CN114774336B - 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用 - Google Patents

一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用 Download PDF

Info

Publication number
CN114774336B
CN114774336B CN202210183889.6A CN202210183889A CN114774336B CN 114774336 B CN114774336 B CN 114774336B CN 202210183889 A CN202210183889 A CN 202210183889A CN 114774336 B CN114774336 B CN 114774336B
Authority
CN
China
Prior art keywords
subtilis
lysine
recombinant
hom
gnd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210183889.6A
Other languages
English (en)
Other versions
CN114774336A (zh
Inventor
康春涛
朱枝群
陈胜玲
张晓霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Xinghai Biological Technology Co ltd
Original Assignee
Jiangsu Xinghai Biological Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Xinghai Biological Technology Co ltd filed Critical Jiangsu Xinghai Biological Technology Co ltd
Priority to CN202210183889.6A priority Critical patent/CN114774336B/zh
Publication of CN114774336A publication Critical patent/CN114774336A/zh
Application granted granted Critical
Publication of CN114774336B publication Critical patent/CN114774336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01003Homoserine dehydrogenase (1.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01044Phosphogluconate dehydrogenase (decarboxylating) (1.1.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01016Diaminopimelate dehydrogenase (1.4.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02004Aspartate kinase (2.7.2.4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Husbandry (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种产L‑赖氨酸的枯草芽孢杆菌重组菌的构建及其应用,属于基因工程技术领域。本发明应用基因工程方法,对饲料工业上常用的益生菌B.subtilis ACCC11025进行了系统的代谢工程改造。本发明发现,以来源C.glutamicum中lysC311、zwf243和gnd361替换B.subtilis中thrD、zwf和gnd(即:重组菌B.subtilis XH4),有利于L‑赖氨酸的合成,L‑赖氨酸产量达到20.3±1.9g/L。此外,将B.subtilis中hom替换成来源C.glutamicum中hom59(即:重组菌B.subtilis XH5),可实现显著降低副产物产量,L‑赖氨酸产量达到23.2±1.7g/L,且不影响菌体生长。在重组菌B.subtilis XH5中引入C.glutamicum中DapDH会改变二氨基庚二酸途径碳分布而促进L‑赖氨酸的合成,目标重组菌XH6中L‑赖氨酸产量达到25.6±2.3g/L。

Description

一种产L-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用
技术领域
本发明涉及一种产L-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用,属于基因工程技术领域。
背景技术
L-赖氨酸是动物和人类无法自身合成的氨基酸,属于八大必需氨基酸之一。由于在谷类在加工过程中赖氨酸很容易被破坏,L-赖氨酸得率极低,故L-赖氨酸称为第一限制性氨基酸。因此,L-赖氨酸广泛应用在动物饲料中,具有平衡饲料中氨基酸组成,提高动物贵氨基酸的摄取和代谢,促进包括家畜、家禽和鱼类等在内的生长发育,进而提高饲料蛋白质的利用率,节约生产成本,减少环境污染。全球L-赖氨酸市场目前估计为每年220万吨,并以每年10%左右的速度增长,在世界范围内年产量是继L-谷氨酸后的第二位氨基酸。目前,工业上用于发酵生产L-赖氨酸的菌种主要有大肠杆菌(Escherichia coli)和谷氨酸棒杆菌(Corynebacterium glutamicum)。然而,E.coli和C.glutamicum直接应用于动物饲料中存在一些缺陷,如:存在内毒素、适口性差等。自2013年,国家规定的饲料添加剂目录里已明文规定饲料级L-赖氨酸中不得含有E.coli,而作为市场上饲用级L-赖氨酸产品规格主要是纯度为65%和70%。因此,我们急需开发食品安全性的微生物底盘细胞用于发酵生产饲用L-赖氨酸。
益生菌因其绿色、无残留、无污染的特性成为替代抗生素的最佳选择之一,受到国内外学者和饲料生产企业的广泛关注。枯草芽孢杆菌(Bacillus subtilis)是芽孢杆菌属的一种,已被美国食品和药品管理局(FDA)、美国饲料监察协会(AAFCO)和我国农业部认定为饲料安全性菌株,广泛用于饲料中。B.subtilis产生的枯草菌素、多粘菌素、制霉菌素、短杆菌肽等活性物质对致病菌或内源性感染的条件致病菌有明显抑制作用。同时,B.subtilis能合成消化性酶类,如蛋白酶、淀粉酶、脂肪酶、纤维素酶、果胶酶等,可降解饲料中复杂碳水化合物,提高饲料消化率,提高动物生产性能。此外,B.subtilis能刺激动物免疫器官的生长发育,激活T和B淋巴细胞,提高免疫球蛋白和抗体水平,增强细胞免疫和体液免疫功能,提高群体免疫力。有研究表明,B.subtilis可使生猪日增重提高6%~7%,饲料转化率提高3%~4%,也能提高肉鸡的抗氧化能力,从而提高肉鸡生长性能。此外,为了有效提高饲料中营养物质的利用率,通过紫外诱变或其他代谢改造B.subtilis选育高产消化性酶类的突变菌株已成为B.subtilis发酵饲料发展趋势。然而,虽然B.subtilis作为益生菌广泛用于饲料中,但是该菌株不能有效积累L-赖氨酸。因此,饲料生产工业上为了同时满足家畜或家禽对L-赖氨酸和B.subtilis的需求,需要同时添加上述两种物质,从而将饲料生产工艺复杂化。此外,L-赖氨酸和B.subtilis的添加在一定程度上增加了企业生产成本。因此,实现B.subtilis高效合成L-赖氨酸有利于简化饲料生产工艺,降低生产成本,提高企业行业竞争力。
随着B.subtilis的基因组注释已经解析,其发酵生产L-赖氨酸的生物合成途径和调节机制也已比较清晰。由图1可知,以葡萄糖为原料时,B.subtilis中有5个途径参与L-赖氨酸合成:糖酵解途径(天蓝色线条)、磷酸戊糖途径(蓝色线条)、三羧酸(TCA)循环(黑色线条)、CO2固定反应(紫色线条)和L-赖氨酸终端合成途径(绿色线条)。现阶段,针对E.coli和C.glutamicum的代谢工程改造合成L-赖氨酸已有非常多的报道,主要集中在以下几个方面:①解除合成途径中反馈调节,提高L-赖氨酸合成途径的效率;②阻断副产物的支路代谢途径,促进多代谢流进入L-赖氨酸合成途径;③强化合成途径关键酶表达水平,提高L-赖氨酸前体物供应;④拓宽菌株代谢底物谱,降低L-赖氨酸生产成本;⑤提高胞内NADPH有效供应水平,促进L-赖氨酸高效率合成。然而,针对B.subtilis的代谢工程改造合成L-赖氨酸却鲜有报道。
发明内容
为解决上述问题,本发明以饲料工业上常用的益生菌B.subtilis ACCC11025为出发菌株,采用CRISPR-Cas9基因编辑技术对磷酸戊糖途径、L-赖氨酸终端合成途径和L-赖氨酸竞争支路代谢途径进行重构,获得一株具有益生功能和L-赖氨酸高效合成能力的“双功能”枯草芽孢杆菌重组菌株。本发明结果为利用B.subtilis生产L-赖氨酸等饲用氨基酸提供参考,为实现简化饲料生产工艺提供了一定的理论基础。
本发明的第一个目的是提供一种代谢工程改造促进L-赖氨酸的合成的枯草芽孢杆菌重组菌,所述的重组菌以枯草芽孢杆菌ACCC11025为宿主,将B.subtilis中thrD、zwf和gnd用来源C.glutamicum中lysC311、zwf243和gnd361替换,且B.subtilis中hom替换成来源C.glutamicum中hom59,最后再引入C.glutamicum中DapDH改变二氨基庚二酸途径碳分布而促进L-赖氨酸的合成。
进一步地,所述的枯草芽孢杆菌包括B.subtilis XH0、B.subtilis XH1、B.subtilis XH2、B.subtilis XH3、B.subtilis XH4、B.subtilis XH5或B.subtilis XH6。
其中,B.subtilis XH0、B.subtilis XH1、B.subtilis XH2、B.subtilis XH3、B.subtilis XH4、B.subtilis XH5和B.subtilis XH6保藏于江苏星海生物科技有限公司。
进一步地,所述的编码天冬氨酸激酶的基因lysC311来源于C.glutamicum,核苷酸序列如SEQ ID NO.1所示。
进一步地,所述的编码葡萄糖-6-磷酸脱氢酶的基因zwf243来源于C.glutamicum,核苷酸序列如SEQ ID NO.2所示。
进一步地,所述的编码6-磷酸葡萄糖酸脱氢酶的基因gnd361来源于C.glutamicum。核苷酸序列如SEQ ID NO.3所示。
进一步地,所述的编码高丝氨酸脱氢酶的基因hom59来源于C.glutamicum,核苷酸序列如SEQ ID NO.4所示。
进一步地,所述的编码二氨基庚二酸脱氢酶的基因ddh来源于C.glutamicum,核苷酸序列如SEQ ID NO.5所示。
本发明的第二个目的是提供所述的重组菌的构建方法,包括如下步骤:
(1)天冬氨酸激酶基因lysC、葡萄糖-6-磷酸脱氢酶基因zwf、6-磷酸葡萄糖酸脱氢酶基因gnd和高丝氨酸脱氢酶基因hom的替换,以及异源表达DapDH基因ddh:以枯草芽孢杆菌ACCC11025为宿主,采用CRISPR-Cas9系统将基因thrD、zwf、gnd和hom替换为来源于C.glutamicum的lysC311、zwf243、gnd361和hom59,再异源引入C.glutamicum的DapDH基因ddh。
(2)重组质粒构建:以酿脓链球菌的基因组作为模板,将基因Spcas9进行PCR扩增,随后利用限制性内切酶对质粒pHT01和片段Spcas9进行双酶切并酶连,获得目标重组质粒pHT01-Cas9。再将B.subtilis的thrD、zwf、gnd、hom和pksD基因的sgRNA无缝连接到质粒pBE980b,获得五个带有靶向位点的质粒。再将C.glutamicum的lysC311基因、zwf243基因、gnd361基因、hom59基因和ddh基因与B.subtilis的thrD、zwf、gnd、hom和pksD基因的上下同源臂通过融合PCR进行基因融合,再依次酶切连接至质粒pBE980b后得到重组质粒;
(3)重组菌构建:将重组质粒pHT01-Cas9电转至B.subtilis ACCC11025感受态细胞中,通过氨苄抗性筛选得到带有Cas9蛋白的转化子。再将其余重组质粒电转至带有Cas9蛋白的B.subtilis ACCC11025感受态细胞中,筛选得到所述的重组菌。
本发明的第三个目的是提供所述的重组菌发酵生产L-赖氨酸的方法,所述方法是将所述重组菌单菌落接种至液体种子培养基,30~38℃,50~200r·min-1培养8-10h;以8~12%接种量将种子培养液转接至发酵培养基,发酵40h。
进一步地,所述的种子培养基为:葡萄糖5g/L,NaCl 5g/L,牛肉蛋白胨10g/L,酵母膏10g/L。
进一步地,所述的发酵培养基为:葡萄糖80g/L、玉米浆35g/L、甜菜糖蜜12g/L、NH4)2SO4 36g/L、MgSO4·7H2O 1.5g/L、K2HPO4 1g/L、KH2PO4 1g/L、FeSO4 0.02g/L、MnSO40.02g/L、甜菜碱0.05d/L、烟酰胺0.008g/L、硫胺素0.00045g/L、生物素0.00085g/L、CaCO340g/L。所有培养基用20%(m/v)NaOH调节pH 7.0-7.2。
本发明的第四个目的是利用B.subtilis生产L-赖氨酸等饲用氨基酸提供参考,为实现简化饲料生产工艺提供了一定的理论基础。
本发明的有益效果:
本发明首次以饲料工业上常用的益生菌B.subtilis ACCC11025为出发菌株,围绕胞内前体物和辅因子NADPH供应、副产物积累和优化终端合成途径对L-赖氨酸合成的影响,采用CRISPR-Cas9基因编辑技术对磷酸戊糖途径、L-赖氨酸终端合成途径和L-赖氨酸竞争支路代谢途径进行重构,获得一株具有益生功能和L-赖氨酸高效合成能力的“双功能”枯草芽孢杆菌重组菌株。实验结果表明,将B.subtilis中内源的参与L-赖氨酸合成的关键性酶替换成来源C.glutamicum中解除反馈调节作用的关键性酶(即:AK III、G6PD和6GPD),可有效的为L-赖氨酸合成提供前体物和辅因子NADPH,保证在B.subtilis中有效积累L-赖氨酸。此外,将B.subtilis中L-赖氨酸合成支路途径中的限速酶HSD替换成来源C.glutamicum中渗漏型HSD,可实现在不影响菌体生长的情况下降到副产物积累,从而保证在B.subtilis中高效清洁发酵生产L-赖氨酸。进一步实验结果表明,在B.subtilis中引入来自C.glutamicum中的脱氢酶途径,可以引导碳流进入脱氢酶途径,从而途径L-赖氨酸的高效合成。经上述对B.subtilis基因组进行一系列的遗传改造,最终获得的重组菌株B.subtilis XH6中L-赖氨酸产量达到25.6±2.3g/L。
附图说明
图1:以葡萄糖为碳源时B.subtilis中L-赖氨酸生物合成途径
缩写说明:椭圆圈里指示的是编码基因,其中红色圈表示替代基因;表示基因替换;基因zwf编码葡萄糖-6-磷酸脱氢酶(即:G6PD),基因gnd编码6-磷酸葡萄糖酸脱氢酶(即:6GPD),基因lysC编码天冬氨酸激酶(即:AKIII),基因hom编码高丝氨酸脱氢酶(即:HSD),基因ddh编码二氨基庚二酸脱氢酶(即:DapDH)。
图2:目的重组质粒和目的重组菌株的验证
图形说明:图2A中,泳道1 pBE980b-gnd361双酶切验证;泳道2 pBE980b-lysC311双酶切验证;泳道3pBE980b-zwf234双酶切验证;泳道4 pBE980b-hom59双酶切验证;泳道5pBE980b-ddh双酶切验证。图2B中,泳道1 B.subtilis ACCC11025对照;泳道2菌株XH3中基因gnd PCR验证;泳道3菌株XH4中基因gnd PCR验证;泳道4菌株XH2中基因zwfPCR验证;泳道5菌株XH6中基因ddh PCR验证;泳道6菌株XH1中基因lysC PCR验证;泳道7菌株XH5中基因hom PCR验证。
图3:基因lysC替换和基因替换后重组菌株生长情况
图形说明:(A)基因序列比对;(B)B.subtilis XH0和B.subtilis XH1在LB(B1)和LB+AEC(B2)中的生长情况。
图4:不同菌株L-赖氨酸和菌体生长发酵情况
图5:不同菌株胞内NADPH水平以及L-赖氨酸和菌体生长发酵情况
图6:菌株XL-3和XL-5菌体生长和L-赖氨酸合成情况
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
以下实施例中以枯草芽孢杆菌B.subtilis XH0为例。
底物与产物的定性与定量分析以及菌体生长情况的监测:发酵液于4℃和12000r/min离心5min后取上清,稀释100倍后,通过生物传感分析仪SBA-40C分析发酵液中葡萄糖和L-赖氨酸含量。酶活测定:采用超声波细胞破碎法处理细胞,离心取上清液获得粗酶液,该粗酶液保存于-20℃备用或立即用于酶活性的测定。HSD的测定采用吸光光度法进行。菌液浓度测定:定时取200μL发酵液,并用0.25mol/L的稀盐酸溶液稀释到5mL后,用紫外分光光度计于562nm下测定吸光度(即:OD562)。
表1:实施例中所用到的引物(下划线为酶切位点)
实施例1:质粒pHT01-Cas9、pBE980b-hom59、pBE980b-lysC311、pBE980b-zwf234、pBE980b-gnd361和pBE980b-ddh的构建
以酿脓链球菌的基因组作为模板,使用引物Spcas9-F和Spcas9-R将基因Spcas9进行PCR扩增,随后利用限制性内切酶XbaI和XamI对质粒pHT01和片段Spcas9进行双酶切并酶连,获得目标重组质粒pHT01-Cas9。
pBE980b-hom59、pBE980b-lysC311、pBE980b-zwf234、pBE980b-gnd361和pBE980b-ddh的构建以质粒pBE980b作为模板,利用引物hom-F、hom-R、lysC-F、lysC-R、zwf-F、zwf-R、gnd-F、gnd-R、pksD-F和pksD-R通过反向PCR扩增技术将20bp的sgRNA无缝连接到质粒pBE980b,获得五个带有靶向位点的质粒。
以B.subtilis ACCC11025基因组为模板,利用引物hom-L-F、hom-L-R、hom-R-F、hom-R-R、lysC-L-F、lysC-L-R、lysC-R-F、lysC-R-R、zwf-L-F、zwf-L-R、zwf-R-F、zwf-R-R、gnd-L-F、gnd-L-R、gnd-R-F、gnd-R-R、pksD-L-F、pksD-L-R、pksD-R-F和pksD-R-R分别对基因hom、lysC、zwf、gnd以及pksD的上下同源臂进行扩增,同时以C.glutamicum为基因组,利用引物Cghom-F、Cghom-R、CglysC-F、CglysC-R、Cgzwf-F、Cgzwf-R、Cggnd-F、Cggnd-R、Cgddh-F和Cgddh-R分别扩增基因hom、lysC、zwf、gnd以及ddh。将回收后的同源臂片段以及基因片段同时作为模板,通过融合PCR进行基因融合,利用限制性核酸内切酶对融合片段以及带有靶向位点的质粒pBE980b进行酶切酶连,获得重组质粒pBE980b-hom59、pBE980b-lysC311、pBE980b-zwf234、pBE980b-gnd361和pBE980b-ddh。
实施例2:目的重组菌株的筛选与鉴定
将重组质粒pHT01-Cas9、pBE980b-hom59、pBE980b-lysC311、pBE980b-zwf234、pBE980b-gnd361和pBE980b-ddh进行双酶切或PCR验证,从而确定目的重组质粒。从图2A可知,所选择的质粒都带有目的片段,为目的重组质粒。随后,将质粒pHT01-Cas9电转到B.subtilis ACCC11025,其次依次将目的重组质粒pBE980b-hom59、pBE980b-lysC311、pBE980b-zwf234、pBE980b-gnd361和pBE980b-ddh电转至带有Cas9蛋白的B.subtilisACCC11025感受态细胞中,经过PCR验证,确定目标重菌株菌株(图2B)。
实施例3:重组菌和出发菌株中的生长情况、G6PD和6GPD酶活力、胞内NADH浓度测定
生长情况测定:定时取200μL发酵液,并用0.25mol/L的稀盐酸溶液稀释到5mL后,用紫外分光光度计于562nm下测定吸光度(即:OD562)。
重组菌株B.subtilis XH1(即:XH0 thrD::lysC311)在添加有L-赖氨酸结构类似物S-(2-氨基乙基)-L-半胱氨酸(AEC)的LB固体培养基中正常生长,而出发菌株B.subtilisXH0则不能生长(图3B)。这些结果表明,将B.subtilis中thrD基因替换成lysC311成功实现解除L-赖氨酸对AK III的反馈调节作用。
需要指出的是,与出发菌株B.subtilis XH0相比,重组菌株B.subtilis XH1菌体生长并未受到明显抑制,最终菌体量为出发菌株的97.6%(OD562=38.4±3.5vs.OD562=37.5±4.1;图4B)。这些结果表明,将B.subtilis中AK III替换成来源于C.glutamicum中解除反馈调节的AK III可以实现改造B.subtilis合成L-赖氨酸。
G6PD和6GPD酶活力测定:采用超声波细胞破碎法处理细胞,离心取上清液获得粗酶液,该粗酶液保存于-20℃备用或立即用于酶活性的测定,具体方法参照Xu等人建立的方法进行(Xu JZ,et al.,Amino Acids,2014,46(9),2165-2175)。经测定,与出发菌株相比,重组菌株XH2和XH4中G6PD以及重组菌株XH3和XH4中6GPD都提高了对葡萄糖-6-磷酸(G6P)和NADP+的亲和力(表2)。通过替换来源于C.glutamicum中解除反馈调节作用的G6PD和6GPD可以解除葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的反馈调节作用,进而影响胞内G6PD和6GPD酶活力。
表2不同重组菌株中G6PD和6GPD的酶学性质
注:a未检测
NADH浓度测定:通过离心(4℃,6,000rpm和10min)收获细胞,并用冰冷的淬火溶液(60%MeOH和70mM HEPES)洗涤3次以去除残留的细胞外代谢物,具体参照Xu等人方法测定(Xu JZ,et al.,Amino Acids,2014,46(9),2165-2175)。G6PD和6GPD是细胞胞内NADPH再生的关键性酶,而胞内NADPH水平又显著影响控制着L-赖氨酸合成(图1)。经测定,由于不同重组菌株胞内G6PD和6GPD的酶活性不同,导致菌体胞内NADPH水平也不同(图5A)。从图5A可知,胞内G6PD和6GPD酶活力越高,胞内NADPH水平越高。重组菌株B.subtilis XH4胞内NADPH水平最高,从出发菌株B.subtilis XH1的3.51×10-4nmol/(104细胞)增加到5.38×10- 4nmol/(104细胞),胞内NADPH/NADP+提高了43.2%(图5A)。此外,重组菌株B.subtilis XH2、B.subtilis XH3和B.subtilis XH4胞外L-赖氨酸积累量都有显著提升(图5B)。重组菌株B.subtilis XH4摇瓶发酵40h后积累了20.3±1.9g/L的L-赖氨酸,比出发菌株B.subtilisXH1提高了73.5%(图5B)。引入外源的解除反馈调节的G6PD和6GPD可以强化PP途径碳通量,从而有效提高胞内NADPH供给水平,促进L-赖氨酸的合成。
实施例4:重组菌株产L-赖氨酸发酵情况
①种子培养基:葡萄糖5g/L,NaCl 5g/L,牛肉蛋白胨10g/L,酵母膏10g/L,121℃20min。②发酵培养基葡萄糖80g/L、玉米浆35g/L、甜菜糖蜜12g/L、(NH4)2SO4 36g/L、MgSO4·7H2O 1.5g/L、K2HPO4 1g/L、KH2PO4 1g/L、FeSO4 0.02g/L、MnSO4 0.02d/L、甜菜碱0.05d/L、烟酰胺0.008g/L、硫胺素0.00045g/L、生物素0.00085g/L、CaCO3 40g/L。所有培养基用20%(m/v)NaOH调节pH 7.0-7.2,发酵培养基于115℃灭菌10min。
将上述经验证的重组菌株和出发菌株分别进行摇瓶发酵实验。从新鲜活化的斜面培养基中挑取一满环枯草芽孢杆菌(出发菌和重组菌)接种到50mL装液量250mL液体种子培养基,4层纱布封口,30~38℃,50~200r·min-1培养8-10h;以10%接种量将种子培养液转接至50/250mL发酵培养基,30~38℃,50~200r·min-1发酵40h。
摇瓶发酵结果表明,重组菌株B.subtilis XH5(即:XH4 hom::hom59)菌体生长性能表现出与菌株B.subtilis XH4相似的水平(表3)。需要指出的是,尽管重组菌B.subtilisXH5菌体量低于出发菌株B.subtilis XH0和B.subtilis XH1,但其L-赖氨酸产量要远高于出发菌株B.subtilis XH0和B.subtilis XH11(表3)。重组菌株B.subtilis XH5中L-赖氨酸产量达到23.2±1.7g/L,比菌株B.subtilis XH1和B.subtilis XH4分别增加了98.3%和14.3%(表3)。此外,当重组菌种HSD酶(编码基因hom59)活力降低时,促进了L-赖氨酸的合成,同时减少了其他四种天冬氨酸族氨基酸的积累量。重组菌株B.subtilis XH5发酵液中未检测到L-蛋氨酸、L-苏氨酸和L-异亮氨酸,而菌株B.subtilis XH1和B.subtilis XH4在胞外都积累了一定量的副产物(表3)。这一结果表明,替换来源C.glutamicum中渗漏型HSD,可以调节B.subtilis胞内HSD酶活水平,从而影响L-赖氨酸合成和副产物积累。
表3不同菌株生长情况以及L-赖氨酸和副产物含量
且本发明在菌株B.subtilis XH5中引入C.glutamicum中二氨基庚二酸脱氢酶(DapDH,编码基因ddh),获得重组菌株B.subtilis XH6(即:XH5 pksD::ddh)。与出发菌株B.subtilis XH5不同,重组菌B.subtilis XH6表现出延滞的菌体生长,但最终菌体量两者基本一致(图6A)。此外,重组菌B.subtilis XH6中L-赖氨酸产量达到25.6±2.3g/L(图6B),比菌株B.subtilis XH5增加了10.3%。研究表明,来源于C.glutamicum的GapDH可以调节B.subtilis中DAP碳通量,引导部分碳流进入脱氢酶途径,从而途径L-赖氨酸的高效合成。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江苏星海生物科技有限公司
<120> 一种产L-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用
<160> 19
<170> PatentIn version 3.3
<210> 1
<211> 1266
<212> lysC311 DNA
<213> Corynebacterium glutamicum ATCC13032
<400> 1
gtggccctgg tcgtacagaa atatggcggt tcctcgcttg agagtgcgga acgcattaga 60
aacgtcgctg aacggatcgt tgccaccaag aaggctggaa atgatgtcgt ggttgtcgtc 120
tccgcaatgg gagacaccac ggatgaactt ctagaacttg cagcggcagt gaatcccgtt 180
ccgccagctc gtgaaatgga tatgctcctg actgctggtg agcgtatttc taacgctctc 240
gtcgccatgg ctattgagtc ccttggcgca gaagcccaat ctttcacggg ctctcaggct 301
ggtgtgctca ccaccgagcg ccacggaaac gcacgcattg ttgatgtcac tccaggtcgt 360
gtgcgtgaag cactcgatga gggcaagatc tgcattgttg ctggtttcca gggtgttaat 420
aaagaaaccc gcgatgtcac cacgttgggt cgtggtggtt ctgacaccac tgcagttgcg 480
ttggcagctg ctttgaacgc tgatgtgtgt gagatttact cggacgttga cggtgtgtat 540
accgctgacc cgcgcatcgt tcctaatgca cagaagctgg aaaagctcag cttcgaagaa 600
atgctggaac ttgctgctgt tggctccaag attttggtgc tgcgcagtgt tgaatacgct 660
cgtgcattca atgtgccact tcgcgtacgc tcgtcttata gtaatgatcc cggcactttg 720
attgccggct ctatggagga tattcctgtg gaagaagcag tccttaccgg tgtcgcaacc 780
gacaagtccg aagccaaagt aaccgttctg ggtatttccg ataagccagg cgaggctgcg 840
aaggttttcc gtgcgttggc tgatgcagaa atcaacattg acatggttct gcagaacgtc 900
tcttctgtag aagacggcac caccgacatc accttcacct gccctcgttc cgacggccgc 960
cgcgcgatgg agatcttgaa gaagcttcag gttcagggca actggaccaa tgtgctttac 1020
gacgaccagg tcggcaaagt ctccctcgtg ggtgctggca tgaagtctca cccaggtgtt 1080
accgcagagt tcatggaagc tctgcgcgat gtcaacgtga acatcgaatt gatttccacc 1140
tctgagattc gtatttccgt gctgatccgt gaagatgatc tggatgctgc tgcacgtgca 1200
ttgcatgagc agttccagct gggcggcgaa gacgaagccg tcgtttatgc aggcaccgga 1260
cgctaa 1266
<210> 2
<211> 1545
<212> zwf234 DNA
<213> Corynebacterium glutamicum ATCC13032
<400> 2
gtgagcacaa acacgacccc ctccagctgg acaaacccac tgcgcgaccc gcaggataaa 60
cgactccccc gcatcgctgg cccttccggc atggtgatct tcggtgtcac tggcgacttg 120
gctcgaaaga agctgctccc cgccatttat gatctagcaa accgcggatt gctgccccca 180
ggattctcgt tggtaggtta cggccgccgc gaatggtcca aagaagactt tgaaaaatac 240
gtacgcgatg ccgcaagtgc tggtgctcgt acggaattcc gtgaaaatgt ttgggagcgc 301
ctcgccgagg gtatggaatt tgttcgcggc aactttgatg atgatgcagc tttcgacaac 360
ctcgctgcaa cactcaagcg catcgacaaa acccgcggca ccgccggcaa ctgggcttac 420
tacctgtcca ttccaccaga ttccttcgca gcggtctgcc accagctgga gcgttccggc 480
atggctgaat ccaccgaaga agcatggcgc cgcgtgatca tcgagaagcc tttcggccac 540
aacctcgaat ccgcacacga gctcaaccag ctggtcaacg cagtcttccc agaatcttct 600
gtgttccgca tcgaccacta tttgggcaag gaaacagttc aaaacatcct ggctctgcgt 660
tttgctaacc agctgtttga gccactgtgg aactccaact acgttgacca cgtccagatc 720
accatggctg aagatattgg cttgggtgga cgtgctggtt actacgacgg catcggcgca 780
gcccgcgacg tcatccagaa ccacctgatc cagctcttgg ctctggttgc catggaagaa 840
ccaatttctt tcgtgccagc gcagctgcag gcagaaaaga tcaaggtgct ctctgcgaca 900
aagccgtgct acccattgga taaaacctcc gctcgtggtc agtacgctgc cggttggcag 960
ggctctgagt tagtcaaggg acttcgcgaa gaagatggct tcaaccctga gtccaccact 1020
gagacttttg cggcttgtac cttagagatc acgtctcgtc gctgggctgg tgtgccgttc 1080
tacctgcgca ccggtaagcg tcttggtcgc cgtgttactg agattgccgt ggtgtttaaa 1140
gacgcaccac accagccttt cgacggcgac atgactgtat cccttggcca aaacgccatc 1200
gtgattcgcg tgcagcctga tgaaggtgtg ctcatccgct tcggttccaa ggttccaggt 1260
tctgccatgg aagtccgtga cgtcaacatg gacttctcct actcagaatc cttcactgaa 1320
gaatcacctg aagcatacga gcgccttatc ttggatgcgc tgttggatga atccagcctt 1380
ttccctacca acgaggaagt ggaactgagc tggaagattc tggatccaat tcttgaagca 1440
tgggatgccg atggagaacc agaggattac ccagcaggta cgtggggtcc aaagagcgct 1500
gatgaaatgc tttcccgcaa cggtcacacc tggcgcaggc cataa 1545
<210> 3
<211> 1479
<212> gnd361 DNA
<213> Corynebacterium glutamicum ATCC13032
<400> 3
atgccgtcaa gtacgatcaa taacatgact aatggagata atctcgcaca gatcggcgtt 60
gtaggcctag cagtaatggg ctcaaacctc gcccgcaact tcgcccgcaa cggccacact 120
gtcgctgtct acaaccgcag cactgacaaa accgacaagc tcatcgccga tcacggctcc 180
gaaggcaact tcatcccttc cgcaaccgtc gaagagttcg tagcatccct ggaaaagcca 240
cgccgcgcca tcatcatggt tcaggctggt aacgccaccg acgcagtcat caaccagctg 301
gcagacgcca tggacgaagg cgacatcatc atcgacggcg gcaacgccct ctacaccgac 360
accattcgtc gcgagaagga aatctccgca cgcggtctcc acttcgtcgg tgctggtatc 420
tctggcggcg aagaaggcgc actcaacggc ccatccatca tgcctggtgg cccagcaaag 480
tcctacgagt ccctcggacc actgcttgag tccatcgctg ccaacgttga cggcacccca 540
tgtgtcaccc acatcggccc agacggcgcc ggccacttcg tcaagatggt ccacaacggc 600
atcgagtacg ccgacatgca ggtcatcggc gaggcatacc accttctccc gtacgcagca 660
ggcatgcagc cagctgaaat cgctgaggtt ttcaaggaat ggaacgcagg cgacctggat 720
tcctacctca tcgagatcac cgcagaggtt ctctcccagg tggatgctga aaccggcaag 780
ccactgatcg acgtcatcgt tgacgctgca ggccagaagg gcaccggacg ttggaccgtc 840
aaggctgctc ttgatctggg tattgctacc accggcatcg gcgaagctgt tttcgcacgt 900
gcactctccg gcgcaaccag ccagcgcgct gcagcacagg gcaacctacc tgcaggtgtc 960
ctcaccgatc tggaagcact tggcgtggac aaggcacagt tcgtcgaaga cgttcgccgt 1020
gcactgtacg catccaagct tgttgcttac gcacagggct tcgacgagat caaggctggc 1080
tccgacgaga acaactggga tgttgaccct cgcgacctcg ctaccatctg gcgcggcggc 1140
tgcattattc gcgctaagtt cctcaaccgc atcgtcgaag catacgatgc aaacgctgaa 1200
cttgagtccc tgctgctcga cccttacttc aagagcgagc tcggcgacct catcgattca 1260
tggcgtcgcg tgattgtcac cgccacccag cttggcctgc caatcccagt gttcgcttcc 1320
tccctgtcct actacgacag cctgcgtgca gagcgtctgc cagcagccct gatccaggga 1380
cagcgcgact tcttcggtgc ggacacctac aagggcatcg acaaggatgg ccccttccac 1440
accgagtggt ccggcgaccg ctccgaggtt gaagcttaa 1479
<210> 4
<211> 1380
<212> hom59 DNA
<213> Corynebacterium glutamicum ATCC13032
<400> 4
atgtagggtg gccgaaacaa agtaatagga caacaagctc gaccgcgatt atttttggag 60
aatcatgacc tcagcatctg ccccaagctt taacccggca agggtcccgg ctcagcagtc 120
ggaattgccc ttttaggatt cggaacagtc ggcatgaggt gatgcgtctg atgaccgagt 180
acggtgatga acttgcgcac cgcattggtg gccactggag gttcgtggca ttgctgtttc 240
tgatatctca aagccacgtg aaggcgttgc actgagctgc tcactgagga cgcttttgca 301
ctcatcgagc gcgaggatgt tgacatcgtc gtgaggttat cggcggcatt gagtacccac 360
gtgaggtagt tctcgcagct ctgaaggccg caagtctgtt gttaccgcca ataaggctct 420
tgttgcagct cactctgctg agcttgctgt gcagcggaag ccgcaaacgt tgacctgtac 480
ttcgaggctg ctgttgcagg cgcaattcag tggttggccc actgcgtcgc tccctggctg 540
gcgatcagat ccagtctgtg atgggcacgt taacggcacc accaacttca tcttggacgc 600
catggattcc accggcgctg actatgagat tctttggctg aggcaactcg tttgggttac 660
gccgaagctg atccaactgc agacgcgaag gccatgacgc cgcatccaag gctgcaattt 720
tggcatccat cgctttccac accctgttac cgcggatgat gtgtactgcg aaggtatcag 780
caacatcagc gctgccgaca ttgggcagca cagcaggcag gccacaccat caagttgttg 840
gccatctgtg agaagttcac cacaaggaag gaaagtcggc tatttctgct cgcgtgcacc 900
cgactctatt acctgtgtcc ccccactggc gtcggtaaac aagtccttta atgcaatctt 960
tgttgaagca gaagcagctg tcgcctgatg ttctacggaa acggtgcagg tggcgcgcca 1020
accgcgtctg ctgtgcttgc gacgtcgttg gtgccgcacg aaacaaggtg cacggtggcc 1080
gtgctccagg tgagtccact acgctaacct gccgatcgct gatttcggtg agaccaccac 1140
tcgttaccac ctcgacagga tgtggaagat cgcgtgggcg ttttggctga attggctagc 1200
ctgttctctg agcaagaatc tccctgcgta caatccgaca ggaagagcgc gatgatgatg 1260
cacgtctgat cgttgcacgc actctgcgct ggaatctgat ctttcccgca ccgttgaact 1320
gctgaaggct aagctgttgt taaggcaatc aacagtgtga tccgcctcga aagggactaa 1380
<210> 5
<211> 963
<212> ddh DNA
<213> Corynebacterium glutamicum ATCC13032
<400> 5
atgaccaaca tccgcgtagc tatcgtgggc tacggaaacc tgggacgcag cgtcgaaaag 60
cttattgcca agcagcccga catggacctt gtaggaatct tctcgcgccg ggccaccctc 120
gacacaaaga cgccagtctt tgatgtcgcc gacgtggaca agcacgccga cgacgtggac 180
gtgctgttcc tgtgcatggg ctccgccacc gacatccctg agcaggcacc aaagttcgcg 240
cagttcgcct gcaccgtaga cacctacgac aaccaccgcg acatcccacg ccaccgccag 301
gtcatgaacg aagccgccac cgcagccggc aacgttgcac tggtctctac cggctgggat 360
ccaggaatgt tctccatcaa ccgcgtctac gcagcggcag tcttagccga gcaccagcag 420
cacaccttct ggggcccagg tttgtcacag ggccactccg atgctttgcg acgcatccct 480
ggcgttcaaa aggcagtcca gtacaccctc ccatccgaag acgccctgga aaaggcccgc 540
cgcggcgaag ccggcgacct taccggaaag caaacccaca agcgccaatg cttcgtggtt 600
gccgacgcgg ccgatcacga gcgcatcgaa aacgacatcc gcaccatgcc tgattacttc 660
gttggctacg aagtcgaagt caacttcatc gacgaagcaa ccttcgacgc cgagcacacc 720
ggcatgccac acggtggcca cgtgattacc accggcgaca ccggtggctt caaccacacc 780
gtggaataca tcctcaagct ggaccgaaac ccagatttca ccgcttccgc gcagatcgct 840
ttcggtcgcg cagctcaccg catgaagcag cagggccaaa gcggagcttt caccgtcctc 900
gaagttgctc catacctgct ctccccagag aacttggacg atctgatcgc acgcgacgtc 960
taa 963
<210> 6
<211> 1365
<212> thrD DNA
<213> Bacillus subtilis ACCC11025
<400> 6
atgaaggtcg ttaaattcgg aggcagctca cttgcttcag gcgcccagct tgacaaggtg 60
tttcacatcg ttacctcaga tccggcacgg aaagctgtag tcgtttcagc tccgggaaaa 120
cactatgccg aggatacgaa agtgactgat ctcttaatcg catgtgcaga acaatatttg 180
gcaacaggca gcgcacctga actggcggaa gctgttgtgg aacggtacgc tctcatcgcc 240
aatgagcttc agctggggca aagcattatc gaaaaaatca gagatgatct gtttacgctt 301
ttagaaggag acaaaagcaa tcccgaacaa taccttgacg cagtcaaggc cagcggagag 360
gataacaatg ccaaactgat cgccgcttac ttccgttata aaggcgtcaa agcggaatat 420
gtaaacccga aggatgccgg cctctttgtg acaaatgaac ccggcaacgc gcaagttctt 480
cctgaatcct atcaaaacct ctatcgtctt cgggaacgtg acggactcat catttttccc 540
ggttttttcg gattcagcaa ggatggcgat gtgatcacat tctcacggag cggttctgat 600
attaccggtt cgattcttgc caacggacta caagccgatt tgtacgaaaa ctttacagac 660
gtagacgctg tgtattctgt caatccgtcc ttcgttgaga atccaaagga aatcagcgag 720
ctgacatata gagagatgcg ggagctgtcc tacgcgggtt tttcagtgtt tcatgatgaa 780
gcgctcattc cggcattcag agcggggatt cctgttcaga tcaaaaatac gaacaacccc 840
tcagccgaag gcacccgcgt cgtcagcaag cgggataaca caaacgggcc tgtcgtcggc 900
attgccagcg acaccggttt ttgcagcatt tatatcagca agtatctcat gaacagagaa 960
atcggttttg gccgcagagc ccttcaaatc ctggaggagc atggtttgac gtatgagcat 1020
gttccatcgg gaatcgatga catgacaatc attttacggc aggggcaaat ggatgccgcc 1080
actgaacgca gcgtcatcaa acggatcgaa gaggatttgc atgccgatga agtcatcgtc 1140
gagcatcatc tcgccctgat tatggttgta ggggaagcga tgcgccacaa tgtcggtaca 1200
acggcaagag ccgccaaagc attatcagag gcacaggtga atatcgaaat gatcaatcag 1260
gggtcttctg aagtgagcat gatgtttggc gtaaaagaag ccgaagaaag aaaagccgtt 1320
caagcgttat accaggaatt tttcgcgggc gtgctgatct cttaa 1365
<210> 7
<211> 1470
<212> zwf DNA
<213> Bacillus subtilis ACCC11025
<400> 7
gtgaaaacaa accaacaacc aaaagcagta attgttatat tcggtgcaac tggagattta 60
gcaaaacgaa aactgtatcc gtctattcac cgtttatatc aaaacggaca aatcggagaa 120
gagtttgcag ttgtaggagt tggaagaaga ccatggtcca atgaggacct tcgccaaacc 180
gttaaaacat ccatttcctc atctgcagat aaacatatag atgatttcac gtctcatttt 240
tactatcacc cgtttgacgt gacaaaccct ggctcttatc aagagcttaa cgtattgctt 301
aaccagttgg aagatacata tcaaattccg aacaacagaa tgttctacct agcaatggct 360
cctgaattct tcgggacaat tgcaaaaaca ttaaaatcag aaggtgttac agcaacaaca 420
ggctggtccc gccttgtcat tgaaaagccg ttcggccatg atctgccaag cgcacaggca 480
ctaaacaaag aaatccgcga agcatttacg gaagatcaaa tttacagaat cgaccattat 540
ctaggcaaac aaatggttca gaacattgaa gtgattcgat ttgccaatgc gattttcgaa 600
ccgctttgga caaaccgcta catctcaaac attcaaatca catctagcga atcacttggc 660
gtcgaagacc gtgcaagata ttacgaaaaa tcaggcgccc tgcgcgacat ggtacaaaac 720
cacattatgc agatggttgc ccttcttgca atggagccgc cgatcaaatt gaacacagaa 780
gaaatcagaa gcgaaaaagt aaaggttctg agagcactgc gccctattgc aaaagacgaa 840
gtggatgagt actttgtgcg cggacaatat caagccggtg aaattgacgg tgtgccggtt 900
cctgcttata cggatgaaga taatgtcgct cctgactcaa atacagaaac ctttgttgca 960
ggcaagctct tgatcgacaa cttcagatgg gccggtgttc cattctatat ccgcaccgga 1020
aaacgaatga aagaaaagtc cacaaaaatc gtcgttcaat ttaaggacat tccaatgaac 1080
ctgtactacg gcaatgaaaa caacatgaat ccaaacttgc ttgtcatcca tattcagcct 1140
gacgaaggca ttacgctata cttaaacgct aaaaagcttg gcggagcagc acatgcacag 1200
cctatcaaac tcgattactg cagcaattgc aatgacgagt tgaacacccc tgaagcgtat 1260
gaaaaattaa ttcatgactg tcttcttgga gatgcaacaa actttgcaca ctgggatgaa 1320
gttgcccttt cttggaactt tgttgattcc atttctgaaa catgggcagc aaacaaaatc 1380
ttgtctccta actacgagtc aggctctatg ggaccgaaag aatcagatga tcttttggcg 1440
aaagacggct tgcactggtg gaatatataa 1470
<210> 8
<211> 894
<212> gnd DNA
<213> Bacillus subtilis ACCC11025
<400> 8
atgaaaatcg gattaatcgg cttagggaaa atgggcataa acataggaaa gcaattcatt 60
gaccgcaatc atcaagcggt cgggtatgat gtaaatcaag cggctgttga tgaactgaaa 120
gcatatgggg ctgaggggac aacaaatcta gaagagttga tttcttcatt agacacgccg 180
cgtatactat gggttatggt gccgcatggc gttgtcgatg ctgtcttgcg cgatgtgaca 240
cctttattaa gcaaaggcga tattgtcatt gaagctggaa actctcatta taaagaatcg 301
attcgccgct ataatcaaat gaaagaagcg ggtattcatt atctcgatgc cggcacgtcg 360
ggcggaatgg aaggtgcgcg ccatggagcc tgttttatgg tgggaggtga ccccgaggca 420
tgggagattg tagagccgct gtttcgggat actgctgtcg aaaacggata tctatacgca 480
ggtgaagcgg gaagcggaca tttcttgaag atgattcata atggcattga gtacggaata 540
atggcggcga tcggtgaagg gttcgaagta cttgaaaaca gccaatttga ttttgactac 600
gaaaaggttg cgagagtgtg gaatcatggc tctgtcattc gctcttggct catggggctg 660
actgagcgag cgttctctaa agatgcgaag ctggatcaga tcaaaggcat tatgcattcc 720
tcaggtgaag ggaaatggac ggtggaaacc gcgcttgaac tgcagacggc aactccggtg 780
atcgctatgt cgctgctgat gagataccgt tcattaacaa atgatacgtt tacaggaaag 840
gttgtcgctg cgcttcgaaa tgaattcgga ggccatgcga cagagaaaaa gtaa 894
<210> 9
<211> 1302
<212> hom DNA
<213> Bacillus subtilis ACCC11025
<400> 9
ttgaaagcga ttcgtgtagg gcttttaggt ttaggtaccg tcggaagcgg tgtcgttaaa 60
attattcaag accatcagga taagcttatg catcaggtcg gctgtccggt tacgataaaa 120
aaagtgcttg taaaagattt agagaaaaag agagaagtag atttgccgaa ggaagtgctc 180
acgacagaag tgtatgatgt cattgatgat ccagatgttg atgtcgtcat cgaggtgatc 240
ggcggcgttg aacagacaaa acaatatttg gtcgacgcgc tgagatcgaa aaagcatgtt 301
gtcacagcaa acaaggactt aatggctgtg tacggctccg agctgcttgc cgaagcgaag 360
gaaaatggat gcgatatcta ctttgaagcc agtgttgccg gcgggattcc gattctgcgc 420
acgttagagg aaggcctctc atcagatcga attacaaaaa tgatgggaat tgtgaacggc 480
acaacaaact ttatcttaac caaaatgatc aaagagaaaa gcccatacga ggaagtgctc 540
aaggaagcgc aggatctcgg ttttgccgaa gctgatccga cttctgacgt ggaagggctt 600
gacgccgcac ggaaaatggc gatattggcg cgcctcggct tctcgatgaa cgtggatctg 660
gaagacgtca aagtaaaggg gatctcccaa attacagacg aggacatcag cttcagcaaa 720
cgcctcggct atacaatgaa gctgatcggg attgctcagc gtgacggcag caaaatcgag 780
gtcagcgtac agccgacact gcttcctgac catcatccgc tttctgctgt tcataatgag 840
tttaacgctg tttatgtata cggcgaggct gtcggtgaga cgatgttcta cgggccggga 900
gccggaagca tgccgacagc gacatccgtt gtttctgacc tcgtcgctgt catgaaaaat 960
atgcgcctag gtgtaaccgg caacagcttt gtcggaccgc aatatgagaa aaacatgaaa 1020
tcgccgtctg acatttatgc acagcagttt ttaagaattc atgtaaaaga tgaggttggt 1080
tcattctcga aaattacatc tgtgttctca gagcggggcg tgagctttga aaaaatcctt 1140
cagctgccaa ttaaaggcca tgatgagtta gctgaaatcg taattgtcac acatcataca 1200
tcagaagctg atttcagtga tatcctgcaa aacctaaatg atttggaagt cgttcaagaa 1260
gtcaaaagca catatcgtgt agaagggaac ggttggagct aa 1302

Claims (4)

1.一种产L-赖氨酸的重组菌,其特征在于,所述的重组菌以益生菌 B. subtilisACCC11025 为宿主,将 其中 thrD、zwf 和 gnd 用来源 C. glutamicum 中 lysC311 、zwf243和 gnd361替换,hom替换成来源 C. glutamicum 中 hom59,最后再引入 C.glutamicum 中 ddh 改变 二氨基庚二酸途径碳分布得到重组菌;
所述 lysC311核苷酸序列如 SEQ ID NO.1 所示;
所述 zwf243核苷酸序列如 SEQ ID NO.2 所示;
所述 gnd361核苷酸序列如 SEQ ID NO.3 所示;
所述 hom59核苷酸序列如 SEQ ID NO.4 所示;
所述ddh核苷酸序列如SEQ ID NO.5 所示。
2.一种权利要求 1所述的重组菌的构建方法,其特征在于,包括:天冬氨酸激酶基因lysC、葡萄糖-6-磷酸脱氢酶基因 zwf、6-磷酸葡萄糖酸脱氢酶基因 gnd 和高丝氨酸脱氢酶基因 hom 的替换,以及异源表达 DapDH 基因 ddh:以枯草芽孢杆菌 ACCC11025 为宿主,采用 CRISPR-Cas9 系统将基因 thrD、zwf、gnd 和 hom 替换为来源于 C. glutamicum的 lysC311 、zwf243 、gnd361 和 hom59,再异源引入 C. glutamicum 的 DapDH 基因 ddh;
具体包括如下步骤:
(1)重组质粒构建:以酿脓链球菌的基因组作为模板,将基因 Spcas9 进行PCR 扩增,随后利用限制性内切酶对质粒 pHT01 和片段 Spcas9 进行双酶切并酶连,获得目标重组质粒 pHT01-Cas9,再将 B. subtilis 的 thrD、zwf、gnd、hom 和 pksD 基因的 sgRNA 无缝连接到质粒 pBE980b,获得五个带有靶向位点的质粒,再将 C. glutamicum 的 lysC311基因、zwf243基因、gnd361基因、hom59基因和ddh 基因与 B. subtilis 的 thrD、zwf、gnd、hom和 pksD 基因的上下同源臂通过融合 PCR 进行基因融合,再依次酶切连接至质粒pBE980b 后得到重组质粒;
(2)重组菌构建:将重组质粒 pHT01-Cas9 电转至 B. subtilis ACCC11025感受态细胞中,通过氨苄抗性筛选得到带有 Cas9 蛋白的转化子;再将其余重组质粒电转至带有Cas9 蛋白的 B. subtilis ACCC11025 感受态细胞中,筛选得到所述的重组菌。
3.一种权利要求 1 所述的重组菌发酵生产 L-赖氨酸的方法,其特征在于,所述方法是将所述重组菌单菌落接种至液体种子培养基,30~38℃,50~200 r·min-1 培养 8-10 h;以 8~12%接种量将种子培养液转接至发酵培养基培养 40 h。
4.根据权利要求 3 所述的方法,其特征在于,所述的种子培养基为:葡萄糖 5 g/L,NaCl 5 g/L,牛肉蛋白胨 10 g/L,酵母膏 10 g/L;所述的发酵培养基为:葡萄糖 80 g/L、玉米浆 35 g/L、甜菜糖蜜 12 g/L、(NH4)2SO4 36 g/L、MgSO4·7H2O 1.5 g/L、K2HPO4 1 g/L、KH2PO4 1 g/L、FeSO4 0.02 g/L、MnSO4 0.02 g/L、甜菜碱 0.05 g/L、烟酰胺 0.008 g/L、硫胺素 0.00045 g/L、生物素 0.00085 g/L、CaCO3 40 g/L,培养基用 20% (m/v)NaOH 调至 pH=7.0~7.2。
CN202210183889.6A 2022-02-24 2022-02-24 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用 Active CN114774336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210183889.6A CN114774336B (zh) 2022-02-24 2022-02-24 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210183889.6A CN114774336B (zh) 2022-02-24 2022-02-24 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用

Publications (2)

Publication Number Publication Date
CN114774336A CN114774336A (zh) 2022-07-22
CN114774336B true CN114774336B (zh) 2024-05-28

Family

ID=82423441

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210183889.6A Active CN114774336B (zh) 2022-02-24 2022-02-24 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用

Country Status (1)

Country Link
CN (1) CN114774336B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555625A (zh) * 2013-10-28 2014-02-05 李丽立 一种高产赖氨酸的枯草芽孢杆菌pl83及制备方法和应用
CN110591996A (zh) * 2019-09-27 2019-12-20 天津市畜牧兽医研究所 一种高产l-赖氨酸枯草芽孢杆工程菌的构建方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2510865T3 (es) * 2008-03-03 2014-10-21 Global Bio-Chem Technology Group Company Limited Microorganismo recombinante y procedimiento para producir L-lisina
KR101512432B1 (ko) * 2010-06-15 2015-04-16 백광산업 주식회사 미생물을 이용한 아스파테이트 계열 아미노산의 생산방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555625A (zh) * 2013-10-28 2014-02-05 李丽立 一种高产赖氨酸的枯草芽孢杆菌pl83及制备方法和应用
CN110591996A (zh) * 2019-09-27 2019-12-20 天津市畜牧兽医研究所 一种高产l-赖氨酸枯草芽孢杆工程菌的构建方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高产赖氨酸菌的选育与应用;付凌;曾黎明;李新国;;氨基酸和生物资源(第04期);第18-23页 *

Also Published As

Publication number Publication date
CN114774336A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
EP0358940B1 (en) DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains
Cremer et al. Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes
US20200347419A1 (en) Recombinant bacterium capable of producing l-lysine, construction method thereof and production method of l-lysine
AU2011318810B2 (en) Microorganism producing O-phosphoserine and method of producing L-cysteine or derivatives thereof from O-phosphoserine using the same
EP2102337B1 (en) A microorganism of corynebacterium genus having enhanced l-lysine productivity and a method of producing l-lysine using the same
CN100519740C (zh) 具有改善的l-赖氨酸生产力的棒杆菌属微生物和利用棒杆菌微生物生产l-赖氨酸的方法
CN114717172B (zh) 合成l-缬氨酸的大肠杆菌及其构建方法与应用
US20100015673A1 (en) Microorganism Of Corynebacterium Genus Having Enhanced L-Lysine Productivity And A Method Of Producing L-Lysine Using The Same
CN101230355A (zh) 通过发酵制备精细化学品的方法
JPH11253187A (ja) 発酵法によるl−セリンの製造法
RU2699516C2 (ru) Новая лизиндекарбоксилаза и способ получения кадаверина с ее использованием
CN112888776B (zh) 生产目标物质的方法
CN104480058A (zh) 一株高产l-亮氨酸工程菌及其应用
CN115725537A (zh) 天冬氨酸激酶突变体及其在生产l-高丝氨酸中的应用
JPWO2020208842A5 (zh)
CN113652383B (zh) 一种高产d-泛酸的基因工程菌及其应用
CN108504617A (zh) 一种高产l-赖氨酸的大肠杆菌重组菌及其构建方法
CA2374261A1 (en) Process for the fermentative preparation of l-amino acids with amplification of the zwf gene
RU2288265C2 (ru) Способ получения l-треонина
CN114774336B (zh) 一种产l-赖氨酸的枯草芽孢杆菌重组菌的构建及其应用
CN111763699B (zh) 用于发酵生产1,5-戊二胺的重组dna、菌株及其应用
CN114058560A (zh) 甘氨酸的生产方法
WO2006025477A1 (ja) 工業的に有用な微生物
KR100816472B1 (ko) 글루타메이트 에이비씨-타입 트랜스포터 활성이 결실된코리네박테리아 및 이를 이용한 엘-라이신 생산방법
CN112779200A (zh) 高产l-甲硫氨酸的基因工程菌及其构建与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant