CN114808016A - 一种Fe7S8/CoS缺陷异质结微米片的制备方法 - Google Patents

一种Fe7S8/CoS缺陷异质结微米片的制备方法 Download PDF

Info

Publication number
CN114808016A
CN114808016A CN202210488633.6A CN202210488633A CN114808016A CN 114808016 A CN114808016 A CN 114808016A CN 202210488633 A CN202210488633 A CN 202210488633A CN 114808016 A CN114808016 A CN 114808016A
Authority
CN
China
Prior art keywords
cos
defect
heterojunction
micron sheet
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210488633.6A
Other languages
English (en)
Other versions
CN114808016B (zh
Inventor
李忠成
王文嫔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jinglong Environmental Protection Technology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202210488633.6A priority Critical patent/CN114808016B/zh
Publication of CN114808016A publication Critical patent/CN114808016A/zh
Application granted granted Critical
Publication of CN114808016B publication Critical patent/CN114808016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/30Sulfides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Fe7S8/CoS缺陷异质结微米片的制备方法,具体的说是FeCl3·6H2O、CoCl2·6H2O、KSCN为前驱体,水热制备Fe7S8/CoS缺陷异质结微米片,该Fe7S8/CoS缺陷异质结微米片可高效电催化水氧化。

Description

一种Fe7S8/CoS缺陷异质结微米片的制备方法
技术领域
本发明涉及一种Fe7S8/CoS缺陷异质结微米片的制备方法,属于材料的制备领域。
背景技术
铁基硫化物因为在地壳中储量丰富、价格低廉等优点,而在水分解领域被广泛关注。其中磁黄铁矿Fe7S8是一类混合价态的硫化铁,研究表明磁黄铁矿Fe7S8对水分解具有一定的催化活性,但目前研究的较少,且活性较低。因此调变磁黄铁矿Fe7S8表面组成,改进催化反应动力学,高效催化水分解是十分必要的。
合成微纳米尺度的材料,构建异质材料和设计缺陷是主要的改进方法。例如:Javaid等将Au纳米粒子、CoCl2·6H2O、NiCl2·6H2O、Fe7S8、十六胺混合,焙烧后得到Ni2+/Co2 +掺杂的doped Au-Fe7S8纳米片,其催化水氧化反应,在过电势243mV时,电流密度为10mA/cm2(Nano Energy89(2021)106463)。Le等利用NaH2PO2·H2O磷化硫铁化合物得到P掺杂的Fe7S8@C纳米线,其催化水氧化,在过电势210mV时,电流密度为20mA/cm2(J.Mater.Sci.Technol.74(2021)168-175)。Jiang等将Fe7S8纳米粒子包覆入N,S共掺杂的C,其催化水氧化,在过电势450mV时,电流密度为10mA/cm2(Micro Nano Lett.15(2020)495-498)。因此,调变磁黄铁矿高效催化水氧化,具有重要的意义。
随着人类对于清洁能源的需求日益增加,寻求可持续的绿色、清洁能源显得更为重要。电催化水氧化反应是电解水反应的半反应,调变磁黄铁矿Fe7S8表面结构,使其高效催化水氧化,具有重要的科学价值。
发明内容:
本发明旨在提供一种Fe7S8/CoS缺陷异质结微米片的制备方法和其在电催化水氧化反应中的应用。
基于上述目的,本发明所涉及的技术方案如下:
1)一种Fe7S8/CoS缺陷异质结微米片:将0.5~0.6g FeCl3·6H2O、0.2~0.3gCoCl2·6H2O、0.3~0.4g KSCN加入到55~65mL水,混合均匀,在反应釜中于230~250℃处理10~18h,产物经离心、干燥得到Fe7S8/CoS缺陷异质结微米片。
2)将Fe7S8/CoS缺陷异质结微米片用于催化水氧化,电压为1.47V时,电流密度为10mA/cm2
本发明具有如下优点:
1)将FeCl3·6H2O、CoCl2·6H2O、KSCN为前驱体,构建了Fe7S8/CoS缺陷异质结微米片,拓展了Fe7S8/CoS缺陷异质结微米片的合成路径。
2)本发明具有操作简单的特点。
附图说明:
图1是Fe7S8/CoS缺陷异质结微米片的XRD表征结果。
具体实施方式
下列实施例用来进一步说明本发明,但不因此而限制本发明。
实施例1
Fe7S8/CoS缺陷异质结微米片制备过程如下:将0.5g FeCl3·6H2O、0.2g CoCl2·6H2O、0.3g KSCN加入到55mL水,混合均匀,在反应釜中于230℃处理10h,产物经离心、干燥得到Fe7S8/CoS缺陷异质结微米片。
实施例2
将0.6g FeCl3·6H2O、0.3g CoCl2·6H2O、0.4g KSCN加入到65mL水,混合均匀,在反应釜中于250℃处理18h,产物经离心、干燥得到。
实施例3
将0.55g FeCl3·6H2O、0.25g CoCl2·6H2O、0.35g KSCN加入到60mL水,混合均匀,在反应釜中于240℃处理12h,产物经离心、干燥得到。
实施例4
取实施例1浆液滴涂于1×1cm2泡沫镍电极上,干燥后在三电极体系下测其催化水氧化,电压为1.47V时,电流密度为10mA/cm2

Claims (2)

1.一种Fe7S8/CoS缺陷异质结微米片的制备方法,具体的说是FeCl3·6H2O、CoCl2·6H2O、KSCN为前驱体,水热制备Fe7S8/CoS缺陷异质结微米片,该Fe7S8/CoS缺陷异质结微米片可高效电催化水氧化;Fe7S8/CoS缺陷异质结微米片由如下步骤制得:将0.5~0.6g FeCl3·6H2O、0.2~0.3g CoCl2·6H2O、0.3~0.4g KSCN加入到55~65mL水,混合均匀,在反应釜中于230~250℃处理10~18h,产物经离心、干燥得到Fe7S8/CoS缺陷异质结微米片。
2.按照权利要求1所述的方法,其特征在于:
将Fe7S8/CoS缺陷异质结微米片用于催化水氧化,电压为1.47V时,电流密度为10mA/cm2
CN202210488633.6A 2022-05-06 2022-05-06 一种Fe7S8/CoS缺陷异质结微米片的制备方法 Active CN114808016B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210488633.6A CN114808016B (zh) 2022-05-06 2022-05-06 一种Fe7S8/CoS缺陷异质结微米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210488633.6A CN114808016B (zh) 2022-05-06 2022-05-06 一种Fe7S8/CoS缺陷异质结微米片的制备方法

Publications (2)

Publication Number Publication Date
CN114808016A true CN114808016A (zh) 2022-07-29
CN114808016B CN114808016B (zh) 2023-11-14

Family

ID=82511903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210488633.6A Active CN114808016B (zh) 2022-05-06 2022-05-06 一种Fe7S8/CoS缺陷异质结微米片的制备方法

Country Status (1)

Country Link
CN (1) CN114808016B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682563A (zh) * 2018-04-17 2018-10-19 江苏大学 一种Fe7S8@Fe5Ni4S8复合电极材料及其制备方法和应用
US20210162392A1 (en) * 2019-12-03 2021-06-03 The Governing Council Of The University Of Toronto Electrocatalysts comprising transition metals and chalcogen for oxygen evolution reactions (oer) and manufacturing thereof
CN113937281A (zh) * 2021-09-24 2022-01-14 中国科学院深圳先进技术研究院 负极材料及其制备方法和钠离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682563A (zh) * 2018-04-17 2018-10-19 江苏大学 一种Fe7S8@Fe5Ni4S8复合电极材料及其制备方法和应用
US20210162392A1 (en) * 2019-12-03 2021-06-03 The Governing Council Of The University Of Toronto Electrocatalysts comprising transition metals and chalcogen for oxygen evolution reactions (oer) and manufacturing thereof
CN113937281A (zh) * 2021-09-24 2022-01-14 中国科学院深圳先进技术研究院 负极材料及其制备方法和钠离子电池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HAI YU ET AL.: "Co8FeS8/Fe7S8@N-doped porous carbons as highly efficient and stable electrocatalysts for oxygen evolution reaction", JOURNAL OF SOLID STATE CHEMISTRY, vol. 310, pages 123033 *
LIYUAN WU ET AL.: "The synergy of sulfur vacancies and heterostructure on CoS@FeS nanosheets for boosting the peroxymonosulfate activation", CHEMICAL ENGINEERING JOURNAL, vol. 446, pages 136759 *
MATHIAS SMIALKOWSKI ET AL.: "Fe/Co and Ni/Co‐pentlandite type electrocatalysts for the hydrogen evolution reaction", CHINESE JOURNAL OF CATALYSIS, vol. 42, pages 1360 *
WENPIN WANG ET AL.: "Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS2–FeS2 nanosheets", DALTON TRANSACTIONS, vol. 49, pages 13352 - 13358 *
YUE XU ET AL.: "Constructing bifunctional Fe7S8/CoS heterostructures for efficient water electrolysis", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 48, pages 113 - 122, XP087237196, DOI: 10.1016/j.ijhydene.2022.09.253 *
徐跃: "铁基硫化物纳米材料的制备及其电催化水分解性能研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, no. 01, pages 014 - 945 *

Also Published As

Publication number Publication date
CN114808016B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Zhou et al. Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting
Wei et al. CoS2 nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production
Tian et al. Morphology and phase transformation of α-MnO2/MnOOH modulated by N-CDs for efficient electrocatalytic oxygen evolution reaction in alkaline medium
CN109518219B (zh) 一种石墨烯基镍钴双金属析氧催化剂的制备方法及其应用
Srinivas et al. Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance
Zhang et al. Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction
CN109530714A (zh) 一种复合电极材料及其制备方法和应用
Martínez-Lázaro et al. Microfluidic water splitting cell using 3D NiFe2O4 hollow spheres
CN111036247B (zh) 一种钴铁氧化物-磷酸钴电催化析氧复合材料及其制备方法和应用
CN110571439A (zh) 一种碳纳米管包覆钴单质的复合材料的制备方法与应用
CN110699701B (zh) 一种负载金属镍和三氧化二钒复合物的泡沫镍及其制备方法和应用
Rahamathulla et al. Advanced heterostructures as bifunctional electrocatalysts for overall water splitting-a review
CN114042468A (zh) 一种核壳结构Fe2P@C-Fe3C电催化剂及其制备方法和应用
CN111215096A (zh) 一种负载四硫化二钴镍纳米片的石墨烯复合材料的制备及应用
Jiang et al. MOF-derived Co, Ni, Mn co-doped N-enriched hollow carbon for efficient hydrogen evolution reaction catalysis
CN112156794A (zh) 一种多壁碳纳米管@过渡金属硫化物@二硫化钼三维异质结构的制备方法及其应用
Li et al. Fe7Se8@ Fe2O3 heterostructure nanosheets as bifunctional electrocatalyst for urea electrolysis
Xu et al. Constructing bifunctional Fe7S8/CoS heterostructures for efficient water electrolysis
CN114381758A (zh) 一种镍掺杂勃姆石与还原氧化石墨烯复合型电催化剂及其制备与应用
Cao et al. Graphdiyne/copper sulfide heterostructure for active conversion of CO 2 to formic acid
CN111889111B (zh) 具有三维异质结构的整体式光催化剂及其制备方法和应用
CN114808016A (zh) 一种Fe7S8/CoS缺陷异质结微米片的制备方法
CN107523842B (zh) 一种碳基过渡元素氧化物纳米材料的制备方法和应用
Liang et al. Facile fabrication of bimetallic Fe 2 P–Ni 2 P heterostructure for boosted oxygen evolution
CN112479274B (zh) 一种Ni3S4-NiS2-FeS2纳米片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240719

Address after: 230000 Woye Garden Commercial Building B-1017, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province

Patentee after: HEFEI JINGLONG ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Country or region after: China

Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

Country or region before: China