CN114835488A - 一种无相变的氧化锆基陶瓷材料及其制备方法 - Google Patents

一种无相变的氧化锆基陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114835488A
CN114835488A CN202210424193.8A CN202210424193A CN114835488A CN 114835488 A CN114835488 A CN 114835488A CN 202210424193 A CN202210424193 A CN 202210424193A CN 114835488 A CN114835488 A CN 114835488A
Authority
CN
China
Prior art keywords
ceramic material
powder
based ceramic
zirconium oxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210424193.8A
Other languages
English (en)
Inventor
冯晶
陈琳
罗可人
王建坤
赵世贤
王刚
李红霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
Kunming University of Science and Technology
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology, Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical Kunming University of Science and Technology
Priority to CN202210424193.8A priority Critical patent/CN114835488A/zh
Publication of CN114835488A publication Critical patent/CN114835488A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种无相变的氧化锆基陶瓷材料及其制备方法,无相变的氧化锆基陶瓷材料化学分子式为(Zr1‑x‑yYxTay)O2,其中0.16≤x≤0.32,0.12≤y≤0.22。本发明利用化学共沉淀法在ZrO2中掺杂不同含量的Y2O3、Ta2O5,最终得到不同组成的多相陶瓷材料。其中部分多相陶瓷材料包含t相氧化锆基陶瓷,使材料的断裂韧性得到提高,同时因为掺杂效应使晶格畸变增大,产生较低的杨氏模量、较低的热导率、较高的热膨胀系数。

Description

一种无相变的氧化锆基陶瓷材料及其制备方法
技术领域
本发明涉及高温热障涂层陶瓷材料技术领域,具体涉及一种无相变的氧化锆基陶瓷材料及其制备方法。
背景技术
热障涂层(TBCs)是航空发动机和燃气轮机的重要材料之一,由此提高发动机的运行效率,提高涡轮的进气温度是必要的,而热障涂层是涡轮合金叶片热防护的一种有效途径。氧化钇稳定氧化锆(YSZ)材料是目前运用较为广泛的热障涂层材料,掺杂Y2O3作为稳定剂能够大大降低氧化锆的相变温度,从而保持氧化锆的优异力学及热学性质,但Y3+的掺杂引入了氧空位,增加了强烈的声子散射,从而显著降低热导率并提高相稳定性。且高浓度的氧空位浓度也会增加高温下的氧渗透率,加速热生长氧化物(TGO)的形成,这是TBC失效的重要原因。为此,有相关研究在ZrO2中加入等摩尔的三价氧化物和五价氧化物从而不会引入氧空位,同时Ta5+离子与Zr4+离子的质量差相较于Y3+更大,可以进一步加剧声子散射使热导率降低,但也存在制备出的氧化锆陶瓷在1200℃以上发生相变,相变前后材料的热膨胀系数突然变化,导致无法在1200℃以上温度使用的技术问题,同时掺杂含量的不同对氧化锆基陶瓷材料的性能有显著影响。
发明内容
本发明提供了一种无相变的氧化锆基陶瓷材料及其制备方法,改变Y3+和Ta5+的掺杂量,得到具有不同组成的多相氧化锆基陶瓷材料,多相材料不同性能的结合使其最终得到一个晶粒尺寸小、较高的断裂韧性、低杨氏模量、低热导率、高热膨胀系数的陶瓷材料;从而解决氧化锆陶瓷在1200℃以上发生相变,相变前后材料的热膨胀系数突然变化,导致无法在1200℃以上温度使用的技术问题。
为了实现上述目的,本发明采用如下技术方案:
本发明的第一个目的在于提供一种无相变的氧化锆基陶瓷材料,所述无相变的氧化锆基陶瓷材料化学分子式为(Zr1-x-yYxTay)O2,其中0.16≤x≤0.32,0.12≤y≤0.22。
本发明的第二个目的在于提供无相变氧化锆基陶瓷材料的制备方法,包括以下步骤:
(1)称取纯度大于≥99%的Ta2O5粉末、Y2O3粉末和ZrO2粉末,将所述Ta2O5粉末溶于酒精,制备成TaCl5溶液;将所述Y2O3粉末溶于去离子水,制备成Y(NO3)3溶液,将所述ZrO2粉末溶于去离子水,制备成ZrOCl2溶液;
(2)将步骤(1)中制备的三种溶液混合形成混合溶液,向所述混合溶液中缓慢加入浓氨水调节混合溶液的PH至10,同时剧烈搅拌得到均匀混合的胶体溶液;
(3)将步骤(2)中的胶体溶液用去离子水洗涤,直至去除Cl-、NO3-、NH4+离子,再用无水乙醇溶液脱水,获得沉淀物;
(4)将步骤(3)中的沉淀物经过干燥、煅烧、过筛和放电等离子烧结,即获得致密的无相变性能可控的氧化锆基陶瓷材料。
优选地,步骤(1)中,所述Ta2O5粉末、Y2O3粉末和ZrO2粉末的摩尔比为(0.06~0.11):(0.08~0.16):(0.48~0.70)。
优选地,步骤(4)中,所述干燥温度为80~90℃,干燥时间为12~16h。
优选地,步骤(4)中,所述煅烧温度为1200~1300℃,煅烧时间为6~10h。
优选地,步骤(4)中,所述过筛为过400~600目筛。
优选地,步骤(4)中,所述放电等离子烧结的烧结温度为1400~1500℃,烧结压力为80~100MPa,烧结时间为5~10min。
综上所述,相比于现有技术,本发明的优点在于:
1、本发明在传统Y3+掺杂ZrO2的基础上加入Ta5+离子,平衡Y3+掺杂引起的氧空位,减少因高温下的氧渗透率而加速形成的TGO,从而减少涂层失效;且Ta5+离子与Zr4+离子的质量差更大,可以进一步加剧声子散射使热导率降低(1.17~1.41W·m-1·K-1);同时较高的掺杂剂含量导致晶胞膨胀,晶体能量降低使TECs增加(11.8~12.6×10-6K-1,1200℃)。
2、本发明采用化学共沉淀的制备方法,剧烈机械混合使原料间充分混合,浓氨水的加入以及多次洗涤使最后得到纯度高、晶粒尺寸小、气孔和裂纹少的致密的无相变氧化锆基陶瓷材料。
3、本发明通过利用化学共沉淀法在ZrO2中掺杂不同含量的Y2O3、Ta2O5,通过改变两种掺杂离子的含量进行性能调控,最终得到不同组成的无相变氧化锆基陶瓷材料,其中部分多相陶瓷材料包含t相氧化锆基陶瓷,使材料的断裂韧性得到提高,同时因为掺杂效应使晶格畸变增大,产生较低的杨氏模量、较低的热导率、较高的热膨胀系数。
4、本发明的无相变的氧化锆基陶瓷材料在1200℃下不发生相变,比8YSZ具有更高的工作温度。通过本发明制备方法制备的无相变氧化锆基陶瓷与7~8YSZ具有相近的硬度(10-12GPa)和较低的杨氏模量(130-180GPa),较高的硬度可以进一步提高热障涂层抵抗外来粒子冲击的能力从而延缓裂纹的产生,同时较低的杨氏模量有利于减小陶瓷作为热障涂层使用时产生的应变,从而使应变容忍度提高。
附图说明
图1为本发明实施例1-2与对比例1制备的陶瓷材料的XRD衍射图;
图2为本发明实施例1与对比例1制备的陶瓷材料的SEM图;
图3为本发明实施例1-3与对比例1制备的陶瓷材料的断裂韧性和硬度图;
图4为本发明实施例1-3与对比例2-3制备的陶瓷材料的杨氏模量图;
图5为本发明实施例1-3与对比例1-2制备的陶瓷材料的热导率对比图;
图6为本发明实施例3与对比例2制备的陶瓷材料的热膨胀系数图。
具体实施方式
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例的无相变的氧化锆基陶瓷材料(Zr0.70Y0.16Ta0.14)O2,其制备方法为:按0.07:0.08:0.70的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料(所用原料纯度≥99%),将Ta2O5粉末溶于酒精,制备成TaCl5溶液;将Y2O3粉末溶于去离子水,制备成Y(NO3)3溶液;将ZrO2粉末溶于去离子水,制备成ZrOCl2溶液。将以上三种溶液混合后缓慢加入浓氨水调节至溶液PH=10,同时剧烈搅拌以得到均匀混合的胶体溶液。用去离子水洗涤胶体溶液直至去除Cl-、NO3-、NH4+离子,再用无水乙醇溶液脱水两次获得沉淀物;将沉淀物放置在烘箱中干燥,干燥温度85℃,干燥时间12h。随后将沉淀物放置高温炉中进行1200℃,8h的煅烧。随炉冷却后过筛500目,通过放电等离子烧结在1450℃,90MPa的压力下保温8min,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.70Y0.16Ta0.14)O2
实施例2
本实施例的无相变的氧化锆基陶瓷材料(Zr0.48Y0.32Ta0.20)O2,其制备方法为:按0.10:0.16:0.48的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料(所用原料纯度≥99%),将Ta2O5粉末溶于酒精,制备成TaCl5溶液;将Y2O3粉末溶于去离子水,制备成Y(NO3)3溶液;将ZrO2粉末溶于去离子水,制备成ZrOCl2溶液。将以上三种溶液混合后缓慢加入浓氨水调节至溶液PH=10,同时剧烈搅拌以得到均匀混合的胶体溶液。用去离子水洗涤胶体溶液直至去除Cl-、NO3-、NH4+离子,再用无水乙醇溶液脱水两次获得沉淀物;将沉淀物放置在烘箱中干燥,干燥温度80℃,干燥时间14h,随后将沉淀物放置高温炉中进行1300℃,6h的煅烧。随炉冷却后过筛400目,通过放电等离子烧结在1400℃,100MPa的压力下保温5min,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.48Y0.32Ta0.20)O2
实施例3
本实施例的无相变的氧化锆基陶瓷材料(Zr0.54Y0.32Ta0.22)O2,其制备方法为:按0.10:0.16:0.54的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料(所用原料纯度≥99%),将Ta2O5粉末溶于酒精,制备成TaCl5溶液;将Y2O3粉末溶于去离子水,制备成Y(NO3)3溶液;将ZrO2粉末溶于去离子水,制备成ZrOCl2溶液。将以上三种溶液混合后缓慢加入浓氨水调节至溶液PH=10,同时剧烈搅拌以得到均匀混合的胶体溶液。用去离子水洗涤胶体溶液直至去除Cl-、NO3-、NH4+离子,再用无水乙醇溶液脱水两次获得沉淀物;将沉淀物放置在烘箱中干燥,干燥温度90℃,干燥时间16h,随后将沉淀物放置高温炉中进行1250℃,10h的煅烧。随炉冷却后过筛600目,通过放电等离子烧结在1500℃,80MPa的压力下保温10min,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.54Y0.32Ta0.22)O2
对比例1
对比例1与实施例1-3的区别在于将掺杂量改成9%Ta2O5和21%Y2O3,使最终烧结而成的为立方相Y0.15Zr0.85O1.93,该单相的晶粒尺寸较大且不包含t相的氧化锆基陶瓷,进而降低其断裂韧性和硬度;
对比例2
对比例2与实施例1-3的区别在于不含Ta2O5掺杂,最终生成的8YSZ材料的热/力学性能没有加入Ta5+掺杂后的性能优异。
对比例3
对比例3与实施例1-3的区别在于用Gd2O3粉末与ZrO2混合生成Gd2Zr2O7,其杨氏模量高于本发明例的氧化锆基材料。
将实施例1~2与对比例1制备的陶瓷材料进行XRD衍射,XRD衍射图如图1所示,图1中,Zr0.66Y0.17Ta0.17O2、YTa4、Y0.15Zr0.85O1.93代表三种不同的物相。由图1可以看出,实施例1~2均为双相,对比例1中仅有单相Y0.15Zr0.85O1.93存在;
将实施例1与对比例1制备的陶瓷材料的进行SEM扫描,其SEM图如图2所示。由图2可以看出,实施例1的双相共存可抑制晶粒生长使平均晶粒尺寸减小,且晶粒表面无气孔和裂纹,表示实施例1的陶瓷材料具有较高的致密度。
将实施例1~3与对比例1制备的陶瓷材料的进行断裂韧性和硬度测试,其测试结果如图3所示。由图3可以看出,实施例1~3的断裂韧性(2.8-3.0MPa·m1/2)和硬度值(9.9-10.5GPa)都高于对比例1的断裂韧性(1.8MPa·m1/2)和硬度(8.2GPa)。
将实施例1~3与对比例2、对比例3制备的陶瓷材料进行杨氏模量测定,其测试结果如图4所示。可见本发明实施例1~3的杨氏模量(135.4-178.5GPa)远小于对比例2(237.5GPa)和对比例3(207.5GPa)。
将实施例1~3与对比例1、对比例2制备的陶瓷材料进行热导率测定,其结果对比图如图5所示。由图5可见,本发明实施例1~3制备的陶瓷材料具有更低的热导率,且随着温度的升高变化较小。
将实施例3与对比例2制备的陶瓷材料进行热膨胀系数测定,其测定结果如图6所示。由图6可见,本发明实施例3制备的陶瓷材料具有更高的热膨胀系数,且比在高温下发生相变的8YSZ具有更高的工作温度。
实施例4
本实施例的无相变的氧化锆基陶瓷材料(Zr0.72Y0.16Ta0.12)O2,其制备为:按0.06:0.08:0.72的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料,其余制备方法与实施例1一致,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.72Y0.16Ta0.12)O2
实施例5
本实施例的无相变的氧化锆基陶瓷材料(Zr0.62Y0.16Ta0.22)O2,其制备为:按0.11:0.08:0.62的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料,其余制备方法与实施例2一致,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.62Y0.16Ta0.22)O2
实施例6
本实施例的无相变的氧化锆基陶瓷材料(Zr0.56Y0.32Ta0.12)O2,其制备为:按0.06:0.16:0.56的摩尔比称取Ta2O5粉末、Y2O3粉末和ZrO2粉末原料,其余制备方法与实施例3一致,最后得到致密的无相变氧化锆基陶瓷材料(Zr0.62Y0.16Ta0.22)O2
综上所述,本发明根据Y2O3-Ta2O5-ZrO2三元相图上的立方相周边区域,以改变不同的掺杂量来研究对氧化锆基陶瓷材料性能的不同影响,最终使陶瓷材料具有晶粒尺寸小、较高的断裂韧性、低杨氏模量、低热导率、高热膨胀系数等优异性能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

1.一种无相变的氧化锆基陶瓷材料,其特征在于,所述无相变的氧化锆基陶瓷材料化学分子式为(Zr1-x-yYxTay)O2,其中0.16≤x≤0.32,0.12≤y≤0.22。
2.根据权利要求1所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)称取纯度大于≥99%的Ta2O5粉末、Y2O3粉末和ZrO2粉末,将所述Ta2O5粉末溶于酒精,制备成TaCl5溶液;将所述Y2O3粉末溶于去离子水,制备成Y(NO3)3溶液,将所述ZrO2粉末溶于去离子水,制备成ZrOCl2溶液;
(2)将步骤(1)中制备的三种溶液混合形成混合溶液,向所述混合溶液中缓慢加入浓氨水调节混合溶液的PH至10,同时剧烈搅拌得到均匀混合的胶体溶液;
(3)将步骤(2)中的胶体溶液用去离子水洗涤,直至去除Cl-、NO3-、NH4+离子,再用无水乙醇溶液脱水,获得沉淀物;
(4)将步骤(3)中的沉淀物经过干燥、煅烧、过筛和放电等离子烧结,即获得致密的无相变性能可控的氧化锆基陶瓷材料。
3.根据权利要求2所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,步骤(1)中,所述Ta2O5粉末、Y2O3粉末和ZrO2粉末的摩尔比为(0.06~0.11):(0.08~0.16):(0.48~0.70)。
4.根据权利要求2所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,步骤(4)中,所述干燥温度为80~90℃,干燥时间为12~16h。
5.根据权利要求2所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,步骤(4)中,所述煅烧温度为1200~1300℃,煅烧时间为6~10h。
6.根据权利要求2所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,步骤(4)中,所述过筛为过400~600目筛。
7.根据权利要求2所述的无相变氧化锆基陶瓷材料的制备方法,其特征在于,步骤(4)中,所述放电等离子烧结的烧结温度为1400~1500℃,烧结压力为80~100MPa,烧结时间为5~10min。
CN202210424193.8A 2022-04-22 2022-04-22 一种无相变的氧化锆基陶瓷材料及其制备方法 Pending CN114835488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210424193.8A CN114835488A (zh) 2022-04-22 2022-04-22 一种无相变的氧化锆基陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210424193.8A CN114835488A (zh) 2022-04-22 2022-04-22 一种无相变的氧化锆基陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114835488A true CN114835488A (zh) 2022-08-02

Family

ID=82565569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210424193.8A Pending CN114835488A (zh) 2022-04-22 2022-04-22 一种无相变的氧化锆基陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114835488A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120062A (zh) * 2022-08-24 2023-05-16 昆明理工大学 一种耐高温缺陷型Y(YxTa1-x)O4-x氧障/热障陶瓷一体化材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863850A (en) * 1995-09-21 1999-01-26 Matsushita Electric Works, Ltd. Process of making zirconia based ceramic material
CN101234897A (zh) * 2008-03-03 2008-08-06 哈尔滨工业大学 多组元氧化锆基热障氧化物陶瓷材料的制备方法
CN110304919A (zh) * 2019-08-16 2019-10-08 湘潭大学 一种陶瓷材料的制备方法和热障涂层的制备方法
WO2021047574A1 (zh) * 2019-09-10 2021-03-18 比亚迪股份有限公司 氧化锆陶瓷、制备氧化锆陶瓷的方法及其应用和组合物
CN113264769A (zh) * 2021-07-08 2021-08-17 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN113354414A (zh) * 2021-07-08 2021-09-07 昆明理工大学 一种熵稳定re2o3-ao2-b2o5氧化物陶瓷及其制备方法
CN113773075A (zh) * 2021-09-22 2021-12-10 湘潭大学 一种抗cmas侵蚀的锆钽系热障涂层材料及其制备方法
CN113956037A (zh) * 2021-12-11 2022-01-21 广西大学 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863850A (en) * 1995-09-21 1999-01-26 Matsushita Electric Works, Ltd. Process of making zirconia based ceramic material
CN101234897A (zh) * 2008-03-03 2008-08-06 哈尔滨工业大学 多组元氧化锆基热障氧化物陶瓷材料的制备方法
CN110304919A (zh) * 2019-08-16 2019-10-08 湘潭大学 一种陶瓷材料的制备方法和热障涂层的制备方法
WO2021047574A1 (zh) * 2019-09-10 2021-03-18 比亚迪股份有限公司 氧化锆陶瓷、制备氧化锆陶瓷的方法及其应用和组合物
CN113264769A (zh) * 2021-07-08 2021-08-17 昆明理工大学 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法
CN113354414A (zh) * 2021-07-08 2021-09-07 昆明理工大学 一种熵稳定re2o3-ao2-b2o5氧化物陶瓷及其制备方法
CN113773075A (zh) * 2021-09-22 2021-12-10 湘潭大学 一种抗cmas侵蚀的锆钽系热障涂层材料及其制备方法
CN113956037A (zh) * 2021-12-11 2022-01-21 广西大学 一种抗cmas腐蚀的双相组织钪钇稀土掺杂氧化锆粉末的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAE-JOON KIM等: "Phase Stability and Physical Properties of Cubic and Tetragonal ZrO2 in the System ZrO2-Y2O3-Ta2O5", 《JOURNAL OF THE AMERICUN CERAMIC SOCIETY》, vol. 74, no. 12, pages 3061 - 3065, XP002275561, DOI: 10.1111/j.1151-2916.1991.tb04302.x *
DUE- JOON KIM等: "Effect of Ta2O5, Nb2O5, and HfO2 Alloying on the Transformability of Y2O3-Stabilized Tetragonal ZrO2", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》, vol. 73, no. 1, pages 115 - 120 *
辛娜: "Er2O3掺杂对Ta2O5-Y2O3-ZrO2体系陶瓷结构及性能的影响", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
辛娜: "Er2O3掺杂对Ta2O5-Y2O3-ZrO2体系陶瓷结构及性能的影响", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 81, 15 August 2015 (2015-08-15), pages 25 - 51 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120062A (zh) * 2022-08-24 2023-05-16 昆明理工大学 一种耐高温缺陷型Y(YxTa1-x)O4-x氧障/热障陶瓷一体化材料及其制备方法
CN116120062B (zh) * 2022-08-24 2024-04-12 昆明理工大学 一种耐高温缺陷型Y(YxTa1-x)O4-x氧障/热障陶瓷一体化材料及其制备方法

Similar Documents

Publication Publication Date Title
CN113023776B (zh) 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
EP2371987B1 (en) Thermal barrier coating member, method for producing the same, use of the thermal barrier coating material, gas turbine, and sintered body
Yuan et al. SrCeO3 as a novel thermal barrier coating candidate for high–temperature applications
Ren et al. Multicomponent rare-earth cerate and zirconocerate ceramics for thermal barrier coating materials
EP2186919B1 (en) Heat-shielding coating material
Li et al. Phase structure and thermal conductivities of Er2O3 stabilized ZrO2 toughened Gd2Zr2O7 ceramics for thermal barrier coatings
JP5851623B2 (ja) 高温熱バリアコーティング
CN110078504A (zh) 一种原位合成赝二元复相稀土铌酸盐陶瓷及其制备方法
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
CN114349502B (zh) 一种低热膨胀的热/环境障涂层用钛掺杂铪酸镧陶瓷及其制备方法
CN112250440B (zh) 一种固相法制备低热导高温热障陶瓷CaWTa2O9的方法
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
CN114956818A (zh) 一种低热导率高熵铈酸盐陶瓷材料及其制备方法
CN114835488A (zh) 一种无相变的氧化锆基陶瓷材料及其制备方法
CN114920559A (zh) 一种热障涂层用高熵氧化物粉末材料及其制备方法和应用
CN114956811A (zh) 一种钪铈共掺杂锆酸钆热障涂层材料及其制备方法、以及一种热障涂层及其制备工艺
Guo et al. Phase stability, microstructural and thermo-physical properties of BaLn2Ti3O10 (Ln= Nd and Sm) ceramics
JP6092615B2 (ja) 遮熱コーティング用材料
CN114804864B (zh) 一种结合高温高压烧结制备的双相高熵陶瓷及其制备方法
KR100915920B1 (ko) 파이로클로어 결정 구조의 저열전도성 세라믹 소재 및 그제조방법
CN115010506A (zh) 一种RE-Zr(Hf)共掺杂锆酸钆材料、制备方法以及热障涂层
CN109678504B (zh) 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法
JP6173778B2 (ja) 遮熱コーティング用材料
CN114671683A (zh) 一种高温相稳定高熵氧化锆热障涂层材料及其制备方法
Wu et al. Compositional tailoring of the thermal expansion coefficient of tantalum (V) oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination