CN114807129A - 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用 - Google Patents

一种基于lncRNA测序的玉米耐盐基因发现方法及其应用 Download PDF

Info

Publication number
CN114807129A
CN114807129A CN202210307252.3A CN202210307252A CN114807129A CN 114807129 A CN114807129 A CN 114807129A CN 202210307252 A CN202210307252 A CN 202210307252A CN 114807129 A CN114807129 A CN 114807129A
Authority
CN
China
Prior art keywords
lncrna
salt
gene
tolerant
corn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210307252.3A
Other languages
English (en)
Other versions
CN114807129B (zh
Inventor
汪保华
方辉
单婷玉
李平
王凯
曹云英
韩金磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202210307252.3A priority Critical patent/CN114807129B/zh
Publication of CN114807129A publication Critical patent/CN114807129A/zh
Application granted granted Critical
Publication of CN114807129B publication Critical patent/CN114807129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及植物遗传技术领域,尤其涉及一种基于lncRNA测序的玉米耐盐基因发现方法及其应用,以玉米耐盐自交系LH196为材料,对其开展盐胁迫及对照下的链特异性转录组测序、lncRNA测序及靶基因预测,通过二者联合分析初步确定耐盐候选基因,并对耐盐差异基因进行RT‑qPCR表达分析,最后在拟南芥中开展功能验证。其得到的玉米耐盐基因Zm00001d010406位于玉米8号染色体;利用该基因,可分子标记辅助选育耐盐玉米品种。

Description

一种基于lncRNA测序的玉米耐盐基因发现方法及其应用
技术领域
本发明涉及植物遗传技术领域,尤其涉及一种基于lncRNA测序的玉米耐盐基因发现方法及其应用。
背景技术
玉米是全球最重要的粮食作物,提供了超过一半的卡路里消耗,然而未来玉米的供应遭受多方面的威胁,至2050年玉米产量需要加倍才能满足人们日益增长的需求,粮食安全问题日趋紧张。此外,多种环境因素也在威胁未来玉米的供应,盐胁迫是其中一种影响玉米生长和产量的重要因素。全球有大约4.15×108公顷土地受盐胁迫影响,我国也有将近1亿公顷土地为盐碱地,约占全国土地面积的10%,是重要的后备土地资源。培育耐盐玉米种质能够充分利用这部分土地,也是保障未来粮食安全的重要举措。而培育耐盐玉米种质的成效取决于对玉米耐盐基因资源的挖掘和玉米耐盐遗传机制的充分了解。
长链非编码RNA(long non-coding RNA,lncRNA)是一类在不同物种中具有低序列保守性的转录物,长度超过200个核苷酸,并且没有蛋白质编码能力。已发现植物lncRNA可作为转录调节因子或是具有功能的lncRNA直接或间接参与到植物的春化作用、逆境胁迫、生殖发育、开花时间调控、木材形成、果实成熟及光形态建成等生物学过程,对植物生长发育起到重要作用;lncRNA能调控很多抗盐基因,如:和离子运输相关的HKT1和NHX基因,而且具有很高的组织特异性。因此,本申请拟对玉米盐胁迫下的lncRNA及其靶基因开展鉴定,并对其进行功能分析,发掘玉米耐盐基因。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种基于lncRNA测序的玉米耐盐基因发现方法及其应用。
为了实现上述目的,本发明采用了如下技术方案:
一种玉米耐盐基因,所述玉米耐盐基因为玉米耐盐基因Zm00001d010406,且玉米耐盐基因Zm00001d010406位于8号染色体。
优选地,所述玉米耐盐基因Zm00001d010406的cDNA序列信息如下:
>Zm00001d010406_T001 Zm00001d010406_T001 cdna Length:5684bp ATGGGGATGGGGCGATTTGTAAGCCCAATCTTTTATTTATTCAGGTTTGAACCGTACTTGAGGAATGCATGCAAGAGGTTTGCGTTGGAGCACCGGGCTGGCGAGAACCGTGCCCCGCTCATCTCAGATGATAGCCCCAACAAAGATATCAACATTGCTTTCTATAACATCCCGATGCTGAAAAAACTGAGAGAGCTTGGGACAGCCGAAATTGGTAAGCTCACATCAGTAATGGGTGTTGTGACACGGACAAGTGAAGTGCGGCCTGAACTATTGCAAGGAACCTTCAAATGTCTCGACTGTGGGAATGTTGTGAAGAATGTGGAGCAGCAGTTCAAGTACACTGAGCCGATAATATGCGTTAATGCAACATGCCAGAACAGAACAAAATGGGCCCTTCTTCGTCAGGAAAGCAAATTCACAGATTGGCAGCGGGTCAGAATGCAGGAGACATCAAAAGAGATACCCGCTGGGTCACTTCCTCGTTCCCTTGATGTCATTCTGCGGCATGAGATTGTTGAGAAGGCCAGAGCTGGGGACACGGTTATATTTACTGGAACTGTTGTTGCAGTTCCTGATGTTATGGCACTAACTTCACCTGGCGAACGAGCAGAGTGTCGCAGGGAAGCTCCTCAGCGAAAAAACGGAGGTGTTCAAGAAGGTGTAAAGGGCTTGAAGTCCCTTGGAGTTAGGGATCTGTCTTATCGCCTTGCCTTTGTAGCAAATTCAGTGCAGGTCGCAGATGGTAGGAGAGAAGTGGACATCAGGGAACGGGACACAGATGGTGATGACAGTGAGAGACAGAAATTCACAGAAGAAGAGGAAGATGAAGTTGTTAGGATGAGGAACACTCCTGATTTCTTTAATAAGATAGTTGATAGCATATGTCCTACCGTATTTGGTCATCAAGAAATTAAGAGGGCCGTGCTTCTTATGCTTTTGGGTGGTGTTCATAAGATAACACATGAAGGGATCAACCTTAGAGGTGACATCAATGTCTGTATTGTTGGTGACCCAAGCTGTGCAAAGTCTCAGTTCCTAAAATATACTGCTGGTATTGTTCCAAGATCTGTTTACACGTCAGGGAAGTCATCATCAGCTGCTGGTCTGACAGCAACTGTTGCTAAAGAACCAGAGACTGGTGAATTCTGTATTGAGGCTGGTGCCCTGATGCTAGCTGATAATGGTGTTTGTTGTATCGATGAATTTGATAAAATGGACATTAAGGATCAGGTCGCTATACATGAAGCAATGGAACAGCAAACAATTAGCATTACCAAAGCAGGAATACAGGCAACTTTGAATGCACGAACATCAATTTTAGCTGCAGCAAATCCGACCGGAGGCCGTTATGACAAGTCAAAACCACTTAAGTACAATGTTGCATTGCCCCCAGCTATTCTTTCAAGATTTGATCTGGTCTACATCATGATCGATGAACCTGATGAAAACACTGACTACCACATTGCTCATCACATTGTAAGAGTCCATCAGAAACGTGAAGAAGCACTTGCCCCTGCATTTAGCACCGCACAACTGAAGCGTTATATTTCTTTTGCAAAATCTTTGAAACCTCAGCTTAGTTCAGAAGCAAAGAAAGTTCTGGTGGAGTCGTATGTTACGCTTCGTAGGGGGGACAGTACTCCTGGAACTAGGGTTGCTTATAGGATGACAGTTCGGCAATTGGAAGCATTGATTCGGCTGTCAGAAGCTATTGCTCGAAGCCATTTAGAAAGAGTTGTAAGTATATTAATTCACTTTATCGTGGATCATGTTCTCCCAGCTCATGTCCGCCTGGCAGTTAAATTGCTCAAGACATCCATCATCAGTGTTGAGTCAAGTGAAGTTGATCTCTCTGACTTCCAAGATGCTGAAGATGGAACAAATGTACCTTCTGAGAGTGACGCCGGACAGCCAGCTGAAGAAGATGCTGCTCCTCAGCAGCAGGGTGCAGAAAATGACCAAGCAGCGGATAATGGTAAGAAGAAATTGGTAATAACTGAAGAACACTTCCAGAGAGTTACTCAAGCTTTGGTTATGAGACTAAGGCAGCATGAAGAGTCAGTCAAGAAAGATGGAGATGGTTTAGCTGGCATGAAGCAAGGGGATCTTATCATCTGGTATGTTGAGCAGCAGAATGCCAAAGGGGCATATAGTTCTACTGCAGAGGTGAAGGAAGAAGTGAAGTGTATCAAGGCCATTATAGAGAGACTTATACAGCGGGAAGGCCATCTTATAGTCATTGACGAAGGTACTGCAGCCGCAGCCGAAGATGGCAGTGGCGCAAGGAGAACATCAGAGAGTAGAATACTGGCAGTTAACCCGAACTATGTTATTGATTAGCAACGGCATCTTAACATGCTGTTAACCCAAGCCAGTTGATGTGGTTAGCTAACTGAAGCTATGATTCTGGTGATGTGTCCGTTGTGCTCTAGAGTTGTTGTACCATCTCCGTCACTGGTGTGCTCGTTCCAAGGGAGCACATGATCTCCAAAACTACATACTACGTTTAGTGATGCAGGATAATTAGCATCTGTAGTCTTACTAATTTTGACCCGTGTTTCCCTAGTGAATTTTCGTAGCAACAGCTTTGATTTATCAGTCACTGAGTGCTGCAATTTTCTATTTGCTTTCTCAAGTTCACCCTTTGTTGATCCATCTAGATGGGATCAGAGAATAGCTGTGCTAATTTATGTTACAATGTCGCAGAACCCATTTATTTATTTGATTGCTTTGTG。
本发明还提供了一种获得基于lncRNA测序的玉米耐盐基因的发现方法,包括以下步骤:
步骤1、链特异性转录组测序
挑选整齐一致、颗粒饱满的LH196种子培养;将长势一致的去胚乳幼苗分成两组,一组为空白对照,一组为250mM NaCl营养液培养组,持续处理10天;上述同样条件下培养玉米自交系LH196,然后分别用250mmol/L的盐处理和空白对照处理12h后,采取玉米的叶片,在液氮中冷冻然后保存在-80℃备用;利用试剂盒提取6个样品叶片中的RNA,分别开展链特异性转录组测序;
使用链特异性建库方式开展lncRNA测序,与普通的转录组建库方式相比,链特异性测序可以确定两条链的转录方向性,减少比对过程中的错误;其次,lncRNA建库测序能得到更丰富的信息;lncRNA建库属于mRNA+lncRNA,只需要一次建库,就能同时获得mRNA的数据以及lncRNA的数据;
步骤2、差异表达基因鉴定和lncRNA分析
鉴定差异表达基因:差异表达基因筛选;差异表达基因聚类分析;差异表达基因的功能注释;差异表达基因的GO和KEGG富集分析;差异表达基因蛋白互作网络;
lncRNA分析:lncRNA表达定量分析;lncRNA差异表达分析;样品间lncRNA相关性分析;Cis作用差异lncRNA靶基因注释富集分析;Cis作用差异lncRNA靶基因PPI分析;Trans作用差异lncRNA靶基因注释富集分析;Trans作用差异lncRNA靶基因PPI分析;
联合差异表达基因和lncRNA靶基因预测,发掘共性基因作为玉米耐盐候选基因;
步骤3、耐盐基因的表达模式验证
步骤3.1、对于上述耐盐候选基因,利用Primer5进行引物的设计并合成,将RNA反转录为cDNA,利用实时定量PCR进行表达模式验证;
步骤3.2、在拟南芥中开展候选基因的过表达验证,制备农杆菌感受态以及过表达载体,构建重组质粒并导入农杆菌,将农杆菌导入拟南芥中,经过培养后筛选拟南芥转基因纯合系盐处理后进行表型鉴定。
优选地,本发明还提供了一种基于lncRNA测序的玉米耐盐基因在分子标记辅助选育耐盐玉米品种中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明以玉米耐盐自交系LH196为材料,对其开展盐胁迫及对照下的链特异性转录组测序、lncRNA测序及靶基因预测,通过二者联合分析初步确定耐盐候选基因,并对耐盐差异基因进行RT-qPCR表达分析,最后在拟南芥中开展功能验证,最终得到的玉米耐盐基因Zm00001d010406位于8号染色体上113202370-113208725bp的位置区间;该基因可通过分子辅助育种转移到农艺性状优良的玉米材料,进而创制耐盐且农艺性状优良的玉米材料或品种。
附图说明
图1为本发明中盐胁迫下差异表达lncRNA靶基因的RT-qPCR表达验证结果图;
图2为本发明中盐胁迫下两组拟南芥的表型差异对比图;
其中,WT为野生型拟南芥,OE为过表达基因Zm00001d010406拟南芥株系,CK为对照组,Salt为250mmol盐水处理组。
具体实施方式
下面结合附图将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种玉米耐盐基因,所述玉米耐盐基因为玉米耐盐基因Zm00001d010406,且玉米耐盐基因Zm00001d010406位于8号染色体。
其中,所述玉米耐盐基因Zm00001d010406的cDNA序列信息如下:
>Zm00001d010406_T001 Zm00001d010406_T001 cdna Length:5684bp
ATGGGGATGGGGCGATTTGTAAGCCCAATCTTTTATTTATTCAGGTTTGAACCGTACTTGAGGAATGCATGCAAGAGGTTTGCGTTGGAGCACCGGGCTGGCGAGAACCGTGCCCCGCTCATCTCAGATGATAGCCCCAACAAAGATATCAACATTGCTTTCTATAACATCCCGATGCTGAAAAAACTGAGAGAGCTTGGGACAGCCGAAATTGGTAAGCTCACATCAGTAATGGGTGTTGTGACACGGACAAGTGAAGTGCGGCCTGAACTATTGCAAGGAACCTTCAAATGTCTCGACTGTGGGAATGTTGTGAAGAATGTGGAGCAGCAGTTCAAGTACACTGAGCCGATAATATGCGTTAATGCAACATGCCAGAACAGAACAAAATGGGCCCTTCTTCGTCAGGAAAGCAAATTCACAGATTGGCAGCGGGTCAGAATGCAGGAGACATCAAAAGAGATACCCGCTGGGTCACTTCCTCGTTCCCTTGATGTCATTCTGCGGCATGAGATTGTTGAGAAGGCCAGAGCTGGGGACACGGTTATATTTACTGGAACTGTTGTTGCAGTTCCTGATGTTATGGCACTAACTTCACCTGGCGAACGAGCAGAGTGTCGCAGGGAAGCTCCTCAGCGAAAAAACGGAGGTGTTCAAGAAGGTGTAAAGGGCTTGAAGTCCCTTGGAGTTAGGGATCTGTCTTATCGCCTTGCCTTTGTAGCAAATTCAGTGCAGGTCGCAGATGGTAGGAGAGAAGTGGACATCAGGGAACGGGACACAGATGGTGATGACAGTGAGAGACAGAAATTCACAGAAGAAGAGGAAGATGAAGTTGTTAGGATGAGGAACACTCCTGATTTCTTTAATAAGATAGTTGATAGCATATGTCCTACCGTATTTGGTCATCAAGAAATTAAGAGGGCCGTGCTTCTTATGCTTTTGGGTGGTGTTCATAAGATAACACATGAAGGGATCAACCTTAGAGGTGACATCAATGTCTGTATTGTTGGTGACCCAAGCTGTGCAAAGTCTCAGTTCCTAAAATATACTGCTGGTATTGTTCCAAGATCTGTTTACACGTCAGGGAAGTCATCATCAGCTGCTGGTCTGACAGCAACTGTTGCTAAAGAACCAGAGACTGGTGAATTCTGTATTGAGGCTGGTGCCCTGATGCTAGCTGATAATGGTGTTTGTTGTATCGATGAATTTGATAAAATGGACATTAAGGATCAGGTCGCTATACATGAAGCAATGGAACAGCAAACAATTAGCATTACCAAAGCAGGAATACAGGCAACTTTGAATGCACGAACATCAATTTTAGCTGCAGCAAATCCGACCGGAGGCCGTTATGACAAGTCAAAACCACTTAAGTACAATGTTGCATTGCCCCCAGCTATTCTTTCAAGATTTGATCTGGTCTACATCATGATCGATGAACCTGATGAAAACACTGACTACCACATTGCTCATCACATTGTAAGAGTCCATCAGAAACGTGAAGAAGCACTTGCCCCTGCATTTAGCACCGCACAACTGAAGCGTTATATTTCTTTTGCAAAATCTTTGAAACCTCAGCTTAGTTCAGAAGCAAAGAAAGTTCTGGTGGAGTCGTATGTTACGCTTCGTAGGGGGGACAGTACTCCTGGAACTAGGGTTGCTTATAGGATGACAGTTCGGCAATTGGAAGCATTGATTCGGCTGTCAGAAGCTATTGCTCGAAGCCATTTAGAAAGAGTTGTAAGTATATTAATTCACTTTATCGTGGATCATGTTCTCCCAGCTCATGTCCGCCTGGCAGTTAAATTGCTCAAGACATCCATCATCAGTGTTGAGTCAAGTGAAGTTGATCTCTCTGACTTCCAAGATGCTGAAGATGGAACAAATGTACCTTCTGAGAGTGACGCCGGACAGCCAGCTGAAGAAGATGCTGCTCCTCAGCAGCAGGGTGCAGAAAATGACCAAGCAGCGGATAATGGTAAGAAGAAATTGGTAATAACTGAAGAACACTTCCAGAGAGTTACTCAAGCTTTGGTTATGAGACTAAGGCAGCATGAAGAGTCAGTCAAGAAAGATGGAGATGGTTTAGCTGGCATGAAGCAAGGGGATCTTATCATCTGGTATGTTGAGCAGCAGAATGCCAAAGGGGCATATAGTTCTACTGCAGAGGTGAAGGAAGAAGTGAAGTGTATCAAGGCCATTATAGAGAGACTTATACAGCGGGAAGGCCATCTTATAGTCATTGACGAAGGTACTGCAGCCGCAGCCGAAGATGGCAGTGGCGCAAGGAGAACATCAGAGAGTAGAATACTGGCAGTTAACCCGAACTATGTTATTGATTAGCAACGGCATCTTAACATGCTGTTAACCCAAGCCAGTTGATGTGGTTAGCTAACTGAAGCTATGATTCTGGTGATGTGTCCGTTGTGCTCTAGAGTTGTTGTACCATCTCCGTCACTGGTGTGCTCGTTCCAAGGGAGCACATGATCTCCAAAACTACATACTACGTTTAGTGATGCAGGATAATTAGCATCTGTAGTCTTACTAATTTTGACCCGTGTTTCCCTAGTGAATTTTCGTAGCAACAGCTTTGATTTATCAGTCACTGAGTGCTGCAATTTTCTATTTGCTTTCTCAAGTTCACCCTTTGTTGATCCATCTAGATGGGATCAGAGAATAGCTGTGCTAATTTATGTTACAATGTCGCAGAACCCATTTATTTATTTGATTGCTTTGTG。
具体的,本发明以玉米耐盐自交系LH196为材料,对其开展盐胁迫及对照下的链特异性转录组测序、lncRNA测序及靶基因预测,通过二者联合分析初步确定耐盐候选基因,并对耐盐差异基因进行RT-qPCR表达分析,最后在拟南芥中开展功能验证。具体步骤如下:
参照图1-2,一种获得基于lncRNA测序的玉米耐盐基因的发现方法,包括以下步骤:
步骤1、链特异性转录组测序
挑选整齐一致、颗粒饱满的LH196种子培养;将长势一致的去胚乳幼苗分成两组,一组为空白对照,一组为250mM NaCl营养液培养组,持续处理10天;上述同样条件下培养玉米自交系LH196,然后分别用250mmol/L的盐处理和空白对照处理12h后,采取玉米的叶片,在液氮中冷冻然后保存在-80℃备用;利用试剂盒提取6个样品叶片中的RNA,分别开展链特异性转录组测序;
使用链特异性建库方式开展lncRNA测序,与普通的转录组建库方式相比,链特异性测序可以确定两条链的转录方向性,减少比对过程中的错误;其次,lncRNA建库测序能得到更丰富的信息;lncRNA建库属于mRNA+lncRNA,只需要一次建库,就能同时获得mRNA的数据以及lncRNA的数据;
步骤2、差异表达基因鉴定和lncRNA分析
鉴定差异表达基因:差异表达基因筛选;差异表达基因聚类分析;差异表达基因的功能注释;差异表达基因的GO和KEGG富集分析;差异表达基因蛋白互作网络;
lncRNA分析:lncRNA表达定量分析;lncRNA差异表达分析;样品间lncRNA相关性分析;Cis作用差异lncRNA靶基因注释富集分析;Cis作用差异lncRNA靶基因PPI分析;Trans作用差异lncRNA靶基因注释富集分析;Trans作用差异lncRNA靶基因PPI分析;
联合差异表达基因和lncRNA靶基因预测,发掘共性基因作为玉米耐盐候选基因;
步骤3、耐盐基因的表达模式验证
步骤3.1、对于上述耐盐候选基因,利用Primer5进行引物的设计并合成,将RNA反转录为cDNA,利用实时定量PCR进行表达模式验证;
步骤3.2、在拟南芥中开展候选基因的过表达验证,制备农杆菌感受态以及过表达载体,构建重组质粒并导入农杆菌,将农杆菌导入拟南芥中,经过培养后筛选拟南芥转基因纯合系盐处理后进行表型鉴定。
通过上述差异基因表达筛选,本申请共得到271个差异表达基因(DEG),其中有209个基因上调,62个基因下调。为了解这271个差异表达基因在玉米盐胁迫响应中的作用和参与的调控途径,本申请对其进行了GO和KEGG功能注释。本申请使用DESeq2差异表达分析,通过筛选最终得到28个差异表达的lncRNA。利用LncTar靶基因预测工具对本申请的lncRNA进行靶基因预测。最终,得到基因Zm00001d044416既是转录组测序结果的差异表达基因,也是lncRNA(XLOC_012826)的靶基因。该基因经过RT-qPCR表达分析(图1)和转拟南芥功能验证(图2),表明其过表达能提高耐盐性。
综上所述,根据本发明获得的玉米耐盐基因Zm00001d010406位于8号染色体上113202370-113208725bp的位置区间。该基因可通过分子辅助育种转移到农艺性状优良的玉米材料,进而创制耐盐且农艺性状优良的玉米材料或品种。
本发明中披露的说明和实践,对于本技术领域的普通技术人员来说,都是易于思考和理解的,且在不脱离本发明原理的前提下,还可以做出若干改进和润饰。因此,在不偏离本发明精神的基础上所做的修改或改进,也应视为本发明的保护范围。

Claims (4)

1.一种玉米耐盐基因,其特征在于,所述玉米耐盐基因为玉米耐盐基因Zm00001d010406,且玉米耐盐基因Zm00001d010406位于8号染色体。
2.根据权利要求1所述的一种玉米耐盐基因,其特征在于,所述玉米耐盐基因Zm00001d010406的cDNA序列信息如下:
>Zm00001d010406_T001 Zm00001d010406_T001 cdna Length:5684bpATGGGGATGGGGCGATTTGTAAGCCCAATCTTTTATTTATTCAGGTTTGAACCGTACTTGAGGAATGCATGCAAGAGGTTTGCGTTGGAGCACCGGGCTGGCGAGAACCGTGCCCCGCTCATCTCAGATGATAGCCCCAACAAAGATATCAACATTGCTTTCTATAACATCCCGATGCTGAAAAAACTGAGAGAGCTTGGGACAGCCGAAATTGGTAAGCTCACATCAGTAATGGGTGTTGTGACACGGACAAGTGAAGTGCGGCCTGAACTATTGCAAGGAACCTTCAAATGTCTCGACTGTGGGAATGTTGTGAAGAATGTGGAGCAGCAGTTCAAGTACACTGAGCCGATAATATGCGTTAATGCAACATGCCAGAACAGAACAAAATGGGCCCTTCTTCGTCAGGAAAGCAAATTCACAGATTGGCAGCGGGTCAGAATGCAGGAGACATCAAAAGAGATACCCGCTGGGTCACTTCCTCGTTCCCTTGATGTCATTCTGCGGCATGAGATTGTTGAGAAGGCCAGAGCTGGGGACACGGTTATATTTACTGGAACTGTTGTTGCAGTTCCTGATGTTATGGCACTAACTTCACCTGGCGAACGAGCAGAGTGTCGCAGGGAAGCTCCTCAGCGAAAAAACGGAGGTGTTCAAGAAGGTGTAAAGGGCTTGAAGTCCCTTGGAGTTAGGGATCTGTCTTATCGCCTTGCCTTTGTAGCAAATTCAGTGCAGGTCGCAGATGGTAGGAGAGAAGTGGACATCAGGGAACGGGACACAGATGGTGATGACAGTGAGAGACAGAAATTCACAGAAGAAGAGGAAGATGAAGTTGTTAGGATGAGGAACACTCCTGATTTCTTTAATAAGATAGTTGATAGCATATGTCCTACCGTATTTGGTCATCAAGAAATTAAGAGGGCCGTGCTTCTTATGCTTTTGGGTGGTGTTCATAAGATAACACATGAAGGGATCAACCTTAGAGGTGACATCAATGTCTGTATTGTTGGTGACCCAAGCTGTGCAAAGTCTCAGTTCCTAAAATATACTGCTGGTATTGTTCCAAGATCTGTTTACACGTCAGGGAAGTCATCATCAGCTGCTGGTCTGACAGCAACTGTTGCTAAAGAACCAGAGACTGGTGAATTCTGTATTGAGGCTGGTGCCCTGATGCTAGCTGATAATGGTGTTTGTTGTATCGATGAATTTGATAAAATGGACATTAAGGATCAGGTCGCTATACATGAAGCAATGGAACAGCAAACAATTAGCATTACCAAAGCAGGAATACAGGCAACTTTGAATGCACGAACATCAATTTTAGCTGCAGCAAATCCGACCGGAGGCCGTTATGACAAGTCAAAACCACTTAAGTACAATGTTGCATTGCCCCCAGCTATTCTTTCAAGATTTGATCTGGTCTACATCATGATCGATGAACCTGATGAAAACACTGACTACCACATTGCTCATCACATTGTAAGAGTCCATCAGAAACGTGAAGAAGCACTTGCCCCTGCATTTAGCACCGCACAACTGAAGCGTTATATTTCTTTTGCAAAATCTTTGAAACCTCAGCTTAGTTCAGAAGCAAAGAAAGTTCTGGTGGAGTCGTATGTTACGCTTCGTAGGGGGGACAGTACTCCTGGAACTAGGGTTGCTTATAGGATGACAGTTCGGCAATTGGAAGCATTGATTCGGCTGTCAGAAGCTATTGCTCGAAGCCATTTAGAAAGAGTTGTAAGTATATTAATTCACTTTATCGTGGATCATGTTCTCCCAGCTCATGTCCGCCTGGCAGTTAAATTGCTCAAGACATCCATCATCAGTGTTGAGTCAAGTGAAGTTGATCTCTCTGACTTCCAAGATGCTGAAGATGGAACAAATGTACCTTCTGAGAGTGACGCCGGACAGCCAGCTGAAGAAGATGCTGCTCCTCAGCAGCAGGGTGCAGAAAATGACCAAGCAGCGGATAATGGTAAGAAGAAATTGGTAATAACTGAAGAACACTTCCAGAGAGTTACTCAAGCTTTGGTTATGAGACTAAGGCAGCATGAAGAGTCAGTCAAGAAAGATGGAGATGGTTTAGCTGGCATGAAGCAAGGGGATCTTATCATCTGGTATGTTGAGCAGCAGAATGCCAAAGGGGCATATAGTTCTACTGCAGAGGTGAAGGAAGAAGTGAAGTGTATCAAGGCCATTATAGAGAGACTTATACAGCGGGAAGGCCATCTTATAGTCATTGACGAAGGTACTGCAGCCGCAGCCGAAGATGGCAGTGGCGCAAGGAGAACATCAGAGAGTAGAATACTGGCAGTTAACCCGAACTATGTTATTGATTAGCAACGGCATCTTAACATGCTGTTAACCCAAGCCAGTTGATGTGGTTAGCTAACTGAAGCTATGATTCTGGTGATGTGTCCGTTGTGCTCTAGAGTTGTTGTACCATCTCCGTCACTGGTGTGCTCGTTCCAAGGGAGCACATGATCTCCAAAACTACATACTACGTTTAGTGATGCAGGATAATTAGCATCTGTAGTCTTACTAATTTTGACCCGTGTTTCCCTAGTGAATTTTCGTAGCAACAGCTTTGATTTATCAGTCACTGAGTGCTGCAATTTTCTATTTGCTTTCTCAAGTTCACCCTTTGTTGATCCATCTAGATGGGATCAGAGAATAGCTGTGCTAATTTATGTTACAATGTCGCAGAACCCATTTATTTATTTGATTGCTTTGTG。
3.一种获得基于lncRNA测序的玉米耐盐基因的发现方法,其特征在于,包括以下步骤:
步骤1、链特异性转录组测序
挑选整齐一致、颗粒饱满的LH196种子培养;将长势一致的去胚乳幼苗分成两组,一组为空白对照,一组为250mM NaCl营养液培养组,持续处理10天;上述同样条件下培养玉米自交系LH196,然后分别用250mmol/L的盐处理和空白对照处理12h后,采取玉米的叶片,在液氮中冷冻然后保存在-80℃备用;利用试剂盒提取6个样品叶片中的RNA,分别开展链特异性转录组测序;
使用链特异性建库方式开展lncRNA测序,与普通的转录组建库方式相比,链特异性测序可以确定两条链的转录方向性,减少比对过程中的错误;其次,lncRNA建库测序能得到更丰富的信息;lncRNA建库属于mRNA+lncRNA,只需要一次建库,就能同时获得mRNA的数据以及lncRNA的数据;
步骤2、差异表达基因鉴定和lncRNA分析
鉴定差异表达基因:差异表达基因筛选;差异表达基因聚类分析;差异表达基因的功能注释;差异表达基因的GO和KEGG富集分析;差异表达基因蛋白互作网络;
lncRNA分析:lncRNA表达定量分析;lncRNA差异表达分析;样品间lncRNA相关性分析;Cis作用差异lncRNA靶基因注释富集分析;Cis作用差异lncRNA靶基因PPI分析;Trans作用差异lncRNA靶基因注释富集分析;Trans作用差异lncRNA靶基因PPI分析;
联合差异表达基因和lncRNA靶基因预测,发掘共性基因作为玉米耐盐候选基因;
步骤3、耐盐基因的表达模式验证
步骤3.1、对于上述耐盐候选基因,利用Primer5进行引物的设计并合成,将RNA反转录为cDNA,利用实时定量PCR进行表达模式验证;
步骤3.2、在拟南芥中开展候选基因的过表达验证,制备农杆菌感受态以及过表达载体,构建重组质粒并导入农杆菌,将农杆菌导入拟南芥中,经过培养后筛选拟南芥转基因纯合系盐处理后进行表型鉴定。
4.根据权利要求3所述的基于lncRNA测序的玉米耐盐基因在分子标记辅助选育耐盐玉米品种中的应用。
CN202210307252.3A 2022-03-25 2022-03-25 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用 Active CN114807129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210307252.3A CN114807129B (zh) 2022-03-25 2022-03-25 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210307252.3A CN114807129B (zh) 2022-03-25 2022-03-25 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用

Publications (2)

Publication Number Publication Date
CN114807129A true CN114807129A (zh) 2022-07-29
CN114807129B CN114807129B (zh) 2023-04-28

Family

ID=82531511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210307252.3A Active CN114807129B (zh) 2022-03-25 2022-03-25 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用

Country Status (1)

Country Link
CN (1) CN114807129B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619828A (zh) * 2017-09-22 2018-01-23 南通大学 玉米盐胁迫响应miRNA MiR164及其应用
CN108795944A (zh) * 2018-07-06 2018-11-13 山东农业大学 棉花长链非编码RNA-lnc973及其在植物耐盐性中的应用
CN110055306A (zh) * 2019-05-16 2019-07-26 河南省农业科学院粮食作物研究所 一种基于转录组测序挖掘玉米耐低氮基因的方法
CN110564726A (zh) * 2019-08-15 2019-12-13 南昌大学 草莓长链非编码rna-frilair及其在果实成熟中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619828A (zh) * 2017-09-22 2018-01-23 南通大学 玉米盐胁迫响应miRNA MiR164及其应用
CN108795944A (zh) * 2018-07-06 2018-11-13 山东农业大学 棉花长链非编码RNA-lnc973及其在植物耐盐性中的应用
CN110055306A (zh) * 2019-05-16 2019-07-26 河南省农业科学院粮食作物研究所 一种基于转录组测序挖掘玉米耐低氮基因的方法
CN110564726A (zh) * 2019-08-15 2019-12-13 南昌大学 草莓长链非编码rna-frilair及其在果实成熟中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO Y等: "Genome-wide analysis reveals the spatiotemporal expression patterns of SOS3 genes in the maize B73 genome in response to salt stress", 《BMC GENOMICS》 *
佚名: "Zm00001d010406_T001", 《ZEAMAP》 *

Also Published As

Publication number Publication date
CN114807129B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Van Veen et al. Transcriptomes of eight Arabidopsis thaliana accessions reveal core conserved, genotype-and organ-specific responses to flooding stress
Mao et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings
Endo-Higashi et al. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice
Li et al. ZmRAP2. 7, an AP2 transcription factor, is involved in maize brace roots development
Artlip et al. Differential gene expression in non-transgenic and transgenic “M. 26” apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break
Sun et al. Gma-miR1508a confers dwarfing, cold tolerance, and drought sensitivity in soybean
CN114672511A (zh) 玉米ZmBES1/BZR1-3基因在增加植物种子产量中的应用
US20230292687A1 (en) Methods and Compositions for Improving Cold-Tolerance of Plants
Ding et al. Digital gene expression analysis reveals nitrogen fertilizer increases panicle size by repressing Hd3a signaling in rice
Huang et al. Structure and expression analysis of seven salt-related ERF genes of Populus
CN115094070B (zh) 一种玉米耐盐基因Zm00001d033878的发现方法及其应用
US20240263253A1 (en) Discovery method of cotton salt-tolerant genes based on combined transcriptome and proteome analysis and use thereof
CN109371041B (zh) 一种增加穗粒数的水稻基因OsHGN及其应用
CN116121292B (zh) 一种水稻myb转录因子及其编码蛋白的应用
Wang et al. Genome variation and LTR-RT analyses of an ancient peach landrace reveal mechanism of blood-flesh fruit color formation and fruit maturity date advancement
CN115725604A (zh) 水稻白叶白穗基因wlp3及在水稻抗逆和增产中的应用
CN114807129B (zh) 一种基于lncRNA测序的玉米耐盐基因发现方法及其应用
Li et al. Genetic mapping and functional analysis of a classical tassel branch number mutant Tp2 in maize
CN117402877B (zh) 长链非编码rna natal57在调节水稻产量相关性状中的应用
CN105950598B (zh) 一个水稻休眠性相关蛋白及其编码基因与应用
CN114438082B (zh) 一种用于快速鉴定小麦族开花期及春冬习性相关生态型的dna序列及应用
CN116732048B (zh) 水稻转录因子基因OsbZIP48在获得高锌水稻籽粒和/或调节氮素吸收中的应用
CN113637679B (zh) 一种抗逆植物基因及应用
CN114672492B (zh) 一种调控水稻株型的基因及其应用
CN116814644B (zh) 一个控制水稻分蘖数和花期的基因OsMADS22及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant