CN114823971B - 一种双载流子MoS2二维材料的制备方法 - Google Patents

一种双载流子MoS2二维材料的制备方法 Download PDF

Info

Publication number
CN114823971B
CN114823971B CN202210311623.5A CN202210311623A CN114823971B CN 114823971 B CN114823971 B CN 114823971B CN 202210311623 A CN202210311623 A CN 202210311623A CN 114823971 B CN114823971 B CN 114823971B
Authority
CN
China
Prior art keywords
mos
dimensional material
double
preparation
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210311623.5A
Other languages
English (en)
Other versions
CN114823971A (zh
Inventor
单玉凤
朱家旗
殷子薇
邓惠勇
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Institute of Advanced Studies of UCAS
Original Assignee
Hangzhou Institute of Advanced Studies of UCAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Institute of Advanced Studies of UCAS filed Critical Hangzhou Institute of Advanced Studies of UCAS
Priority to CN202210311623.5A priority Critical patent/CN114823971B/zh
Publication of CN114823971A publication Critical patent/CN114823971A/zh
Application granted granted Critical
Publication of CN114823971B publication Critical patent/CN114823971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明公开了一种双载流子MoS2二维材料的制备方法,包括如下步骤:步骤1,制备过热态溶剂,通过将装有溶剂且带磨口塞的容器置于恒温烘箱中获得;步骤2,利用干法剥离或CVD法制备少层或单层MoS2;步骤3,将MoS2生长或转移至无机衬底上作为待处理片;步骤4,将待处理片置于装有溶剂且带磨口塞的容器中,将容器放于一定温度的恒温烘箱中放置一段时间;步骤5,取出待处理片得到双载流子MoS2二维材料。本发明能够便捷高效的制备双载流子MoS2二维材料。

Description

一种双载流子MoS2二维材料的制备方法
技术领域
本发明涉及一种用于MoS2材料制备领域的双载流子MoS2二维材料的制备方法。
背景技术
无论是通过剥离法制备还是CVD法生长的MoS2,其本身即为n型掺杂半导体。另外,由于大多数金属电极费米能级会钉扎在MoS2导带位置,使得空穴因较高肖特基势垒而无法参与载流子输运。因而MoS2常表现为电子输运特性。目前可以通过以下方法实现MoS2的双载流子输运:通过选区沉积具有高功函数的MoOx层作为空穴收集层;或通过p型掺杂的方法,如利用CVD法生长Nb掺杂的p型MoS2,利用等离子体在MoS2中掺P、N以及氧元素等,利用AuCl3等对MoS2进行p型化学掺杂等。以上所述方法,过程复杂,需要昂贵设备或复杂工艺才可实现,且掺杂过程在MoS2器件中可能引入金污染或产生大的晶格损伤,影响器件的电学和光电性能。因此,亟需一种简单有效的方法用以获得具有优异电学和光电性能的双载流子输运的MoS2器件。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种双载流子MoS2二维材料的制备方法,能够便捷高效的制备双载流子MoS2二维材料。
实现上述目的的一种技术方案是:一种双载流子MoS2二维材料的制备方法,包括如下步骤:
步骤1,制备过热态溶剂,通过将装有溶剂且带磨口塞的容器置于恒温烘箱中获得;
步骤2,利用干法剥离或CVD法制备少层或单层MoS2
步骤3,将MoS2生长或转移至无机衬底上作为待处理片;
步骤4,将待处理片置于装有溶剂且带磨口塞的容器中,将容器放于一定温度的恒温烘箱中放置一段时间;
步骤5,取出待处理片得到双载流子MoS2二维材料。
进一步的,步骤1中的溶剂为过热态丙酮、过热态乙醇、过热态水、过热态异丙醇、过热态N-甲基吡咯烷酮溶剂中的一种或多种的混合。
进一步的,步骤2中,MoS2层数不超过50层。
作为优选,步骤2中,MoS2层数不超过10层。
进一步的,无机衬底为SiO2、Si、Al2O3、Si、SiN、GaN、AlN或ZnO中的一种。
进一步的,恒温箱的温度超过溶剂的沸点。
作为优选,恒温箱的温度不超过溶剂沸点2倍。
进一步的,步骤4中容器放入一定温度的恒温烘箱中的处理时间大于10分钟,不超过10小时。
作为优选步骤4中容器放入一定温度的恒温烘箱中的处理时间不超过2小时。
本发明的双载流子MoS2二维材料的制备方法,利用过热态溶剂处理后的MoS2样品制备器件的转移曲线具有双载流子输运特性。处理后样品制备的MoS2器件具有优异的光响应度以及高探测率,其中,光响应度超过106A/W,探测率超过1017Jones,在文献所报道的MoS2器件中,比探测率为最高探测率。本方法利用MoS2表面溶剂化实现双载流子输运,操作简单,所用设备低廉,不会在MoS2中引入大的晶格损伤或带来污染。
附图说明
图1为本发明双载流子MoS2二维材料的制备方法处理后样品制备的器件具有双载流子输运转移曲线,532nm激光激发后,器件具有显著的光电响应的示意图。
图2为过热丙酮处理前后样品的拉曼峰位变化示意图;
图3为处理后样品制备的MoS2FET器件响应度与光功率密度的关系图;
图4为处理后样品制备的MoS2FET器件探测率与光功率密度的关系图。
具体实施方式
为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例进行详细地说明:
本发明的一种双载流子MoS2二维材料的制备方法依照如下步骤进行制备。
步骤1,制备过热态溶剂。过热态溶剂为溶剂温度超过其沸腾温度而没有沸腾的溶剂状态,由通过将装有丙酮且带磨口塞的玻璃容器置于80℃恒温烘箱中获得。
步骤2,利用干法剥离或CVD法制备少层或单层MoS2
步骤3,将MoS2转移至SiO2/p++Si无机衬底上作为待处理片。
步骤4,将待处理片置于装有丙酮的玻璃容器中,塞上磨口塞,置于80℃恒温烘箱中。待处理片在过热丙酮中处理30min。
步骤5,取出待处理片得到双载流子MoS2二维材料。
处理后的样品通过光刻图形化并蒸镀金属电极后得到MoS2的FET器件。器件的转移曲线表现出双载流子输运特性(如图1所示)。器件的响应度和探测率分别超过106A/W和1017Jones。过热丙酮处理前后样品的拉曼峰位变化如图2所示。处理后样品制备的MoS2FET器件响应度与光功率密度的关系如图3所示。处理后样品制备的MoS2FET器件探测率与光功率密度的关系如图4所示,探测率范围在1013-1017Jones。
本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (7)

1.一种双载流子MoS2二维材料的制备方法,其特征在于,包括如下步骤:
步骤1,制备过热态溶剂,通过将装有溶剂且带磨口塞的容器置于恒温烘箱中获得;
步骤2,利用干法剥离或CVD法制备少层或单层MoS2
步骤3,将MoS2生长或转移至无机衬底上作为待处理片;
步骤4,将待处理片置于装有溶剂且带磨口塞的容器中,将容器放于一定温度的所述恒温烘箱中放置一段时间,所述恒温烘箱的温度超过溶剂的沸点,并且所述恒温烘箱的温度不超过溶剂沸点2倍;
步骤5,取出待处理片得到双载流子MoS2二维材料。
2.根据权利要求1所述的一种双载流子MoS2二维材料的制备方法,其特征在于,步骤1中的溶剂为过热态丙酮、过热态乙醇、过热态水、过热态异丙醇、过热态N-甲基吡咯烷酮溶剂中的一种或多种的混合。
3.根据权利要求1所述的一种双载流子MoS2二维材料的制备方法,其特征在于,步骤2中,MoS2层数不超过50层。
4.根据权利要求3所述的一种双载流子MoS2二维材料的制备方法,其特征在于,步骤2中,MoS2层数不超过10层。
5.根据权利要求1所述的一种双载流子MoS2二维材料的制备方法,其特征在于,无机衬底为SiO2、Si、Al2O3、Si、SiN、GaN、AlN或ZnO中的一种。
6.根据权利要求1所述的一种双载流子MoS2二维材料的制备方法,其特征在于,步骤4中容器放入一定温度的恒温烘箱中的处理时间大于10分钟,不超过10小时。
7.根据权利要求6所述的一种双载流子MoS2二维材料的制备方法,其特征在于,步骤4中容器放入一定温度的恒温烘箱中的处理时间不超过2小时。
CN202210311623.5A 2022-03-28 2022-03-28 一种双载流子MoS2二维材料的制备方法 Active CN114823971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210311623.5A CN114823971B (zh) 2022-03-28 2022-03-28 一种双载流子MoS2二维材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210311623.5A CN114823971B (zh) 2022-03-28 2022-03-28 一种双载流子MoS2二维材料的制备方法

Publications (2)

Publication Number Publication Date
CN114823971A CN114823971A (zh) 2022-07-29
CN114823971B true CN114823971B (zh) 2023-07-25

Family

ID=82530696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210311623.5A Active CN114823971B (zh) 2022-03-28 2022-03-28 一种双载流子MoS2二维材料的制备方法

Country Status (1)

Country Link
CN (1) CN114823971B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570001A (zh) * 2012-07-19 2014-02-12 中国科学院微电子研究所 一种绝缘体上二维薄膜材料的制备方法
CN106350782A (zh) * 2016-09-18 2017-01-25 西安电子科技大学 基于水蒸气的二维过渡金属硫属化合物转移方法
CN112837996A (zh) * 2021-01-05 2021-05-25 上海应用技术大学 一种薄层二维材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168002B2 (en) * 2017-12-06 2021-11-09 Nanoco 2D Materials Limited Top-down synthesis of two-dimensional nanosheets
US11152471B1 (en) * 2020-03-26 2021-10-19 Mitsubishi Electric Research Laboratories, Inc. 2-dimensional electron gas and 2-dimensional hole gas junction based semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570001A (zh) * 2012-07-19 2014-02-12 中国科学院微电子研究所 一种绝缘体上二维薄膜材料的制备方法
CN106350782A (zh) * 2016-09-18 2017-01-25 西安电子科技大学 基于水蒸气的二维过渡金属硫属化合物转移方法
CN112837996A (zh) * 2021-01-05 2021-05-25 上海应用技术大学 一种薄层二维材料的制备方法

Also Published As

Publication number Publication date
CN114823971A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Basol High‐efficiency electroplated heterojunction solar cell
CN110265504B (zh) 一种紫外光电探测器及其制备方法
KR102100909B1 (ko) 넓은 밴드갭 반도체 재료를 갖는 이미터 영역을 구비한 태양 전지
KR101191814B1 (ko) p형 산화아연 박막 및 그 제조방법
CN101916773B (zh) 一种双沟道mos-hemt器件的制作方法
Hazra et al. Ultraviolet photodetection properties of ZnO/Si heterojunction diodes fabricated by ALD technique without using a buffer layer
CN107994083B (zh) 太阳能电池
Chen et al. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current
WO2018082251A1 (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN102361046A (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN104576928A (zh) 一种有机/GaN异质p-n结紫外光探测器及其制备方法
CN109841676A (zh) 辅助掺杂实现常关型GaN HEMT器件及其制备方法
CN114823971B (zh) 一种双载流子MoS2二维材料的制备方法
CN104638070A (zh) 一种光电器件的制备方法
CN114334651A (zh) 一种基于超薄氮化镓自支撑衬底的hemt制备方法
CN110190150A (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
CN113451088A (zh) 一种具有超晶格纳米线结构GaN光电阴极的制备方法
Shetty et al. InN quantum dot based infra-red photodetectors
CN101840964B (zh) 低阻p-GaN欧姆接触电极制备方法
CN111969056A (zh) 一种核壳结构AlGaN/GaN异质结纳米线基晶体管及其制备方法
Chen et al. Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations
CN115084297A (zh) 一种薄膜异质结紫外光探测器及其制备方法和应用
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
CN115000244B (zh) 一种高性能自驱动GaN纳米线紫外探测器的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant