIM(真空感应熔炼)+VAR(真空自耗重熔)、VIM+ESR(电渣重熔)和VIM+PESR(保护气氛电渣重熔)等制备镍基合金工艺相比,工艺简单,能耗小且具备商业生产规模;本发明在Inconel 625合金标准成分的基础上通过加入过量的Al调控了Al含量,同时降低了合金的Cr含量。
附图说明
图1为实施例1、2、3的XRD图谱;图2为实施例4、5、6的XRD图谱;图3、图4、图5、图6、图7、图8分别为实施例1、2、3、4、5、6的金相组织图;图9、图10、图11、图12、图13、图14分别为实施例1、2、3、4、5、6的SEM组织形貌图。
具体实施方式
本发明是一种高铝Inconel 625合金及制备方法,高铝Inconel 625合金,按质量百分比计,组分为:Cr 13~5,Fe 5,Nb 4.15,Mo 10,Al 5~9,余量为Ni。
本发明的高铝Inconel 625合金制备方法,其步骤为:
步骤(1)按预设比例称取反应物料,将反应物料置于行星球磨机中球磨;
步骤(2)把球磨好的反应物料在压力机上压成直径为80 mm、高度约50 mm饼状坯;
步骤(3)将饼状坯放入反应釜中,把引燃剂置于坯体上,充入保护气体洗气后,再充入保护气体保压,继续升温至体系发生自蔓延反应,得到母材合金;
步骤(4)将母材合金进行真空感应二次熔炼,得到铸锭;
步骤(5)将铸锭在1150 ℃进行30min固溶处理,水冷。
以上所述的制备方法,步骤(1)所述球磨参数:时长8 h,选用氧化铝球磨珠,球料比为2:1,转速为80 r/min;压力机加压70 MPa。
以上所述的制备方法,步骤(2)所述反应物料中,采用的反应物原料为NiO、Cr、Fe、Mo、Nb2O5和Al粉末。
以上所述的制备方法,步骤(3)所述预热温度280~340 ℃,保护气氛为氩气,气压压力为4~6 Mpa。
以上所述的制备方法,步骤(4)所述预热时长60 min,真空度10-2 Pa,保持10 min合金化。
以上所述的制备方法,步骤(5)所述固溶处理以10 ℃/min的速度升温至1150 ℃保温30 min,水淬。
本发明在Inconel 625合金标准成分的基础上通过加入过量的Al调控了Al含量,同时降低了合金的Cr含量,先通过铝热法制备母材合金后用真空中频感应熔炼进行二次熔炼,消除铝热法制备的内部缺陷,得到了质量合格的块体合金材料。在提高耐高温腐蚀性能、高温抗蠕变性能的同时降低成本。制备过程简单、环境友好、成本低,适合大规模生产。
以下是本发明的具体实施例,并结合实施例对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例:
实施例1:
铝热法制备初始铸坯,其制备步骤为:
表1 实施例1高铝Inconel 625合金反应物料配比(wt.%)
(1)配料:根据表1所示的反应物料配比称取好1kg反应原料,每种原料平均分成四份混合均匀;
(2)球磨:把混合均匀的反应物料放入QM-ISP4行星式球磨机球磨,转速为80 r/min,球磨时间8 h,注意的是每隔2 h改变球磨机转向防止结块,球磨珠材质为Al2O3,球料比1:2;
(3)铝热法制备:球磨结束后将反应物料放入模具中,用油压压力机施加70 MPa的压力,保压4 min后物料被压制成直径大约为80 mm厚度为50 mm左右的的圆饼状坯体。把压好的胚体放在铜坩埚中,胚体上方放2 g引燃剂薄片,将铜坩埚放入密闭的反应釜中洗气后,通入5 MPa氩气作为保护气体,通电加热后,当釜内温度升到280多度时引燃剂点燃,引发铝热反应,此时釜内压力和温度快速升高,反应开始后,关闭加热开关。等生成的产物在氩气气氛保护下随炉冷却至室温,打开反应釜,取出产物,合金上面被一层Al2O3层包裹,把包裹层敲碎后,得到块体合金。
真空中频感应熔炼二次熔炼,其制备步骤为:
(1)母材准备:将铝热法制备的高铝Inconel 625合金用线切割加工成宽度为10mm的长条并打磨掉表面的污渍,预防杂质引入;
(2)真空中频感应熔炼:在熔炼过程中先将中频感应炉扩散泵预热40~50 min后,把块体合金放入容积为3 kg的镁铝尖晶石坩埚中,并将刷了脱模剂提前预热到300度的金属梯形模具放入熔炼炉内,打开真空系统,确保真空度为10-2 Pa后打开熔炼系统,将加热功率以5 kw的梯度由0 kw开始依次调节,每次调节过后保持5 min确保加热均匀,当通过观察口观察到块体合金完全熔为液体后,再将加热功率调小至5 kw保温10 min确保成分均匀,随后翻转坩埚,将金属液倒入模具,等冷却后取出。
对其进行室温力学性能测试。硬度测试采用WILSON-VH1102型全自动显微硬度测试系统,载荷300 g,加载时间12 s,每个试样测量10个点取平均值,用维氏硬度HV0.3表示。拉伸测试在岛津AGS-X 300 kN电子万能试验机上进行,拉伸速率为0.5 mm/min,采用位移加载方式,每个成分试样进行3组平行实验。结果显示其硬度439.1 HV0.3,抗拉强度973.27MPa,延伸率4.50 %。
实施例2:
本例的反应物料如表2所示,其制备步骤同例1,室温力学性能测试结果:硬度445.0 HV0.3,抗拉强度1011.64 MPa,延伸率2.68 %。
表2 实施例2高铝Inconel 625合金反应物料配比(wt.%)
实施例3:
本例的反应物料如表3所示,其制备步骤同例1,室温力学性能测试结果:硬度468.5 HV0.3,抗拉强度984.04 MPa,延伸率2.32 %。
表3 实施例3高铝Inconel 625合金反应物料配比(wt.%)
实施例4:
将实施例1得到的高铝Inconel 625合金铸锭进行固溶处理,固溶处理步骤为:从实施例1合金铸锭上用线切割切下厚度为2.5 mm的板材,放入箱式炉中,用箱式炉以10 ℃/min的升温速度从室温加热到1150 ℃并保温30 min,做固溶处理,取出后水冷。
对其进行与实施例1相同的室温力学性能测试和800 ℃高温拉伸性能测试。800℃高温拉伸在AGS-X 300kN电子万能试验机上进行,拉伸速率为0.2 mm/min,采用位移加载方式,每个成分进行3组平行实验。其测试数据如表4所示:
表4 实施例4高铝Inconel 625合金固溶态力学性能
实施例5:
将实施例2得到的高铝Inconel 625合金进行固溶处理,其制备步骤同实施例4,其力学性能数据如表5所示。
表5 实施例5 高铝Inconel 625合金固溶态力学性能
实施例6:
将实施例3得到的高铝Inconel 625合金进行固溶处理,其制备步骤同实施例4,其力学性能数据如表6所示。
表6 实施例6 高铝Inconel 625合金固溶态力学性能
数据显示,本发明实现了高铝Inconel 625合金的制备。
以上所述,仅为本发明的具体实施例,但本发明的保护范围并不局限于此,任何熟悉本领域技术的技术人员在本发明公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围以权利要求书的保护范围为准。

Claims (1)

1.一种高铝Inconel 625合金的制备方法,其特征在于,按质量百分比计,组分为:Cr13~5,Fe 5,Nb 4.15,Mo 10,Al 5~9,余量为Ni;制备方法的步骤为:
步骤(1)按预设比例称取反应物料,将反应物料置于行星球磨机中球磨;
步骤(2)把球磨好的反应物料在压力机上压成直径为80mm、高度50mm饼状坯;压力机加压70MPa;
步骤(3)将饼状坯放入反应釜中,把引燃剂置于坯体上,充入保护气体洗气后,再充入保护气体保压,继续升温预热至体系发生自蔓延反应,得到母材合金;
步骤(4)将母材合金进行真空中频感应二次熔炼,得到铸锭;
步骤(5)将铸锭在1150℃进行30min固溶处理,水冷;
步骤(1)所述球磨参数:时长8h,选用氧化铝球磨珠,球料比为2:1,转速为80r/min;
步骤(1)所述反应物料中,采用的反应物原料为NiO、Cr、Fe、Mo、Nb2O5和Al粉末;
步骤(3)预热温度280~340℃,保护气体为氩气,气压压力为4~6MPa;
步骤(4)真空中频感应二次熔炼:在熔炼过程中先将中频感应炉扩散泵预热40~50min后,熔炼真空度10-2Pa,保持10min合金化;
步骤(5)所述固溶处理以10℃/min的速度升温至1150℃保温30min,水淬。
CN202210479101.6A 2022-05-05 2022-05-05 一种高铝Inconel 625合金及制备方法 Active CN114836655B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210479101.6A CN114836655B (zh) 2022-05-05 2022-05-05 一种高铝Inconel 625合金及制备方法
US17/989,959 US11814705B1 (en) 2022-05-05 2022-11-18 Inconel 625 alloy with high aluminum content and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210479101.6A CN114836655B (zh) 2022-05-05 2022-05-05 一种高铝Inconel 625合金及制备方法

Publications (2)

Publication Number Publication Date
CN114836655A CN114836655A (zh) 2022-08-02
CN114836655B true CN114836655B (zh) 2023-07-18

Family

ID=82568513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210479101.6A Active CN114836655B (zh) 2022-05-05 2022-05-05 一种高铝Inconel 625合金及制备方法

Country Status (2)

Country Link
US (1) US11814705B1 (zh)
CN (1) CN114836655B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101479C (zh) * 1999-01-28 2003-02-12 住友电气工业株式会社 耐热合金丝
CN105149597B (zh) * 2015-08-11 2018-09-11 利宝地工程有限公司 金属或合金部件的修复或联结方法和经修复或联结的部件
CN107012380B (zh) * 2017-03-31 2018-12-14 东南大学 一种自蔓延燃烧合成熔铸高熵合金的制备方法
JP6728282B2 (ja) * 2018-08-02 2020-07-22 三菱日立パワーシステムズ株式会社 Ni基合金軟化材の製造方法およびNi基合金部材の製造方法
CN111187946B (zh) * 2020-03-02 2021-11-16 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法

Also Published As

Publication number Publication date
US11814705B1 (en) 2023-11-14
CN114836655A (zh) 2022-08-02
US20230357898A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
CN101328522B (zh) 一种聚变堆用低活化马氏体钢的冶炼生产方法
CN112899438A (zh) 一种加压钢包精炼和加压电渣重熔双联冶炼高氮钢的方法
CN111020245B (zh) 镍铜耐蚀合金的制备方法
CN105506318B (zh) 一种超硬铝合金的生产工艺
CN103060585A (zh) 一种Al-Mg-Mn-Cu-Ti铝合金的熔炼方法
CN110714156A (zh) 一种轻质高强耐蚀高熵合金及其制备方法
CN105908025A (zh) 一种铝合金厚板及其生产方法
CN112195362A (zh) 一种舰船发动机热交换用白铜带材的制备方法
WO2024060607A1 (zh) 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法
CN106676364A (zh) 一种用于制造船舶螺旋桨轴的合金
CN114836668B (zh) 一种CoCrFeMnNiAl高熵合金及制备方法
CN104928533B (zh) 用于非真空铸造的锌‑铜‑钛三元中间合金及其制备方法
CN113528924B (zh) 一种镍铌铬中间合金及其制备方法
CN114645154B (zh) 一种高硬度铜合金的制备方法
CN112981212B (zh) 一种非等原子比高熵合金半固态触变坯料的制备方法
CN107217204B (zh) 一种Fe-Mn-Al系合金的制备方法
CN115044817A (zh) 一种具高强高韧双相中熵合金的制备工艺
CN114836655B (zh) 一种高铝Inconel 625合金及制备方法
CN113637882A (zh) 一种电力设施用铝合金耐腐蚀结构件材料及其制备方法
CN104651662B (zh) 钛铝合金靶材的真空感应熔炼方法
US20230100820A1 (en) Iron-aluminum alloy and preparation method therefor
CN110144475B (zh) 一种纯镍板式换热器板片用薄板的制备方法
CN107058845B (zh) 一种铝钒锆钼铬五元合金的制备方法
CN114561571A (zh) 一种低铸造应力高强耐磨镍基合金及其生产方法
CN114836671A (zh) 一种高铝310s不锈钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant