CN114790585B - 一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器 - Google Patents

一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器 Download PDF

Info

Publication number
CN114790585B
CN114790585B CN202210420721.2A CN202210420721A CN114790585B CN 114790585 B CN114790585 B CN 114790585B CN 202210420721 A CN202210420721 A CN 202210420721A CN 114790585 B CN114790585 B CN 114790585B
Authority
CN
China
Prior art keywords
solution
enzyme
spinning
mofs
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210420721.2A
Other languages
English (en)
Other versions
CN114790585A (zh
Inventor
杨占军
夏艳平
李娟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202210420721.2A priority Critical patent/CN114790585B/zh
Publication of CN114790585A publication Critical patent/CN114790585A/zh
Application granted granted Critical
Publication of CN114790585B publication Critical patent/CN114790585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及纳米酶材料领域内一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器,首先通过静电纺丝构筑材料的方法,以金属离子为金属盐,有机化合物为有机配体,高分子聚合物作为助纺材料同时也作为MOFs材料生长的位点,调节金属盐和配体以及助纺材料的比例,控制调节静电纺丝参数,以调控MOFs材料在一维纳米线上的有序排布,实现MOFs材料的定向生长和形貌控制,制备得到MOFs纳米酶。并进一步将MOFs纳米酶制备得到葡萄糖比色传感器。进行葡萄糖检测时,利用纳米酶的高催化活性,以催化TMB或邻苯二胺发生显色反应,实现对葡萄糖的快速检测,并且检测限范围更低。

Description

一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传 感器
技术领域
本发明涉及纳米酶材料领域,特别是涉及一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器。
背景技术
人体血液中葡萄糖含量是糖尿病以及其他一些疾病的重要检测指标,如何简单、快速、高灵敏的检测葡萄糖是对糖尿病以及其他疾病进行的诊断和治疗重要检测环节之一。比色传感基于其颜色变化的不同,在一定的波长下显示出特定的吸收峰和差异,可以对小分子物质进行检测。因此,其携带性强,并可以在很短的时间内能够快速的检测物质,适合于一些物质的现场快速检测。而且在比色传感设备的搭建过程中,不需要耗费大型的仪器设备,对操作人员的专业要求相对较低。由于生物酶固有的缺陷限制了比色传感器的应用和发展,为了克服上述的生物酶的缺陷,纳米酶的快速发展促进了比色传感的发展。
酶是由活细胞产生的一类蛋白质或者核糖核酸分子。与常规的催化剂比较,酶具有催化效率高、底物特异性强以及选择性强等特点。正是由于酶这种天生的自然属性,使得其在医药、食品安全、环境监测以及化学品生产中起着非常重要的作用。但是,众所周知,大多数酶的本质是蛋白质,少部分的RNA,在使用的过程中,其稳定性差、对环境的适应能力较弱以及在其使用的过程中面临相对复杂的纯化过程和纯化设备造价高等缺陷,限制了其进一步应用。随着对纳米技术研究的不断深入,纳米材料模拟酶(纳米酶)已成为天然酶的替代品。与天然酶相比,纳米酶不仅具有相对较高以及稳定的催化活性,而且还具有成本低、合成可控、催化活性可调节和高稳定性等优点。
金属-有机框架(MOFs)材料是有机配体和金属离子通道经过自组装形成的一种具有周期性的网格晶体材料,其具有结构与功能多样化,比表面积大以及孔径可调等特点,在气体存储和分离,液相分离和萃取,催化和传感器等领域发挥了重要的作用。MOFs材料在构筑高性能纳米酶材料有着非常重要的意义,但是到目前为止,MOFs材料的制备方法还是基于传统的水热或者其他溶剂的方法,在后期的处理过程,较为繁琐。
静电纺丝技术因具有操作简单、成本低廉和环境友好等诸多优点,从而被视为最具有工业化应用前景的规模化制备纳米纤维材料的技术之一。通过该技术手段得到的纤维直径分布广泛(从几纳米到微米级),得到的一维纳米纤维杂化材料具有诸多特性:比表面积大、孔隙率高、孔径小和连续性好等。基于材料的特性探索材料的理想组成,构筑新型材料结构,从而达到更加优异的性能,基于静电纺丝技术制备功能性纳米纤维杂化材料是目前研究最重要的方向之一。
发明内容
本发明针对现有技术MOFs和纳米酶自组装制备方法存在的不足,提供一种静电纺丝原位制备MOFs纳米酶的方法,采用静电纺丝构筑材料的方法,以金属离子为金属盐,咪唑类的化合物或者其他类型的有机化合物为有机配体,高分子量的聚合物作为助纺材料同时也作为MOFs材料生长的位点,调控MOFs材料在一维纳米线上的有序排布,实现MOFs材料的定向生长和形貌控制。
本发明的目的是这样实现的,一种静电纺丝原位制备MOFs纳米酶的方法,其特征在于,
第1步,按如下质量比例准备静电纺丝液:助纺材料10-20份,有机溶剂70-80份,金属离子化合物0.1-1份,有机配体0.1-1份,表面活性剂0.01-0.05份;
第2步,按第1步的质量比例,将助纺材料与有机溶剂混合,常温下机械搅拌12-16h,搅拌速度为400 r/min~500 r/min,至完全溶解形成均相溶液;
第3步,均相溶液中加入金属离子化合物、有机配体和表面活性剂,机械搅拌至混合均匀,得到均相的静电纺丝前驱液;
第4 步,将第3步的静电纺丝前驱液置于静电纺丝装置,以工作电压为15-20 kV,纺丝液的推进速度为0.5-0.8 mL.h-1、接收器与针头的间距为10-12 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型MOFs纳米酶。
本发明是一种静电纺丝原位制备MOFs连续纤维纳米酶,采用静电纺丝构筑材料的方法,以金属离子为金属盐,咪唑类的化合物或者其他类型的有机化合物为有机配体,聚合物作为助纺材料同时也作为MOFs材料生长的位点,调节金属盐和配体以及助纺材料的配比,通过对静电纺丝过程中电压、纺丝速度以及接收板的距离的优化改时,调控MOFs材料在一维纳米线上的有序排布,实现MOFs材料的定向生长和形貌控制。避免了传统MOFs材料在制备过程中,存在结构不稳定,不连续的特点,与静电纺丝相结合,有序的实现MOFs材料的一维纳米材料的排列,实现了模拟酶活性显著增强的效果。
进一步地,所述助纺材料为分子量为15000-30000的聚丙烯腈、聚偏氟乙烯、聚乳酸、聚乙烯醇和聚乙烯醇缩丁醛。
为便于与助纺材料溶解形成稳定的纺丝溶液,所述有机溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、碳酸乙烯酯或硫氰酸钠。
进一步地,所述金属离子化合物为Co、Zn、Ni、Fe、Cu、Zr的硝酸盐、醋酸盐或者硫酸盐的化合物。
更进一步地,所述金属离子化合物为硝酸钴、硝酸锌、硝酸镍、硝酸铁、醋酸钴、醋酸锌、醋酸镍、硫酸钴或硫酸锌。
为便于为金属有机框架聚合物提供有机框架,所述有机配体为 3,3',5,5'-联苯四甲酸、 双(3,5-二羧基苯基)偶氮、乙炔基联苯-3,3',5,5'-四羧酸、四[4-(4'-羧基苯基)苯基]乙烯、9.10-二(3',5'-二羧基苯 基)蒽、1,1,2,2-四(4-羧基苯)乙烯、1,3,6,8-四(4-羧基苯)芘、[1,1’:4’,1″]三联苯-3,3″,5,5″-四甲酸、1,2,4,5-四(4-羧基苯基)苯、四(4-羧基苯基)硅烷、四(3-羧基苯基)硅或1,3,5,7-金刚烷四羧酸、2-甲基咪唑类。
为有改善金属离子化合物和有机配体在纺丝体系中的分散效果,并有效控制原位纺丝过程MOFs在纤维中的有序分布,所述表面活性剂为聚乙烯吡咯烷酮(PVP)、烷基酚聚氧乙烯醚、高碳脂肪醇聚氧乙烯醚、脂肪酸聚氧乙烯酯、脂肪酸聚氧乙烯酯、脂肪酸甲酯乙氧基化物、失水山梨醇酯或烷基醇酰胺。
为便于实现葡萄糖的快速转化,本发明还提供一种采用上述MOFs纳米酶制备的葡萄糖比色传感器,将MOFs纳米酶按1-5mg/mL的浓度配制成水溶液,与到PH为4~5的醋酸缓冲溶液按1:2000~5000的体积比混合,再加入指示剂混合均匀,得到葡萄糖比色传感器;所述指示剂为浓度为1-5mg/m的3,3',5,5'-四甲基联苯胺或邻苯二胺的二甲基砜溶液,加入的体积为10倍的纳米酶水溶液的体积,混合均匀后得到本实施例的葡萄糖比色传感器。
本发明的葡萄糖比色传感器,利用纳米酶的催化活性高,催化显色剂实现显色反应,其携带性强,可以实现对葡萄糖的快速检测。
附图说明
图1实施例1制备的MOFs纳米酶的电镜扫描图。
图2为实施例1制备的MOFs纳米酶的红外图谱。
图3为实施例1制备的基于MOFs纳米酶葡萄糖比色传感器的线性曲线。
具体实施方式
下面结合具体的实施例详细说明本发明静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器。
实施例1
本实施例的静电纺丝原位制备MOFs纳米酶的方法中,首先准备如下质量比例的静电纺丝液原料:
PAN(聚丙烯睛)10份,二甲基甲酰胺70份,硝酸钴,0.1份,2-甲基咪唑0.1份,PVP(聚乙烯吡咯烷酮)0.01份。
然后将助纺材料PAN与DMF混合,常温下机械搅拌12 h,搅拌速度为400 r/min,至完全溶解形成均相溶液;向前述均相溶液中加入硝酸钴、2-甲基咪唑和PVP机械搅拌至混合均匀,得到均相的静电纺丝前驱液;将前述静电纺丝前驱液置于静电纺丝装置,以工作电压为15 kV,纺丝液的推进速度为0.5 mL.h-1、接收器与针头的间距为10 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型ZIF-67@@PAN纳米酶。
对本实施例的MOFs纳米酶进行电镜扫描观察如图1所示,从图中,可以看出成功制备得到ZIF-67@@PAN纳米酶材料,在纤维内部排布较为有序,颗粒大小形态均。该MOFs纳米酶的红外光谱如图2所示,从图中可以在1578、1305、1105以及749cm-1均为ZIF-67典型的特征峰,成功制备得到原位纺丝的ZIF-67@PAN纳米酶材料,并具备优良的纳米酶性能。
以上述ZIF-67@ PAN纳米酶制备葡萄糖比色传感器,具体过程为将上述MOFs@PAN纳米酶配置成1mg/mL的水溶液,与PH=4的醋酸缓冲溶液按1:2000的体积比与混合,再加入体积为纳米酶水溶液的体积10倍指示剂TMB(3,3',5,5'-四甲基联苯胺)溶液,(本实施例中的TMB溶液为浓度为1mg/m的3,3',5,5'-四甲基联苯胺的二甲基砜溶液),混合均匀后得到本实施例的葡萄糖比色传感器。
实施例2
本实施例的静电纺丝原位制备MOFs纳米酶的方法中,首先准备如下质量比例的静电纺丝液原料:PVDF(聚偏氟乙烯) 720 15份;DMSo(二甲基亚砜)75份;醋酸锌0.5份;3,3',5,5'-联苯四甲酸 0.5份;高碳脂肪醇聚氧乙烯醚 0.05份。
然后将助纺材料PVDF 720与DMSo混合,常温下机械搅拌14 h,搅拌速度为500 r/min,至完全溶解形成均相溶液;向前述均相溶液中加入醋酸锌、3,3',5,5'-联苯四甲酸和高碳脂肪醇聚氧乙烯醚机械搅拌至混合均匀,得到均相的静电纺丝前驱液;将前述静电纺丝前驱液置于静电纺丝装置,以工作电压为18 kV,纺丝液的推进速度为0.6 mL.h-1、接收器与针头的间距为10 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型MOFs@PVDF纳米酶。
然后以上述MOFs @ PVDF纳米酶制备葡萄糖比色传感器,具体过程为将上述MOFs@ PVDF纳米酶配置成2 mg/mL的水溶液,与PH=4.5的醋酸缓冲溶液按1:3000的体积比与混合,再加入体积为纳米酶水溶液的体积12倍指示剂TMB(3,3',5,5'-四甲基联苯胺)溶液,(本实施例中的TMB溶液为浓度为2.5 mg/mL的3,3',5,5'-四甲基联苯胺的二甲基砜溶液),混合均匀后得到本实施例的葡萄糖比色传感器。
实施例3
本实施例的静电纺丝原位制备MOFs纳米酶的方法中,首先准备如下质量比例的静电纺丝液原料:PLA(聚乳酸) 4060D 20份;DMAc(二甲基乙酰胺)80份;硝酸铁1份;四[4-(4'-羧基苯基)苯基]乙烯 1份;脂肪酸聚氧乙烯醚0.03份。然后将助纺材料PLA 4060D与DMAc混合,常温下机械搅拌12 h,搅拌速度为400 r/min,至完全溶解形成均相溶液;向前述均相溶液中加入硝酸铁、四[4-(4'-羧基苯基)苯基]乙烯和脂肪酸聚氧乙烯醚机械搅拌至混合均匀,得到均相的静电纺丝前驱液;将前述静电纺丝前驱液置于静电纺丝装置,以工作电压为18 kV,纺丝液的推进速度为0.8 mL.h-1、接收器与针头的间距为12 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型MOFs@PLA纳米酶。
然后以上述MOFs @ PLA纳米酶制备葡萄糖比色传感器,具体过程为将上述MOFs @PLA纳米酶配置成5 mg/mL的水溶液,与PH=5的醋酸缓冲溶液按1:5000的体积比与混合,再加入体积为纳米酶水溶液的体积15倍指示剂邻苯二胺溶液,(本实施例中的邻苯二胺溶液为浓度为5 mg/mL的邻苯二胺的二甲基砜溶液),混合均匀后得到本实施例的葡萄糖比色传感器。
实施例4
本实施例的静电纺丝原位制备MOFs纳米酶的方法中,首先准备如下质量比例的静电纺丝液原料:聚乙烯醇 20份;碳酸乙烯酯 75份;醋酸锌1份;1,2,4,5-四(4-羧基苯基)苯1份;脂肪酸聚氧乙烯酯 0.05份。
然后将助纺材料聚乙烯醇与碳酸乙烯酯混合,常温下机械搅拌16 h,搅拌速度为500 r/min,至完全溶解形成均相溶液;向前述均相溶液中加入醋酸锌、1,2,4,5-四(4-羧基苯基)苯和高碳脂肪醇聚氧乙烯醚机械搅拌至混合均匀,得到均相的静电纺丝前驱液;将前述静电纺丝前驱液置于静电纺丝装置,以工作电压为20 kV,纺丝液的推进速度为0.8mL.h-1、接收器与针头的间距为12 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型MOFs@聚乙烯醇纳米酶。
接着以上述MOFs @ 聚乙烯醇纳米酶制备葡萄糖比色传感器,具体过程为将上述MOFs @ 聚乙烯醇纳米酶配置成4 mg/mL的水溶液,与PH=4.5的醋酸缓冲溶液按1:3500的体积比与混合,再加入体积为纳米酶水溶液的体积13倍指示剂邻苯二胺溶液,(本实施例中的TMB溶液为浓度为1mg/m的邻苯二胺的二甲基砜溶液),混合均匀后得到本实施例的葡萄糖比色传感器。
实施例5(检测例)
采用实施例1的葡萄糖比色传感器按如下过程进行葡萄糖比色检测:首先配制葡萄糖的比色检测体系:40μL的实施例1的葡萄糖传感器以及20μL不同加标浓度的葡萄糖溶液混合,用 0.1 M HAc-NaAc 缓冲液(pH 4.0)将反应体系补足至 4 mL,15℃水浴30 min,于652 nm 波长进行紫外-可见吸光度测量如图3A所示。根据652 nm处的吸光度,取6个不同葡萄糖浓度下的吸光度,做线性曲线。得到图3B的线性曲线。
同时,按上述方法进行现有技术中相关无机氧化酶的葡萄糖比色检测,其检测限和线性范围如表1所述。通过对比,本发明制备得到的葡萄糖传感器的检测限和检测范围对比具有更小的检测限,和更低的检测范围。
表格1 该传感器与现有葡萄糖传感器检测限以及线性范围比较

Claims (4)

1.一种静电纺丝原位制备MOFs纳米酶的方法,其特征在于,
第1步,按如下质量比例准备静电纺丝液:助纺材料10~20份,有机溶剂70~80份,金属离子化合物0.1-1份,有机配体0.1~1份,表面活性剂0.01~0.05份;
第2步,按第1步的质量比例,将助纺材料与有机溶剂混合,常温下机械搅拌12~16h,搅拌速度为400 r/min~500 r/min,至完全溶解形成均相溶液;
第3步,均相溶液中加入金属离子化合物、有机配体和表面活性剂,机械搅拌至混合均匀,得到均相的静电纺丝前驱液;
第4 步,将第3步的静电纺丝前驱液置于静电纺丝装置,以工作电压为15~20 kV,纺丝液的推进速度为0.5~0.8 mL.h-1、接收器与针头的间距为10~12 cm的条件下进行纺丝,得到静电纺丝原位制备的连续纤维型MOFs纳米酶;
第一步中,所述助纺材料为分子量为15000~30000的聚丙烯腈、聚偏氟乙烯、聚乳酸、聚乙烯醇和聚乙烯醇缩丁醛;所述有机溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、碳酸乙烯酯或硫氰酸钠;所述金属离子化合物为Co、Zn、Ni、Fe、Cu、Zr的硝酸盐、醋酸盐或者硫酸盐的化合物;所述有机配体为 3,3',5,5'-联苯四甲酸、 双(3,5-二羧基苯基)偶氮、乙炔基联苯-3,3',5,5'-四羧酸、四[4-(4'-羧基苯基)苯基]乙烯、9.10-二(3',5'-二羧基苯基)蒽、1,1,2,2-四(4-羧基苯)乙烯、1,3,6,8-四(4-羧基苯)芘、[1,1’:4’,1″]三联苯-3,3″,5,5″-四甲酸、1,2,4,5-四(4-羧基苯基)苯、四(4-羧基苯基)硅烷、四(3-羧基苯基)硅或1,3,5,7-金刚烷四羧酸、2-甲基咪唑类;所述表面活性剂为聚乙烯吡咯烷酮(PVP)、烷基酚聚氧乙烯醚、高碳脂肪醇聚氧乙烯醚、脂肪酸聚氧乙烯酯、脂肪酸甲酯乙氧基化物、失水山梨醇酯或烷基醇酰胺。
2.根据权利要求1所述的静电纺丝原位制备MOFs纳米酶的方法,其特征在于,所述金属离子化合物为硝酸钴、硝酸锌、硝酸镍、硝酸铁、醋酸钴、醋酸锌、醋酸镍、硫酸钴或硫酸锌。
3.根据权利要求1-2任一项所述的MOFs纳米酶制备的葡萄糖比色传感器,其特征在于,将MOFs纳米酶按1~5mg/mL的浓度配制成水溶液,与pH为4~5的醋酸缓冲溶液按1:2000~5000的体积比混合,再加入指示剂混合均匀,得到葡萄糖比色传感器。
4.根据权利要求3所述的所述的MOFs纳米酶制备的葡萄糖比色传感器,其特征在于,所述指示剂为浓度为1~5mg/mL的3,3',5,5'-四甲基联苯胺或邻苯二胺的二甲基砜溶液,加入体积量为混合液总量的0.2~0.5%,所述指示剂溶液的加入的体积量为MOFs纳米酶水溶液体积量10~15倍。
CN202210420721.2A 2022-04-21 2022-04-21 一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器 Active CN114790585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210420721.2A CN114790585B (zh) 2022-04-21 2022-04-21 一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210420721.2A CN114790585B (zh) 2022-04-21 2022-04-21 一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器

Publications (2)

Publication Number Publication Date
CN114790585A CN114790585A (zh) 2022-07-26
CN114790585B true CN114790585B (zh) 2023-11-24

Family

ID=82462507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210420721.2A Active CN114790585B (zh) 2022-04-21 2022-04-21 一种静电纺丝原位制备MOFs纳米酶的方法及其葡萄糖比色传感器

Country Status (1)

Country Link
CN (1) CN114790585B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816064A (zh) * 2018-06-26 2018-11-16 中国科学院青岛生物能源与过程研究所 一种原位生长金属有机框架材料的壳聚糖纳米纤维膜的制备方法
CN109283164A (zh) * 2018-09-30 2019-01-29 武汉大学 一种基于镧系mof掺杂的静电纺丝纤维膜作为选择性检测尿酸的荧光传感器及其制备方法
CN111537589A (zh) * 2020-05-13 2020-08-14 山东大学 一种基于钴基金属有机框架无酶葡萄糖传感器检测葡萄糖的方法
CN113054207A (zh) * 2021-03-02 2021-06-29 北京科技大学 金属盐辅助快速生长金属有机骨架衍生物的制备方法
CN113398312A (zh) * 2021-05-27 2021-09-17 华南理工大学 一种负载金属有机框架纳米酶与葡萄糖的抗菌纤维及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622041B (zh) * 2019-01-25 2020-05-22 南京大学 一种双组分、多重网络纳米纤维气凝胶负载异质结光催化剂的制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816064A (zh) * 2018-06-26 2018-11-16 中国科学院青岛生物能源与过程研究所 一种原位生长金属有机框架材料的壳聚糖纳米纤维膜的制备方法
CN109283164A (zh) * 2018-09-30 2019-01-29 武汉大学 一种基于镧系mof掺杂的静电纺丝纤维膜作为选择性检测尿酸的荧光传感器及其制备方法
CN111537589A (zh) * 2020-05-13 2020-08-14 山东大学 一种基于钴基金属有机框架无酶葡萄糖传感器检测葡萄糖的方法
CN113054207A (zh) * 2021-03-02 2021-06-29 北京科技大学 金属盐辅助快速生长金属有机骨架衍生物的制备方法
CN113398312A (zh) * 2021-05-27 2021-09-17 华南理工大学 一种负载金属有机框架纳米酶与葡萄糖的抗菌纤维及其制备方法与应用

Also Published As

Publication number Publication date
CN114790585A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
Xiao et al. Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon
Wang et al. Graphene oxide directed one-step synthesis of flowerlike graphene@ HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples
Ezzati et al. In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms
Gao et al. Enhanced peroxidase-like activity of Mo6+-doped Co3O4 nanotubes for ultrasensitive and colorimetric L-cysteine detection
Dong et al. MOFs-derived dodecahedra porous Co3O4: An efficient cataluminescence sensing material for H2S
CN106770544B (zh) Ni-MOF超薄纳米带、合成方法及其应用
Liao et al. NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation
Liu et al. The preparation of silver nanoparticles/carbon nanofibers as catalyst in the styrene epoxidation
Zeraati et al. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose
Ma et al. The production of carbon microtubes by the carbonization of catkins and their use in the oxygen reduction reaction
Zhang et al. Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2, 4, 6-TCP
Xiao et al. Facile synthesis of CoxP decorated porous carbon microspheres for ultrasensitive detection of 4-nitrophenol
CN101792137B (zh) 一种新型高性能复合纳米材料修饰电极的制备方法
CN106229524B (zh) 金属有机骨架包覆PtNi/离子液体/石墨烯材料的制备方法
WO2018205610A1 (zh) 一种多孔生物金掺杂零价铁催化剂及其制备方法与应用
CN112285174A (zh) 一种无酶葡萄糖传感器及其制备方法和用途
CN104846486A (zh) 氮掺杂碳纳米管@碳纳米纤维复合材料的制备及其应用
CN101492569A (zh) 氧化石墨片层/聚苯胺复合材料及其制备方法
US11733199B2 (en) Fabrication method of enzyme-free glucose sensor and use of enzyme-free glucose sensor fabricated by the same
Yang et al. Facile synthesis of Fe-MOF/rGO nanocomposite as an efficient electrocatalyst for nonenzymatic H2O2 sensing
CN114920228B (zh) 一种过渡金属磷酸盐纳米酶材料及其制备方法和应用
CN109678214A (zh) 一种对丙酮敏感的四氧化三钴/氧化铟纳米管复合薄膜
Xia et al. In Situ Electrospinning MOF-Derived Highly Dispersed α-Cobalt Confined in Nitrogen-Doped Carbon Nanofibers Nanozyme for Biomolecule Monitoring
Mandal et al. Organo-di-benzoic-acidified ZnO nanohybrids for highly selective detection of CO at low temperature
Zeng et al. Ultrasensitive sensor based on novel bismuth carbon nanomaterial for lead and cadmium determination in natural water, contaminated soil and human plasma

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant