CN114773649A - 一种具有防水性的可降解pla塑料包装膜及制备方法 - Google Patents

一种具有防水性的可降解pla塑料包装膜及制备方法 Download PDF

Info

Publication number
CN114773649A
CN114773649A CN202210510276.9A CN202210510276A CN114773649A CN 114773649 A CN114773649 A CN 114773649A CN 202210510276 A CN202210510276 A CN 202210510276A CN 114773649 A CN114773649 A CN 114773649A
Authority
CN
China
Prior art keywords
packaging film
plastic packaging
polylactic acid
preparation
pla plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210510276.9A
Other languages
English (en)
Other versions
CN114773649B (zh
Inventor
向蕾
陈智
李非
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhou Ran
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210510276.9A priority Critical patent/CN114773649B/zh
Publication of CN114773649A publication Critical patent/CN114773649A/zh
Application granted granted Critical
Publication of CN114773649B publication Critical patent/CN114773649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

本发明提供了一种具有防水性的可降解PLA塑料包装膜及制备方法。该方法先在基底表面旋涂一层聚乳酸的四氢呋喃溶液,然后喷涂一层纳米羟基磷灰石分散液,进行超声振荡,再喷涂一层氟化钾水溶液并静置,最后真空干燥、脱模,制得具有防水性的可降解PLA塑料包装膜。该方法制备的PLA塑料包装膜表面的静态水接触角大于155°,滚动角小于5°,具有良好的超疏水性能,因而该包装膜具有良好的防水性。

Description

一种具有防水性的可降解PLA塑料包装膜及制备方法
技术领域
本发明属于包装膜的技术领域,提供了一种具有防水性的可降解PLA塑料包装膜及制备方法。
背景技术
聚乳酸,又称聚丙交酯,使用可再生的植物资源所提出的淀粉原料制成,淀粉原料经由糖化得到葡萄糖,再由葡萄糖及一定的菌种发酵制成高纯度乳酸,再通过化学合成方法合成一定分子量的聚乳酸。聚乳酸使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是一种新型的可降解生物材料。聚乳酸可适用各种加工方法,并且机械性能较好,透明度高,透气性透氧性好,延展度较高,使其可制成薄膜用作包装材料。
自从人们发现自然界中的超疏水现象后(如荷叶),固体表面的润湿现象受到人们的关注,研究发现,超疏水表面在防水、防覆冰、自清洁、防腐蚀、防生物粘附、流体减阻、油水分离等方面具有很大的应用潜力。在某些场合(比如食品包装膜内部常常含有大量的水蒸汽),包装膜对防水性的要求较高。提高包装膜的防水性,既有利于保持被包装物质的特性,又能防止包装膜污染。
构建超疏水的薄膜表面,增大包装膜表面的水接触角,减小滚动角,是提高包装膜防水性的有效途径。通常,薄膜表面与水滴的静态接触角大于150°,滚动角小于10°,即可获得良好的超疏水性能,此时,水对薄膜表面的润湿性低,水滴在表面易于滚动,不易粘附。
发明内容
为制备具有良好防水性的聚乳酸包装膜,本发明提出一种具有防水性的可降解PLA塑料包装膜及制备方法,所得PLA塑料包装膜表面的静态水接触角大于155°,滚动角小于5°,具有良好的超疏水性能。
为实现上述目的,本发明涉及的具体技术方案如下:
本发明提供了一种具有防水性的可降解PLA塑料包装膜的制备方法,所述包装膜制备的具体步骤如下:
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;
(4)在基底表面旋涂一层聚乳酸的四氢呋喃溶液,然后喷涂一层纳米羟基磷灰石分散液,超声振荡20-30min,再喷涂一层氟化钾水溶液,静置10-15min;
(5)真空干燥,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
步骤(1)中,脱模剂可选择常用的塑料脱模剂,优选为硬脂酸钙、硬脂酸锌、硬脂酸镁中的一种或几种。
进一步优选的,步骤(1)中,聚乳酸、脱模剂、四氢呋喃的质量比为12-15:0.1-0.2:100。
步骤(2)先采用氟硅烷对纳米羟基磷灰石进行改性,以增加羟基磷灰石与聚乳酸的界面结合能力。优选的,步骤(2)中,纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为15-20:0.3-0.4:100。
优选的,步骤(3)中,氟化钾、水的质量比为3-5:100。
步骤(4)在基底表面依次形成了聚乳酸的四氢呋喃溶液层、纳米羟基磷灰石分散液层、氟化钾水溶液层。优选的,步骤(4)中,聚乳酸的四氢呋喃溶液的旋涂厚度为100-200μm,纳米羟基磷灰石分散液的喷涂厚度为20-40μm,氟化钾水溶液的喷涂厚度为5-10μm。
进一步的,在喷涂纳米羟基磷灰石分散液后,进行超声振荡,有利于促使聚乳酸的四氢呋喃溶液层与纳米羟基磷灰石分散液层之间形成一个相互混合的过渡层。优选的,步骤(4)中,超声振荡的超声波频率为40-80kHz。
步骤(5)是干燥成膜的过程,优选的,步骤(5)中,真空干燥的温度为40-45℃,时间为24-36h。
本发明还提供了上述制备方法制备得到的具有防水性的可降解PLA塑料包装膜。
本发明的有益效果在于:本发明制备的PLA塑料包装膜具有超疏水表面,可使包装膜具有良好的防水性。
产生该有益效果的原因分析:
第一,本发明的制备方法在聚乳酸膜层表面构建了微纳米层次结构。公知的,聚乳酸可溶于四氢呋喃中,不溶于水中,而水与四氢呋喃可相互混溶。本发明正是利用这一特点,先在基底上旋涂聚乳酸的四氢呋喃溶液,然后喷涂纳米羟基磷灰石分散液,由于水与四氢呋喃可相互混溶,因而可在两层液体之间逐渐形成一个相互混合的过渡层,并且进行超声振荡,利用超声作用可促进过渡层的形成。在聚乳酸的四氢呋喃溶液中,聚乳酸分子链处于舒展状态,形成过渡层后,聚乳酸遇到不良溶剂水,分子链开始逐渐卷曲,并将纳米羟基磷灰石包覆其中,随着聚乳酸的不断包裹,羟基磷灰石/聚乳酸粒子的尺寸逐渐增大至微米级。该过渡层中的混溶是不均匀的,越靠近聚乳酸的四氢呋喃溶液一侧,聚乳酸越多,水越少,聚乳酸分子链的卷曲程度越低,线团越松,同时,该侧的羟基磷灰石也越少,较多的聚乳酸线团包裹较少的羟基磷灰石,使得每个羟基磷灰石/聚乳酸粒子的尺寸更大。反之,越靠近羟基磷灰石分散液一侧,每个羟基磷灰石/聚乳酸粒子的尺寸越小。因此,上述过程在聚乳酸薄膜表面形成了微米尺寸层次结构的过渡层。进一步的,由于四氢呋喃与含盐(如氟化钾)的水溶液不易混溶,因而在超声振荡处理后,再喷涂氟化钾水溶液并静置,氟化钾在溶液中可扩散进入表面部分的纳米羟基磷灰石分散液层,氟化钾的存在可维持表面部分的纳米羟基磷灰石分散液不发生混溶,即防止过渡层完全掩盖了纳米羟基磷灰石分散液层,保证表面部分的纳米羟基磷灰石不被聚乳酸包裹,从而保证薄膜表面仍有一层纳米尺寸的羟基磷灰石粒子,与上述微米尺寸过渡层粒子共同构成微纳米层次结构,作为超疏水表面的结构基础。
第二,本发明采用十七氟癸基三甲氧基硅烷对纳米羟基磷灰石进行表面处理,一方面改善了羟基磷灰石与聚乳酸的界面结合,另一方面引入氟原子降低了表面能,进一步提高了薄膜表面的疏水性能。
具体实施方式
实施例1
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;脱模剂为硬脂酸锌;聚乳酸、脱模剂、四氢呋喃的质量比为12:0.1:100;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为15:0.3:100;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;氟化钾、水的质量比为3:100;
(4)在基底表面旋涂一层厚度为100μm的聚乳酸的四氢呋喃溶液,然后喷涂一层厚度为20μm的纳米羟基磷灰石分散液,超声振荡25min,再喷涂一层厚度为5μm的氟化钾水溶液,静置15min;超声振荡的超声波频率为60kHz;
(5)40℃真空干燥24h,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
实施例2
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;脱模剂为硬脂酸锌;聚乳酸、脱模剂、四氢呋喃的质量比为13:0.15:100;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为17:0.34:100;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;氟化钾、水的质量比为4:100;
(4)在基底表面旋涂一层厚度为150μm的聚乳酸的四氢呋喃溶液,然后喷涂一层厚度为30μm的纳米羟基磷灰石分散液,超声振荡25min,再喷涂一层厚度为7μm的氟化钾水溶液,静置15min;超声振荡的超声波频率为60kHz;
(5)40℃真空干燥24h,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
实施例3
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;脱模剂为硬脂酸锌;聚乳酸、脱模剂、四氢呋喃的质量比为15:0.2:100;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为20:0.4:100;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;氟化钾、水的质量比为5:100;
(4)在基底表面旋涂一层厚度为200μm的聚乳酸的四氢呋喃溶液,然后喷涂一层厚度为40μm的纳米羟基磷灰石分散液,超声振荡25min,再喷涂一层厚度为10μm的氟化钾水溶液,静置15min;超声振荡的超声波频率为60kHz;
(5)40℃真空干燥24h,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
实施例4
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;脱模剂为硬脂酸锌;聚乳酸、脱模剂、四氢呋喃的质量比为13:0.15:100;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为17:0.34:100;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;氟化钾、水的质量比为4:100;
(4)在基底表面旋涂一层厚度为150μm的聚乳酸的四氢呋喃溶液,然后喷涂一层厚度为30μm的纳米羟基磷灰石分散液,超声振荡20min,再喷涂一层厚度为7μm的氟化钾水溶液,静置15min;超声振荡的超声波频率为40kHz;
(5)40℃真空干燥24h,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
实施例5
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;脱模剂为硬脂酸锌;聚乳酸、脱模剂、四氢呋喃的质量比为13:0.15:100;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为17:0.34:100;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;氟化钾、水的质量比为4:100;
(4)在基底表面旋涂一层厚度为150μm的聚乳酸的四氢呋喃溶液,然后喷涂一层厚度为30μm的纳米羟基磷灰石分散液,超声振荡30min,再喷涂一层厚度为7μm的氟化钾水溶液,静置15min;超声振荡的超声波频率为80kHz;
(5)40℃真空干燥24h,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
上述实施例中,聚乳酸为美国Natureworks公司生产的6202D型聚乳酸,纳米羟基磷灰石为中科金研公司生产的高纯纳米羟基磷灰石。
性能测试:
(1)采用sl-200B型接触角测量仪测试水滴在薄膜表面的静态接触角,测试条件为室温、5μL水滴,每个实施例的薄膜各选取5个点测试并计算平均值;
(2)将薄膜固定在载玻片上,在表面滴5μL水滴,将载玻片一端从水平缓慢抬升,当水滴发生滚动时,记录薄膜平面与水平面之间的夹角,即为滚动角,每个实施例的薄膜各选取5个位置测试并计算平均值。
所得数据如表1所示。
表1:
Figure DEST_PATH_IMAGE001

Claims (9)

1.一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于,所述包装膜制备的具体步骤如下:
(1)将聚乳酸、脱模剂加入四氢呋喃中,在50℃下搅拌,直至完全溶解,得到聚乳酸的四氢呋喃溶液;
(2)将纳米羟基磷灰石、十七氟癸基三甲氧基硅烷加入高速混合机中混合,得到表面改性纳米羟基磷灰石,再加入水中分散,得到纳米羟基磷灰石分散液;
(3)将氟化钾加入水中溶解,得到氟化钾水溶液;
(4)在基底表面旋涂一层聚乳酸的四氢呋喃溶液,然后喷涂一层纳米羟基磷灰石分散液,超声振荡20-30min,再喷涂一层氟化钾水溶液,静置10-15min;
(5)真空干燥,将膜层从基底上剥离下来,得到具有防水性的可降解PLA塑料包装膜。
2.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:所述脱模剂为硬脂酸钙、硬脂酸锌、硬脂酸镁中的一种或几种。
3.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(1)中,聚乳酸、脱模剂、四氢呋喃的质量比为12-15:0.1-0.2:100。
4.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(2)中,纳米羟基磷灰石、十七氟癸基三甲氧基硅烷、水的质量比为15-20:0.3-0.4:100。
5.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(3)中,氟化钾、水的质量比为3-5:100。
6.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(4)中,聚乳酸的四氢呋喃溶液的旋涂厚度为100-200μm,纳米羟基磷灰石分散液的喷涂厚度为20-40μm,氟化钾水溶液的喷涂厚度为5-10μm。
7.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(4)中,超声振荡的超声波频率为40-80kHz。
8.根据权利要求1所述一种具有防水性的可降解PLA塑料包装膜的制备方法,其特征在于:步骤(5)中,真空干燥的温度为40-45℃,时间为24-36h。
9.权利要求1-8任一项所述制备方法制备得到的具有防水性的可降解PLA塑料包装膜。
CN202210510276.9A 2022-05-11 2022-05-11 一种具有防水性的可降解pla塑料包装膜及制备方法 Active CN114773649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210510276.9A CN114773649B (zh) 2022-05-11 2022-05-11 一种具有防水性的可降解pla塑料包装膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210510276.9A CN114773649B (zh) 2022-05-11 2022-05-11 一种具有防水性的可降解pla塑料包装膜及制备方法

Publications (2)

Publication Number Publication Date
CN114773649A true CN114773649A (zh) 2022-07-22
CN114773649B CN114773649B (zh) 2024-01-05

Family

ID=82437863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210510276.9A Active CN114773649B (zh) 2022-05-11 2022-05-11 一种具有防水性的可降解pla塑料包装膜及制备方法

Country Status (1)

Country Link
CN (1) CN114773649B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919360A (zh) * 2006-09-14 2007-02-28 同济大学 一种聚乳酸基/纳米羟基磷灰石复合生物材料及其制备方法
CN102408578A (zh) * 2011-09-22 2012-04-11 福建师范大学 一种超疏水生物可降解复合薄膜的制备方法及其产品
US20150367041A1 (en) * 2013-01-18 2015-12-24 Industrial Cooperation Foundation Chonbuk National University Method for manufacturing nano-hydroxyapatite/poly(lactic acid) hybrid nano-composite membrane mat, nano-hydroxyapatite/poly(lactic acid) hybrid nano-composite membrane mat manufactured thereby, and air-jet spinning apparatus therefor
CN106317435A (zh) * 2016-08-25 2017-01-11 天津华今集团有限公司 一种可降解超疏水性塑料薄膜
CN106943622A (zh) * 2017-03-21 2017-07-14 河北大学 一种羟基磷灰石复合生物材料的制备方法
CN107684638A (zh) * 2017-08-11 2018-02-13 山东大学 一种羟基磷灰石‑聚乳酸生物双面神膜及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1919360A (zh) * 2006-09-14 2007-02-28 同济大学 一种聚乳酸基/纳米羟基磷灰石复合生物材料及其制备方法
CN102408578A (zh) * 2011-09-22 2012-04-11 福建师范大学 一种超疏水生物可降解复合薄膜的制备方法及其产品
US20150367041A1 (en) * 2013-01-18 2015-12-24 Industrial Cooperation Foundation Chonbuk National University Method for manufacturing nano-hydroxyapatite/poly(lactic acid) hybrid nano-composite membrane mat, nano-hydroxyapatite/poly(lactic acid) hybrid nano-composite membrane mat manufactured thereby, and air-jet spinning apparatus therefor
CN106317435A (zh) * 2016-08-25 2017-01-11 天津华今集团有限公司 一种可降解超疏水性塑料薄膜
CN106943622A (zh) * 2017-03-21 2017-07-14 河北大学 一种羟基磷灰石复合生物材料的制备方法
CN107684638A (zh) * 2017-08-11 2018-02-13 山东大学 一种羟基磷灰石‑聚乳酸生物双面神膜及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ESPERANZA DÍAZ ET AL.: "PLLA/nHA Composite Films and Scaffolds for Medical Implants: In Vitro Degradation, Thermal and Mechanical Properties" *
陈涛等: "聚乳酸/二氧化硅超疏水材料的制备及其性能研究" *

Also Published As

Publication number Publication date
CN114773649B (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
Xu et al. Chemical fabrication strategies for achieving bioinspired superhydrophobic surfaces with micro and nanostructures: A review
Xiao et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide
Wang et al. A veil-over-sprout micro-nano PMMA/SiO2 superhydrophobic coating with impressive abrasion, icing, and corrosion resistance
CN104910656B (zh) 一种以复合硅源制备超疏水二氧化硅粉体及超疏水涂层的方法
Wang et al. Fabrication of superhydrophobic surface of hierarchical ZnO thin films by using stearic acid
CN109370418A (zh) 一种超疏水涂料、涂层及其制备方法和应用
CN105602297A (zh) 一种通过不同平均粒径无机纳米颗粒复合制备超疏水涂层的方法
Wang et al. A durable and sustainable superhydrophobic surface with intertwined cellulose/SiO2 blends for anti-icing and self-cleaning applications
CN104846369B (zh) 一种制备超亲疏水复合纳米阵列界面材料的方法
CN114752275A (zh) 一种可喷涂于各种基材的仿生超疏水涂层的制备方法
CN107312446A (zh) 一种聚多巴胺纳米氧化锌超疏水涂层的制备方法
CN106085173A (zh) 一种功能梯度复合结构耐磨透明超疏水涂层及其制备方法
Mo et al. A simple process for fabricating organic/TiO2 super-hydrophobic and anti-corrosion coating
CN109833836B (zh) 界面聚合法制备玉米醇溶蛋白基二氧化钛杂化微胶囊的方法
CN105950053A (zh) 一种具有疏水功能的新材料及其制备工艺
Tan et al. Bulk superhydrophobility of wood via in-situ deposition of ZnO rods in wood structure
Jiang et al. A facile method for preparations of micro-nanotextured Co3O4 films with the excellent superhydrophobic and anti-icing behavior
Kim et al. Chemically robust antifog nanocoating through multilayer deposition of silica composite nanofilms
CN114773649A (zh) 一种具有防水性的可降解pla塑料包装膜及制备方法
Zada et al. Antifouling and antimicrobial coatings based on sol–gel films
Kim et al. Significant change in water contact angle of electrospray‐synthesized SiO2 films depending on their surface morphology
Chen et al. Engineered partially open-cage fluorinated polyhedral oligomeric silsesquioxane hybrid nanoparticle aggregates for surfaces with super-repellency to widespread liquids
Chen et al. The role of renewable protocatechol acid in epoxy coating modification: significantly improved antibacterial and adhesive properties
CN116179068A (zh) 基于有机/无机粒子复合制备的耐摩擦型聚氨酯超疏水涂料、涂层、方法和应用
Ma et al. One-step synthesis of functional slippery lubricated coating with substrate independence, anti-fouling property, fog collection, corrosion resistance, and icephobicity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240118

Address after: No. 19, Group 1, Pingmingju, Rugao City, Nantong City, Jiangsu Province, 226500

Patentee after: Zhou Ran

Address before: 610000 No. 24 south part of Wuhou District first ring road, Chengdu, Sichuan.

Patentee before: Xiang Lei

TR01 Transfer of patent right