CN114774818A - 一种用于改善Ti65合金铸件组织的热处理工艺 - Google Patents

一种用于改善Ti65合金铸件组织的热处理工艺 Download PDF

Info

Publication number
CN114774818A
CN114774818A CN202210372315.3A CN202210372315A CN114774818A CN 114774818 A CN114774818 A CN 114774818A CN 202210372315 A CN202210372315 A CN 202210372315A CN 114774818 A CN114774818 A CN 114774818A
Authority
CN
China
Prior art keywords
furnace
casting
temperature
cooling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210372315.3A
Other languages
English (en)
Other versions
CN114774818B (zh
Inventor
赵子博
李文渊
刘建
王清江
刘建荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202210372315.3A priority Critical patent/CN114774818B/zh
Publication of CN114774818A publication Critical patent/CN114774818A/zh
Application granted granted Critical
Publication of CN114774818B publication Critical patent/CN114774818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

本发明公开了一种用于改善Ti65合金铸件组织的热处理工艺,热处理工艺包括1):将Ti65合金铸件加热至β转变温度以上5~10℃,热透后即出炉风冷或水冷;2):铸件在β转变温度以下10~45℃温度范围内到温装炉进行保温—降温—保温—升温—保温┈┈循环热处理,要求每两个相邻保温温度的差值不小于10℃,保温时间60~180分钟,重复该步骤10~20次;3):最后铸件随炉冷却至β转变温度以下20~40℃,保温90~120后空冷或风冷。本发明得到Ti65合金的铸件为双态组织,其在室温强度不低于1060Mpa,屈服不低于950Mpa,延伸率不低于5%,面缩不低于7%。

Description

一种用于改善Ti65合金铸件组织的热处理工艺
技术领域
本发明属于高温钛合金技术领域,具体涉及到一种用于改善Ti65合金铸件组织的热处理工艺。
背景技术
Ti65合金是中国科学院金属研究所自主研制(专利号:CN201410195990.9)的一种最高使用温度为650℃的高温钛合金。由于该合金的成分特点,使该合金较传统两相钛合金,例如TC4、TA15和TC11等具有更高的使用温度和热强性,但合金的塑性较差。因此该合金发明专利《一种新型耐热钛合金及其加工制造方法和应用》中,与该合金的匹配的热加工工艺均采用了两相区反复变形的方式获得双态组织,以匹配合金的强塑性。随着航空航天领域某些复杂构件对轻质、耐高温材料的迫切需求,研制出Ti65铸造构件并要求铸件具有较好的塑性成为目前650℃高温钛合金尚未解决的难题。
发明内容
为解决上述技术问题,提出了一种用于改善Ti65合金铸件组织的热处理工艺,具体技术方案如下:
一种用于改善Ti65合金铸件组织的热处理工艺,热处理工艺包括如下步骤:
步骤1):将Ti65合金铸件加热至β转变温度以上5~10℃,热透后出炉水冷;
步骤2):炉温升至合金β转变温度以下15~30℃后将铸件放置于热处理炉中再次快速升温至设置温度后保温60~180分钟;
步骤3):随后铸件随炉降温10~15℃,然后继续保温60~180分钟后再升温至β转变温度以下15~30℃继续保温60~180分钟;如此重复该步骤10~20次;
步骤4)最后铸件随炉冷却至β转变温度以下20~40℃,保温90~120后空冷或风冷。
所述的一种用于改善Ti65合金铸件组织的热处理工艺,其优选方案为Ti65合金铸件的成分的质量百分比为,Al:5.4~6.0%,Sn:3.5~4.5%,Zr:3.0~4.5%,Mo:0.2~0.8%,Si:0.25~0.5%,Nb:0.2~0.5%,Ta:0.3~1.2%,W:0.2~1.6%,C:0.0~0.07%,余量为Ti和其他不可避免的杂质。
所述的一种用于改善Ti65合金铸件组织的热处理工艺,其优选方案为所述Ti65钛合金铸件最终得到双态组织,其在室温强度不低于1060Mpa,屈服不低于950Mpa,延伸率不低于5%,面缩不低于7%,在650℃强度不低于670Mpa,屈服不低于650Mpa,延伸率不低于10%,面缩不低于15%。
本发明与现有技术相比具有的优点和有益效果:
与传统热处理相比,本发明工艺最终得到双态组织,其室温延伸率较传统的热处理工艺大幅提高;铸件的室温强度不低于1060Mpa,屈服不低于950Mpa,延伸率不低于5%,面缩不低于7%,在650℃强度不低于670Mpa,屈服不低于650Mpa,延伸率不低于10%,面缩不低于15%。
附图说明
图1为本发明实施例1热处理后的Ti65合金铸件的显微组织照片;
图2为本发明实施例2热处理后的Ti65合金铸件的显微组织照片。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1:
本实施例所用材料是规格为直径25mm,长度为200mm的Ti65合金铸棒,其成分为Ti-5.6Al-4.0Sn-3.6Zr-0.5Mo-0.3Nb-1.0Ta-0.8W,其合金相变点为1035℃;
Ti65合金铸件加热至1045℃保温15分钟后水冷,然后炉温升至1020℃后将铸件放置于炉中快速升温至1020℃后保温120min,然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;最后铸件随炉冷却至1000℃,保温100min后空冷。
经实施例1循环热处理制备的Ti65合金铸件,室温及高温拉伸性能数据如表1所示:
表1实施例1中Ti65铸件的拉伸性能
Figure BDA0003589068290000041
实施例2:
本实施例所用材料是规格为直径25mm,长度为200mm的Ti65合金铸棒,其成分为Ti-5.6Al-4.0Sn-3.6Zr-0.5Mo-0.3Nb-1.0Ta-0.8W,其合金相变点为1035℃;
Ti65合金铸件加热至1040℃保温10分钟后水冷,然后炉温升至1020℃后将铸件放置于炉中快速升温至1020℃后保温120min,,然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1020℃后保温60min;然后随炉降温至1010℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;然后随炉降温至1005℃保温100min后随炉再升温至1015℃后保温100min;最后铸件随炉冷却至1000℃,保温120min后空冷。
经实施例2循环热处理制备的Ti65合金铸件,室温及高温拉伸性能数据如表2所示:
表2实施例2中Ti65铸件的拉伸性能
Figure BDA0003589068290000051
由表1和表2对比分析可以得到,铸件在β转变温度以下10~45℃温度范围内到温装炉进行保温—降温—保温—升温—保温┈┈循环热处理制度,当循环热处理制度达到10次时,铸件的室温强度不低于1060Mpa,屈服不低于950Mpa,延伸率不低于5%,面缩不低于7%,在650℃强度不低于670Mpa,屈服不低于650Mpa,延伸率不低于10%,面缩不低于15%,继续增加热处理循环次数时,室温和高温强度变化不大,室温和高温塑性会略有提升。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (3)

1.一种用于改善Ti65合金铸件组织的热处理工艺,其特征在于:热处理工艺包括如下步骤:
步骤1):将Ti65合金铸件加热至β转变温度以上5~10℃,热透后出炉风冷或水冷;
步骤2):炉温升至合金β转变温度以下15~30℃后将铸件放置于热处理炉中再次快速升温至设置温度后保温60~180分钟;
步骤3):随后铸件随炉降温10~15℃,然后继续保温60~180分钟后再升温至β转变温度以下15~30℃继续保温60~180分钟;如此重复该步骤10~20次;
步骤4)最后铸件随炉冷却至β转变温度以下20~40℃,保温90~120后空冷或风冷。
2.按照权利要求1所述的一种用于改善Ti65合金铸件组织的热处理工艺,其特征在于:所述Ti65钛合金铸件的成分的质量百分比为,Al:5.4~6.0%,Sn:3.5~4.5%,Zr:3.0~4.5%,Mo:0.2~0.8%,Si:0.25~0.5%,Nb:0.2~0.5%,Ta:0.3~1.2%,W:0.2~1.6%,C:0.0~0.07%,余量为Ti和其他不可避免的杂质。
3.按照权利要求1所述的一种用于改善Ti65合金铸件组织的热处理工艺,其特征在于:所述Ti65钛合金铸件最终得到双态组织,其在室温强度不低于1060Mpa,屈服不低于950Mpa,延伸率不低于5%,面缩不低于7%,在650℃强度不低于670Mpa,屈服不低于650Mpa,延伸率不低于10%,面缩不低于15%。
CN202210372315.3A 2022-04-11 2022-04-11 一种用于改善Ti65合金铸件组织的热处理工艺 Active CN114774818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210372315.3A CN114774818B (zh) 2022-04-11 2022-04-11 一种用于改善Ti65合金铸件组织的热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210372315.3A CN114774818B (zh) 2022-04-11 2022-04-11 一种用于改善Ti65合金铸件组织的热处理工艺

Publications (2)

Publication Number Publication Date
CN114774818A true CN114774818A (zh) 2022-07-22
CN114774818B CN114774818B (zh) 2023-05-12

Family

ID=82428958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210372315.3A Active CN114774818B (zh) 2022-04-11 2022-04-11 一种用于改善Ti65合金铸件组织的热处理工艺

Country Status (1)

Country Link
CN (1) CN114774818B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058803A (zh) * 2017-04-19 2017-08-18 中国航发北京航空材料研究院 一种改善铸造zta29合金铸件微观组织的方法
CN109321855A (zh) * 2018-10-24 2019-02-12 南京理工大学 一种获取亚稳β钛合金双态组织的机械热处理方法
CN112063945A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种提高Ti2AlNb基合金持久和蠕变性能的热处理工艺
CN112760581A (zh) * 2020-12-19 2021-05-07 北京工业大学 一种近α型高温钛合金的锻轧复合加工及热处理工艺
CN113046666A (zh) * 2021-03-10 2021-06-29 西北工业大学 在TiAl合金中获得三态组织和双态组织的热处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058803A (zh) * 2017-04-19 2017-08-18 中国航发北京航空材料研究院 一种改善铸造zta29合金铸件微观组织的方法
CN109321855A (zh) * 2018-10-24 2019-02-12 南京理工大学 一种获取亚稳β钛合金双态组织的机械热处理方法
CN112063945A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种提高Ti2AlNb基合金持久和蠕变性能的热处理工艺
CN112760581A (zh) * 2020-12-19 2021-05-07 北京工业大学 一种近α型高温钛合金的锻轧复合加工及热处理工艺
CN113046666A (zh) * 2021-03-10 2021-06-29 西北工业大学 在TiAl合金中获得三态组织和双态组织的热处理工艺

Also Published As

Publication number Publication date
CN114774818B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN113235030B (zh) 一种大规格gh4169高温合金棒材的制备方法
CN111826594B (zh) 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN105238955B (zh) 一种高塑性锆合金及其制备方法
CN111318581A (zh) 一种网篮组织钛合金大规格环件的制造方法
CN111647835B (zh) 一种改善β型钛合金机械热处理的方法
CN111471897A (zh) 一种高强镍基高温合金制备成型工艺
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN115446233A (zh) 一种高断裂韧性、低各向异性Ti2AlNb大尺寸环件的制造方法
CN110747417A (zh) 一种镍基合金gh4169的时效强化热处理方法
CN108385046B (zh) 一种TiAl-V合金的热处理方法
CN114182187A (zh) 一种提高油气用钛合金管材韧性的热处理方法
CN112692204B (zh) 一种大尺寸耐蚀Ti35合金锻件的制备方法
JPH09170016A (ja) In 706 タイプの鉄− ニッケル超合金より成る高温安定性物体の製造方法
CN114774818A (zh) 一种用于改善Ti65合金铸件组织的热处理工艺
CN105220096B (zh) 一种改善传统铸造γ‑TiAl合金力学性能的多步循环热处理方法
CN115011768B (zh) 一种可消除高温合金中温脆性的强韧化热处理工艺
JPH07252617A (ja) 高強度高靱性チタン合金の製造方法
CN116287931A (zh) 一种显著提高VCoNi中熵合金强度及硬度的方法
CN114774819B (zh) 一种tc4合金铸件的热处理工艺
CN114703435B (zh) 一种Ti60合金铸件的热处理工艺
CN112941397A (zh) 一种具有高温力学性能优异的轻质中熵合金及其加工工艺
CN114774816B (zh) 一种tc25g钛合金铸件的热处理工艺
CN116288092B (zh) 一种改善铌合金铸锭热加工性能的热处理方法
CN113373342B (zh) 一种高超弹性CuAlMn形状记忆合金线材的制备方法
CN117089790B (zh) 一种具有细小全片层结构的高铌TiAl合金的蠕变成形/短时热处理复合制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant