CN114835092A - 一种球形氮化硼导热材料及其制备方法 - Google Patents

一种球形氮化硼导热材料及其制备方法 Download PDF

Info

Publication number
CN114835092A
CN114835092A CN202210587117.9A CN202210587117A CN114835092A CN 114835092 A CN114835092 A CN 114835092A CN 202210587117 A CN202210587117 A CN 202210587117A CN 114835092 A CN114835092 A CN 114835092A
Authority
CN
China
Prior art keywords
powder
boron nitride
deionized water
heat conduction
metal inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210587117.9A
Other languages
English (en)
Other versions
CN114835092B (zh
Inventor
暴宁钟
张悦
燕克兰
吴健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210587117.9A priority Critical patent/CN114835092B/zh
Publication of CN114835092A publication Critical patent/CN114835092A/zh
Application granted granted Critical
Publication of CN114835092B publication Critical patent/CN114835092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/162Magnesium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种球形氮化硼导热材料及其制备方法,将一部分六方氮化硼粉末分散在含有表面活性剂的去离子水中,得到悬浮液A;向悬浮液A中加入金属无机盐I,混合均匀后过滤,得到潮湿粉末B;将另一部分六方氮化硼粉末分散在硝酸水溶液中,超声后转入过氧化氢水溶液中处理,滤出后用去离子水冲洗、烘干待用;取金属无机盐II溶于去离子水中,然后加入得到的烘干粉末,混合均匀后过滤,得到潮湿粉末C;将潮湿粉末B和潮湿粉末C一同加入到去离子水中,搅拌均匀后得到混合液D;向混合液D中加入聚乙烯醇水溶液,混合均匀后进行喷雾干燥,得到粉体;将得到的粉体在氧气气氛下煅烧,然后转入惰性气氛中烧结,即得。

Description

一种球形氮化硼导热材料及其制备方法
技术领域
本发明涉及无机非金属导热绝缘材料领域,具体为一种球形氮化硼导热材料及其制备方法。
背景技术
在集成技术与微电子技术封装技术的大力发展下,电子元器件逐渐趋向于小型化,但是总功率密度在不断地增大,由于效率的限制,这些电子元器件所消耗的大部分能量通常转化为了热能,所产生的热能迅速累积,导致电子元器件周围的热流密度也在增加,所以如果不及时将热量导出,高温环境必将影响电子元器件的性能,严重的还可引发火灾。因此散热是现代电子元器件的核心问题之一。
六方氮化硼作为唯一稳定存在于自然界的氮化硼相,呈白色,又因其具有类似于石墨的层状结构特征和晶格参数,故又称白色石墨。在六方氮化硼的结构中,层内是由sp3杂化的B和N交替排列成六角形的蜂巢结构,层间以ABABAB堆垛的方式进行紧密排列的,层间距为0.333nm。h-BN的晶格常数为a=b=0.2504nm,c=0.6652nm,沿c轴方向原子层间距较大,层间易于滑动,因此,h-BN具有较好的润滑性能。在机械方面,六方氮化硼高达~300Wm-1K-1的热导率、~0.85TPa的杨氏模量和~70GPa的断裂强度,在散热领域有重要应用。
六方氮化硼作为二维层状材料,具有较高的纵横比。在作为导热填料应用时,六方氮化硼更倾向于平行对齐,并且在平行方向上高度接触。因此,导热复合材料往往表现出各向异性的导热性能,平行方向的导热性能要优于垂直方向。而球形填料则具有各向同性的导热性能,在相同填充量下,更容易在复合材料中构建3D导热网络。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种球形氮化硼导热材料及其制备方法,以同时提升球形氮化硼导热系数。
为了实现上述目的,本发明采取的技术方案如下:
一种球形氮化硼导热材料的制备方法,包括如下步骤:
(1)将一部分六方氮化硼粉末I分散在含有表面活性剂的去离子水中,得到悬浮液A;
(2)向悬浮液A中加入金属无机盐I,混合均匀后过滤,得到潮湿粉末B;
(3)将另一部分六方氮化硼粉末II分散在硝酸水溶液中,超声后用去离子水洗涤过滤至中性后加入到过氧化氢水溶液中处理,滤出后用去离子水冲洗、烘干待用;
(4)取金属无机盐II溶于去离子水中,然后加入步骤(3)得到的烘干粉末,混合均匀后过滤,得到潮湿粉末C;
(5)将潮湿粉末B和潮湿粉末C一同加入到去离子水中,搅拌均匀后得到混合液D;
(6)向步骤(5)混合液D中加入聚乙烯醇水溶液,混合均匀后进行喷雾干燥,得到粉体;
(7)将步骤(6)得到的粉体在氧气气氛下煅烧,然后转入惰性气氛中烧结,即得。
优选地,步骤(1)中,所述表面活性剂为烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐中的任意一种或多种,表面活性剂在去离子水中的质量百分比为1~3%;悬浮液A中,六方氮化硼粉末I的质量分数为10~30%。
优选地,步骤(2)中,所述金属无机盐I为含铝或镁的金属无机盐中的一种或两种以上的混合,优选自硫酸铝、硝酸铝、氯化铝、铝酸钠、硫酸铝铵、硫酸镁、硫酸亚镁、氯化镁、硝酸镁中的至少一种;
金属无机盐I按照质量百分比为1~10%加入悬浮液A中。
优选地,步骤(3)中,所述硝酸水溶液的浓度为30~65wt%,硝酸水溶液与六方氮化硼粉末II的质量比为5:1~20:1;所述过氧化氢水溶液的浓度为10~35wt%,过氧化氢水溶液与六方氮化硼粉末II的质量比为5:1~20:1。
优选地,步骤(4)中,所述金属无机盐II为含铁、锌或钇的金属无机盐中的一种或两种以上的混合,优选自硫酸铁、硝酸铁、氯化铁、铝酸铁、硫酸锆、氯化锆、硝酸锆,硫酸钇、氯化钇、硝酸钇中的至少一种;
金属无机盐II按照质量百分比为1~10%加入去离子水中;步骤(3)得到的烘干粉末与金属无机盐II的质量比为1:1~1:10。
优选地,步骤(5)中,潮湿粉末B和潮湿粉末C分别按照质量百分比为10~30%加入到去离子水中,且金属无机盐I与金属无机盐II的质量比为3:1~1:3。
优选地,步骤(6)中,所述聚乙烯醇水溶液中聚乙烯醇的质量浓度为3~5%;聚乙烯醇水溶液按照质量分数为1~5%加入到混合液D中。
优选地,步骤(7)中,所述煅烧的工艺条件为:氧气气氛下,从室温以1~5℃/min的速率升温至280~350℃,保温15~60min,以1~5℃/min的速率升温至600~900℃,保温2~24h后自然冷却至室温。
优选地,步骤(7)中,所述烧结的工艺条件为:惰性气氛下,以1~3℃/min的速率从室温升温至100℃,保温10~60min,以1~3℃/min的速率从100℃升温至300~400℃,保温10~60min,以3~10℃/min的速率升温至900~1200℃,保温10~60min,以3~10℃/min的速率升温至1500~1800℃,保温2~6h后自然冷却至室温。
进一步地,采用上述制备方法制备得到的球形氮化硼导热材料也在本发明的保护范围中。
有益效果:
本发明利用阴离子表面活性剂磺酸盐对氮化硼进行处理,阴离子表面活性剂可结合金属无机盐,为后面氮化硼片层搭接处生长金属氧化物做了铺垫。采用硝酸和过氧化氢对氮化硼进行处理,在边缘处获得更多活性位点,使得氮化硼和金属无机盐能很好地结合在一起,为后面氮化硼片层搭接处生长金属氧化物做了铺垫。首次通过在氮化硼片层生长出的金属氧化物之间可以进一步反应生成氧化物,构建导热通路,提升球形氮化硼的导热性能,同时又提升了球形复合材料的机械强度。本发明涉及到的原料易获得,制备工艺简单,适用于大规模工业化生产。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1是实施例1球形氮化硼/钇铝石榴石复合材料的XRD图。
图2是实施例1球形氮化硼/钇铝石榴石复合材料的SEM图。
图3是实施例1球形氮化硼/钇铝石榴石复合材料的mapping图。
具体实施方式
根据下述实施例,可以更好地理解本发明。
实施例1~8
本发明实施例球形氮化硼导热填料的制备方法,包括以下步骤:
(1)将一部分六方氮化硼粉末I分散在含有表面活性剂的去离子水中,得到悬浮液A;
(2)向悬浮液A中加入金属无机盐I,常温下搅拌混合均匀后过滤,但不冲洗,得到潮湿粉末B;
(3)将另一部分六方氮化硼粉末II分散在硝酸水溶液(65wt%)中,超声处理6h后用去离子水洗涤过滤至中性后加入到过氧化氢水溶液(35wt%)中处理1h,滤出后用去离子水冲洗、烘干待用;
(4)取金属无机盐II溶于去离子水中,然后加入步骤(3)得到的烘干粉末,常温下搅拌,混合均匀后过滤,但不冲洗,得到潮湿粉末C;
(5)将潮湿粉末B和潮湿粉末C一同加入到去离子水中,搅拌均匀后得到混合液D;
(6)向步骤(5)混合液D中加入聚乙烯醇水溶液(3wt%),混合均匀后进行喷雾干燥,得到粉体;
(7)将步骤(6)得到的粉体在氧气气氛下煅烧,然后转入惰性气氛中烧结,即得。
其中,六方氮化硼粉末I和六方氮化硼粉末II没有区别,只是分成两个部分分别反应得到粉末B和粉末C。
煅烧的升温程序为:从室温以5℃/min的速率升温至300℃,保温30min,从300℃以3℃/min的速率升温至900℃,保温6~24h后自然冷却至室温。
烧结的升温程序为:以1℃/min的速率从室温升温至100℃,保温30min,以2℃/min的速率从100℃升温至320℃,保温30min,以5℃/min的速率从320℃升温至1000℃,保温30min,以5℃/min的速率从1000℃升温至1500~1800℃,保温2~4h后自然冷却至室温。
对比例1
(1)将一部分六方氮化硼粉末I分散在含有表面活性剂的去离子水中,常温下搅拌混合均匀后过滤,但不冲洗,得到潮湿粉末A;
(2)将另一部分六方氮化硼粉末II分散在硝酸水溶液(65wt%)中,超声处理6h后用去离子水洗涤过滤至中性后加入到过氧化氢水溶液(35wt%)中处理1h,滤出后用去离子水冲洗、烘干得到粉末B;
(3)将潮湿粉末A和粉末B一同加入到去离子水中,搅拌均匀后得到混合液C;
(4)向步骤(3)混合液D中加入聚乙烯醇水溶液(3wt%),混合均匀后进行喷雾干燥,得到粉体;
(5)将步骤(4)得到的粉体在氧气气氛下煅烧,然后转入惰性气氛中烧结,即得。
其中,六方氮化硼粉末I和六方氮化硼粉末II没有区别,只是分成两个部分分别反应得到潮湿粉末A和粉末B。
煅烧的升温程序为:从室温以5℃/min的速率升温至300℃,保温30min,从300℃以3℃/min的速率升温至900℃,保温6~24h后自然冷却至室温。
烧结的升温程序为:以1℃/min的速率从室温升温至100℃,保温30min,以2℃/min的速率从100℃升温至320℃,保温30min,以5℃/min的速率从320℃升温至1000℃,保温30min,以5℃/min的速率从1000℃升温至1500~1800℃,保温2~4h后自然冷却至室温。
实施例1~8制备方法的主要参数见表1。针对界面导热材料的最终产品进行导热系数测试,实验数据如下表1所示。导热系数的测试方法为热流法。
表1
Figure BDA0003663813870000051
Figure BDA0003663813870000061
通过表1可知:本发明提供的实施例球形氮化硼/钇铝石榴石复合材料与市售球形氮化硼相比具有更高的导热性能。主要原因是生长的金属氧化物提供了导热通路,导热性能更好。
结合图1和图3中可知,添加的金属无机盐硫酸铝和硫酸钇经过煅烧与烧结处理后,生成了钇铝石榴石晶体,该晶体在氮化硼片层接触处提供了导热通路,大大提升了球形氮化硼/钇铝石榴石复合材料的导热性能。此外,图2表明,制备的球形氮化硼/钇铝石榴石复合材料具有致密的结构,且表面存在的突出棒状物可相互搭接增加导热通路和机械强度。
本发明提供了一种球形氮化硼导热材料及其制备方法的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (10)

1.一种球形氮化硼导热材料的制备方法,其特征在于,包括如下步骤:
(1)将一部分六方氮化硼粉末I分散在含有表面活性剂的去离子水中,得到悬浮液A;
(2)向悬浮液A中加入金属无机盐I,混合均匀后过滤,得到潮湿粉末B;
(3)将另一部分六方氮化硼粉末II分散在硝酸水溶液中,超声后用去离子水洗涤过滤至中性后加入到过氧化氢水溶液中处理,滤出后用去离子水冲洗、烘干待用;
(4)取金属无机盐II溶于去离子水中,然后加入步骤(3)得到的烘干粉末,混合均匀后过滤,得到潮湿粉末C;
(5)将潮湿粉末B和潮湿粉末C一同加入到去离子水中,搅拌均匀后得到混合液D;
(6)向步骤(5)混合液D中加入聚乙烯醇水溶液,混合均匀后进行喷雾干燥,得到粉体;
(7)将步骤(6)得到的粉体在氧气气氛下煅烧,然后转入惰性气氛中烧结,即得。
2.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(1)中,所述表面活性剂为烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐中的任意一种或多种,表面活性剂在去离子水中的质量百分比为1~3%;悬浮液A中,六方氮化硼粉末I的质量分数为10~30%。
3.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(2)中,所述金属无机盐I为含铝或镁的金属无机盐中的一种或两种以上的混合,金属无机盐I按照质量百分比为1~10%加入悬浮液A中。
4.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(3)中,所述硝酸水溶液的浓度为30~65wt%,硝酸水溶液与六方氮化硼粉末II的质量比为5:1~20:1;所述过氧化氢水溶液的浓度为10~35wt%,过氧化氢水溶液与六方氮化硼粉末II的质量比为5:1~20:1。
5.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(4)中,所述金属无机盐II为含铁、锌或钇的金属无机盐中的一种或两种以上的混合,金属无机盐II按照质量百分比为1~10%加入去离子水中;步骤(3)得到的烘干粉末与金属无机盐II的质量比为1:1~1:10。
6.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(5)中,潮湿粉末B和潮湿粉末C分别按照质量百分比为10~30%加入到去离子水中,且金属无机盐I与金属无机盐II的质量比为3:1~1:3。
7.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(6)中,所述聚乙烯醇水溶液中聚乙烯醇的质量浓度为3~5%;聚乙烯醇水溶液按照质量分数为1~5%加入到混合液D中。
8.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(7)中,所述煅烧的工艺条件为:氧气气氛下,从室温以1~5℃/min的速率升温至280~350℃,保温15~60min,以1~5℃/min的速率升温至600~900℃,保温2~24h后自然冷却至室温。
9.根据权利要求1所述的球形氮化硼导热材料的制备方法,其特征在于,步骤(7)中,所述烧结的工艺条件为:惰性气氛下,以1~3℃/min的速率从室温升温至100℃,保温10~60min,以1~3℃/min的速率从100℃升温至300~400℃,保温10~60min,以3~10℃/min的速率升温至900~1200℃,保温10~60min,以3~10℃/min的速率升温至1500~1800℃,保温2~6h后自然冷却至室温。
10.权利要求1~9中任意一项制备方法,制备得到的球形氮化硼导热材料。
CN202210587117.9A 2022-05-26 2022-05-26 一种球形氮化硼导热材料及其制备方法 Active CN114835092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210587117.9A CN114835092B (zh) 2022-05-26 2022-05-26 一种球形氮化硼导热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210587117.9A CN114835092B (zh) 2022-05-26 2022-05-26 一种球形氮化硼导热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114835092A true CN114835092A (zh) 2022-08-02
CN114835092B CN114835092B (zh) 2023-05-16

Family

ID=82571978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210587117.9A Active CN114835092B (zh) 2022-05-26 2022-05-26 一种球形氮化硼导热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114835092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232444A (zh) * 2022-09-02 2022-10-25 重庆大学 一种高导热球形氮化硼复合环氧树脂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003436A (zh) * 2001-08-07 2007-07-25 圣戈本陶瓷及塑料股份有限公司 氮化硼球形粒粉体以及它们的使用方法
US20120046387A1 (en) * 2010-08-19 2012-02-23 Keng Te Chu Slurry for preparing boron nitride aggregates of spherical geometry and application thereof
CN106975506A (zh) * 2017-03-14 2017-07-25 上海大学 氮化硼复合介孔氧化物镍基催化剂及其制备方法
US20180065852A1 (en) * 2016-09-07 2018-03-08 National Chung Shan Institute Of Science And Technology Method for preparing a spherical aln granule
CN111393714A (zh) * 2020-03-25 2020-07-10 合烯电子科技(江苏)有限公司 用于界面导热材料的氮化硼复合结构填料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003436A (zh) * 2001-08-07 2007-07-25 圣戈本陶瓷及塑料股份有限公司 氮化硼球形粒粉体以及它们的使用方法
US20120046387A1 (en) * 2010-08-19 2012-02-23 Keng Te Chu Slurry for preparing boron nitride aggregates of spherical geometry and application thereof
US20180065852A1 (en) * 2016-09-07 2018-03-08 National Chung Shan Institute Of Science And Technology Method for preparing a spherical aln granule
CN106975506A (zh) * 2017-03-14 2017-07-25 上海大学 氮化硼复合介孔氧化物镍基催化剂及其制备方法
CN111393714A (zh) * 2020-03-25 2020-07-10 合烯电子科技(江苏)有限公司 用于界面导热材料的氮化硼复合结构填料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
许浪 等: "功能化氮化硼微球的制备与应用" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232444A (zh) * 2022-09-02 2022-10-25 重庆大学 一种高导热球形氮化硼复合环氧树脂及其制备方法

Also Published As

Publication number Publication date
CN114835092B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
CN104591233B (zh) 一种氧化镁纳米晶包覆石墨烯复合材料及其制备方法
Schaak et al. KLnTiO4 (Ln= La, Nd, Sm, Eu, Gd, Dy): A New Series of Ruddlesden–Popper Phases Synthesized by Ion-Exchange of HLnTiO4
Han et al. Research progresses in the preparation of Co-based catalyst derived from Co-MOFs and application in the catalytic oxidation reaction
KR101214896B1 (ko) 바나도실리케이트 분자체의 신규 제조 방법 및 신규 바나도실리케이트 분자체
CN103956473A (zh) 一种CuO-Cu2O/石墨烯纳米复合材料及其制备方法
CN105481345B (zh) 一种低温烧结陶瓷材料及制备方法
CN114835092B (zh) 一种球形氮化硼导热材料及其制备方法
Zhou et al. Synthesis and properties of octahedral Co 3 O 4 single-crystalline nanoparticles enclosed by (111) facets
Fallah-Arani et al. Enhancement in the performance of BSCCO (Bi-2223) superconductor with functionalized TiO2 nanorod additive
Fan et al. Enhanced thermoelectric properties of Bi2Sr2Co2Oy by alkali metal element doping and SiC dispersion
Chaubey et al. Microstructural and thermal investigations of HfO 2 nanoparticles
Miura et al. Synthesis and ionic conductivity of a high-entropy layered hydroxide
CN111530459B (zh) 一种基于AlOOH纳米片的0D/2D复合材料的制备方法及应用
CN107722361B (zh) 一种纳米氨基三亚甲基膦酸镁负载还原氧化石墨烯阻燃剂的制备方法
CN113943515A (zh) 一种还原氧化石墨烯/铜纳米颗粒修饰环氧树脂复合材料的制备方法
Choudhary et al. Lithium orthosilicate ceramics with preceramic polymer as silica source
CN114853083B (zh) MOFs衍生纳米多孔碳包覆铁氧化物复合材料制备方法及应用
Song et al. Preparation of Ca 3 Co 4 O 9 by polyacrylamide gel processing and its thermoelectric properties
Jose et al. A new combustion process for nanosized YBa2ZrO5. 5 powders
JP2019214505A (ja) 連結メソポーラスシリカ粒子及びその製造方法
Rubešová et al. Water based sol–gel methods used for Bi-222 thermoelectrics preparation
JP5848053B2 (ja) ベーマイトナノロッドの製造方法、アルミナナノロッドの製造方法およびCuAlO2膜の製造方法
Wang et al. Synthesis of ultrafine Co/CoO nanoparticle-embedded N-doped carbon framework magnetic material and application for 4-nitrophenol catalytic reduction
KR102434453B1 (ko) 구형의 알루미나 분말의 제조 방법 및 이의 제조방법으로 제조된 구형의 알루미나 분말을 포함하는 방열 복합체
CN116178039B (zh) 一种吸波复相陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant