CN114768871B - PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用 - Google Patents

PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN114768871B
CN114768871B CN202210184470.2A CN202210184470A CN114768871B CN 114768871 B CN114768871 B CN 114768871B CN 202210184470 A CN202210184470 A CN 202210184470A CN 114768871 B CN114768871 B CN 114768871B
Authority
CN
China
Prior art keywords
pani
composite material
mil
photocatalytic
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210184470.2A
Other languages
English (en)
Other versions
CN114768871A (zh
Inventor
程清蓉
杨淮智
吴汉军
潘志权
周红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202210184470.2A priority Critical patent/CN114768871B/zh
Publication of CN114768871A publication Critical patent/CN114768871A/zh
Application granted granted Critical
Publication of CN114768871B publication Critical patent/CN114768871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种PANI/NH2‑MIL‑101(Fe)复合材料及其制备方法和应用。所述复合材料由多孔结构的PANI于水热条件下负载至NH2‑MIL‑101(Fe)晶体上得到;与单组分的PANI和NH2‑MIL‑101(Fe)相比,复合材料的光吸收能力显著增强,且由于PANI与NH2‑MIL‑101(Fe)之间形成配位键,使得光生电子‑空穴复合率有效降低,显著提高了光催化活性。该复合材料制备工艺简单、成本低、催化活性高且稳定性好,具有应用前景。

Description

PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用
技术领域
本发明涉及光催化技术领域,具体涉及一种由PANI和NH2-MIL-101(Fe)配位复合形成的复合光催化剂,及其制备方法和在光催化降解污染物和光催化分解水制氢中的应用。
背景技术
光催化技术能够应用于水污染治理、分解水制氢或二氧化碳还原、有机合成等领域,然而常见的半导体催化剂如TiO2、Bi2O3、MoS2和CdS等,存在光生电子和空穴容易复合、光催化活性位点不足、光吸收低等问题,极大地限制了其应用。因此,探索一种具有不错光吸收能力且光催化活性良好的材料是一项具有重要意义的工作。
与常见的氧化物半导体、硫化物半导体、铋基半导体相比,聚苯胺PANI作为一种新型聚合物半导体,具有较窄的带隙(≤3eV)、较强的吸光能力和较高的电导率,但同时也存在结构单一、活性位点不足、光生电子-空穴复合效率快等缺点。而NH2-MIL-101(Fe)作为目前研究较多的金属有机骨架材料(MOFs)之一,单独存在时光催化能力相对较弱,但其特殊的配位点结构和较大的比表面积有望用于改善PANI的不足。
发明内容
有鉴于此,本发明的目的在于通过NH2-MIL-101(Fe)与PANI结合,改善PANI材料催化活性低的问题。
为了实现上述目的,本发明的技术方案具体如下:
一种PANI/NH2-MIL-101(Fe)复合材料,所述PANI为多孔PANI,所述PANI与NH2-MIL-101(Fe)通过配位键连接,所述PANI与NH2-MIL-101(Fe)的质量比为1∶1~2。
本发明还提供了制备上述PANI/NH2-MIL-101(Fe)复合材料的方法,具体为:将多孔PANI与2-氨基对苯二甲酸、FeCl3·6H2O加入到DMF中,进行水热反应,对反应所得沉淀物洗涤干燥即得。
进一步地,在上述技术方案中,所述2-氨基对苯二甲酸与FeCl3·6H2O的摩尔比为1:1.8~2.2;多孔PANI的添加量影响复合材料中PANI与NH2-MIL-101(Fe)的相对含量,反应前,多孔PANI与2-氨基对苯二甲酸的质量比为1.5~5∶1。
进一步地,在上述技术方案中,所述水热反应的过程为:于110~120℃下保温时间为10~14h,然后以8~12℃/h的降温速率降至室温。
进一步地,在上述技术方案中,所述多孔PANI的制备包括以下步骤:
1).将苯胺单体和对苯二胺溶于盐酸溶液中,并加入SiO2纳米球,得到混合液A;将过硫酸铵加入盐酸溶液中得到混合液B;将混合液B与混合液A混合中在冰浴条件下反应,所得沉淀洗涤干燥后即为SiO2@PANI;
2).SiO2@PANI置于NaOH溶液中,转入高压釜密封反应,所得产物洗涤干燥后即为多孔PANI。
更进一步地,步骤1)所述冰浴条件下反应的过程具体为:N2气氛下,将混合液B缓慢滴加入混合液A中,并搅拌反应8~10h。
更进一步地,步骤1)所述苯胺单体与过硫酸铵的摩尔比为1∶1;需要说明的是,对苯二胺在反应过程中为成核剂,用于促进反应进行,可根据实际反应需要少量添加。
本发明制备的PANI/NH2-MIL-101(Fe)复合材料有很高的的光催化活性,可以用于光催化降解污染物中和光催化分解水制氢。
有益效果:本发明制备的PANI/NH2-MIL-101(Fe)复合材料与PANI、NH2-MIL-101(Fe)相比,光吸收能力显著增强,PANI和NH2-MIL-101(Fe)之间形成的配位键不仅增强了单组分之间的紧密结合,而且形成了光生载流子的迁移通道,使得光生电子-空穴复合率降低、光催化活性明显提高。而且本发明原料来源充足、制备工艺简单、生产成本低、所得复合材料稳定性高,不易造成水体二次污染,在实际应用方面有很大的潜力。
附图说明
图1为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的表面形貌结构;
图2为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的XRD对比图;
图3为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的XPS分析图;
图4为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的固体紫外吸收谱图;
图5为本发明制备的复合材料的BET图;
图6为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的光电流响应图(a)和电化学阻抗图(b);
图7为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)对四环素降解结果对比图;
图8为本发明制备的复合材料与PANI、NH2-MIL-101(Fe)的光催化裂解水制氢能力的分析图。
具体实施方式
为了加强对本发明的理解,下面将结合附图和实施例对本发明作进一步描述,以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
(1)称取0.091mL苯胺单体和0.0001g对苯二胺溶于10mL1.0M盐酸中,加入0.05g、尺寸为200nm左右的SiO2纳米球,记为溶液A;称取0.228g过硫酸铵加入5mL 1.0M盐酸中,记为溶液B。在机械搅拌下,将溶液B在N2气氛中以每滴/2s的滴速加入溶液A,然后在冰水浴中反应10h。反应结束后,用水和乙醇分别洗涤3次,60℃干燥24h,得到SiO2@PANI。
(2)将SiO2@PANI置于40mL玻璃衬管中,并用0.1mol/L NaOH填充至80%容量,完全混合后,将玻璃衬管放入带有不锈钢罐的100mL Teflon内衬高压釜中。将高压釜密封并置于80℃的炉中4h,然后自然冷却至室温。最后,离心收集产物,蒸馏水洗涤三次,干燥,研磨,得到多孔PANI。
(3)称取0.015g NH2-H2BDC(0.083mmol)和0.045g FeCl3·6H2O(0.166mmol)溶解在装有14mL DMF的玻璃内胆中,超声完全溶解后,加入一定量的多孔PANI并搅拌均匀,将玻璃内胆置于100mL内衬特氟隆的高压釜中,在120℃下反应24h。反应结束后,将得到的红棕色固体离心,用DMF、乙醇分别洗涤3次,干燥,研磨得到复合材料。
改变步骤(3)中多孔PANI的加入量,可以改变终产物中PANI与NH2-MIL-101(Fe)的含量。本实施例所得复合材料中PANI与NH2-MIL-101(Fe)的质量比为2∶3。
实施例2
与实施例1不同的是,本实施例所得复合材料中PANI与NH2-MIL-101(Fe)原料的质量比为1∶1;其他同实施例1一致。
实施例3
与实施例1不同的是,本实施例所得复合材料中PANI与NH2-MIL-101(Fe)原料的质量比为1∶2,其他同实施例1一致。
对比例1
按照实施例1中步骤(1)和(2),制备多孔PANI。
对比例2
纯NH2-MIL-101(Fe)的制备过程同实施例1的步骤(3),但不加入PANI。
对各实施例和对比例所得产物进行表征,结果如下:
图1为PANI、NH2-MIL-101(Fe)和PANI/NH2-MIL-101(Fe)复合材料SEM和TEM图。图中,(a)和(d)分别为PANI的SEM和TEM图,可以看到PANI的多孔结构清晰可见;(b)和(e)分别NH2-MIL-101(Fe)的SEM和TEM图,(c)和(e)分别为实施例1制备的复合材料的SEM和TEM图,可见NH2-MIL-101(Fe)的六方棱柱被包埋在PANI的间隙中。
图2为PANI、NH2-MIL-101(Fe)和PANI/NH2-MIL-101(Fe)复合材料的XRD表征结果。如图2所示,PANI是聚合物半导体属于非晶相材料,故其在20°附近出现宽特征峰;实施例1制备的复合材料在9.4°、10.3°、16.4°和18.7°处显示NH2-MIL-101(Fe)特征峰,并且在20°附近可以观察到一个与PANI相对应的凸起的宽峰,表明复合材料已成功制备。
图3为PANI、NH2-MIL-101(Fe)和PANI/NH2-MIL-101(Fe)复合材料的XPS检测结果。(a)为XPS全谱,表明了实施例1制备的复合材料中存在C、N、O和Fe元素。(b)、(c)和(d)分别为C、N和Fe元素的价带谱;对于N元素,实施例1制备的PANI/NH2-MIL-101(Fe)(即图中PM-2)在399.48eV处观察到了一个额外的峰值,表明形成了Fe-N配位键;Fe-N配位键的形成为PANI的π-共轭结构和NH2-MIL-101(Fe)之间形成了载流子迁移的桥梁,从而在复合材料中形成了更大的共轭体系。与NH2-MIL-101(Fe)相比,Fe的结合能在复合材料中略有偏移,表明PANI与NH2-MIL-101(Fe)之间存在强烈的界面相互作用,进一步证明PANI与NH2-MIL-101(Fe)相互接触的界面中存在配位作用力。
图4为用固体紫外漫反射光谱分析PANI、NH2-MIL-101(Fe)和实施例1中PANI/NH2-MIL-101(Fe)复合材料光学性能的对比结果,可以发现,与NH2-MIL-101(Fe)相比,实施例1中复合材料在可见光区域的光吸收提高,这些得益于PANI的存在。
图5显示的是实施例1中PANI/NH2-MIL-101(Fe)复合材料的BET图谱。可以发现比表面积得到了有效的提高,表明其可以更好的利用光能,促进光催化活性。
图6显示的是实施例1~3中制备的PANI/NH2-MIL-101(Fe)复合材料和PANI、NH2-MIL-101(Fe)的光电流响应图(a)和电化学阻抗图(b)。光电流响应图证实了NH2-MIL-101(Fe)对于PANI的改性对降低光生电子-空穴复合率具有重要作用。电化学阻抗图提供了有关光电电极界面电荷转移行为的信息,一般情况下,半圆半径越小,电荷转移电阻越小,说明光生电子空穴对的分离和传输速度更快。实施例1~3中PANI/NH2-MIL-101(Fe)复合材料的半圆半径远小于PANI,再次证实了NH2-MIL-101(Fe)对PANI内光生电子-空穴的分离起到了良好的效果。
图7显示的是实施例1~3制备的PANI/NH2-MIL-101(Fe)复合材料和PANI、NH2-MIL-101(Fe)降解TC(四环素)活性的对比图。检测方法为:将20mg各类型产品溶解在50ml20 mg/L的TC溶液中,将所得悬浮液在黑暗条件下磁力搅拌1h,使得溶液达到吸附-解吸平衡;在光催化降解期间,每10min从反应器中取出3mL样品,通过离心分离悬浮液;再使用紫外可见分光光度计测量其最大波长357nm处的吸收强度来评价降解效率。从紫外-可见光吸收特性来看,TC的浓度随着时间的推移而降低;与PANI、NH2-MIL-101(Fe)相比,复合材料降解速率都得到了显著提高,其中,实施例1中的PANI/NH2-MIL-101(Fe)复合材料的降解速率最好,1h内降解≥90%的TC。
虽然NH2-MIL-101(Fe)可以提供大量的活性位点,但其本身的光催化活性并不强,对TC主要是以吸附为主,且对低浓度的TC降解效果较差。对比实施例1~3的降解效果,实施例1中PANI和NH2-MIL-101(Fe)的比值即为最佳比值,且随着NH2-MIL-101(Fe)在复合材料中的比重加大,复合材料与纯NH2-MIL-101(Fe)效果相接近。除此之外,对比二者单体的简单混合,3种复合材料的降解能力均强于物理混合,另一方面,单体的简单混合效果与纯NH2-MIL-101(Fe)、实施例3中复合材料相似,在经过暗处理后对TC有较高的吸附效果,光照后除实施例3中复合材料外,单体的简单混合和纯NH2-MIL-101(Fe)对低浓度的TC降解效果较差。
图8显示的是实施例1~3制备的PANI/NH2-MIL-101(Fe)复合材料和PANI、NH2-MIL-101(Fe)的制氢性能对比图。检测过程为:测试在150ml、辐照面积为28.12cm2圆柱形石英反应器中进行,光源为300W氙灯模拟的可见光,外接420nm滤波片用于滤去紫外线;将各样品(30mg)、80mL去离子水、少量空穴牺牲剂(由10ml0.35mol/LNa2SO3与10ml0.25mol/LNa2S配制而成,未加Pt助催化剂)加入密封石英反应器中,避光超声10min至分散均匀,磁力搅拌下缓缓通入N220min以排尽反应体系中O2等杂质气体;光照后打开循环冷凝水,保证反应温度在20-25℃左右;每光照间隔1小时抽取300μL反应器内气体,用气相色谱仪进行定量检测(5A分子筛填充柱,高纯度N2为载气),持续4h收集产出H2的含量。从图中可知,所有实施例中的PANI/NH2-MIL-101(Fe)复合材料制氢率都得到了明显提高,其中,实施例1中的PANI/NH2-MIL-101(Fe)复合材料的制氢速率最好(7040.2μmolh-1g-1)。
综上所述,与PANI、NH2-MIL-101(Fe)相比,复合材料的催化活性显著提高,且其原因在于PANI与NH2-MIL-101(Fe)界面间的配位作用力。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种PANI/NH2-MIL- 101(Fe)复合材料在光催化降解四环素或光催化分解水制氢中的应用,其特征在于,PANI/NH2-MIL- 101(Fe)复合材料的制备方法为:将多孔PANI与2-氨基对苯二甲酸、 FeCl3·6H2O 加入到 DMF中,进行水热反应,反应所得沉淀物洗涤干燥即得,所述多孔 PANI的制备包括以下步骤:
1)、将苯胺单体和对苯二胺溶于盐酸溶液中,并加入 SiO2 纳米球,得到混合液 A;将过硫酸铵加入盐酸溶液中得到混合液 B;将混合液 B 与混合液 A 混合后在冰浴条件下反应,所得沉淀洗涤干燥后即为 SiO2@PANI;
2)、将 SiO2@PANI 置于NaOH 溶液中,转入高压釜密封反应,所得产物洗涤干燥后即为多孔 PANI。
2.根据权利要求 1 所述的PANI/NH2-MIL- 101(Fe)复合材料在光催化降解四环素或光催化分解水制氢中的应用,其特征在于,所述水热反应的过程为:于110~120℃下保温时间为 10~14h,然后以 8~12℃/h的降温速率降至室温。
3.根据权利要求 2 所述的PANI/NH2-MIL- 101(Fe)复合材料在光催化降解四环素或光催化分解水制氢中的应用,其特征在于,所述冰浴条件下反应的过程具体为:N2气氛下,将混合液 B 缓慢滴加入混合液A中,并搅拌反应 8~10h。
4.根据权利要求 2 所述的PANI/NH2-MIL- 101(Fe)复合材料在光催化降解四环素或光催化分解水制氢中的应用,其特征在于,所述苯胺单体与过硫酸铵的摩尔比为 1∶1。
5.根据权利要求4所述的PANI/NH2-MIL- 101(Fe)复合材料在光催化降解四环素或光催化分解水制氢中的应用,其特征在于,所述复合材料中,PANI与NH2-MIL- 101(Fe)的质量比为 1∶(1~2)。
CN202210184470.2A 2022-02-25 2022-02-25 PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用 Active CN114768871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210184470.2A CN114768871B (zh) 2022-02-25 2022-02-25 PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210184470.2A CN114768871B (zh) 2022-02-25 2022-02-25 PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114768871A CN114768871A (zh) 2022-07-22
CN114768871B true CN114768871B (zh) 2023-10-13

Family

ID=82423658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210184470.2A Active CN114768871B (zh) 2022-02-25 2022-02-25 PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114768871B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154500A (zh) * 2017-05-24 2017-09-12 扬州大学 介孔碳纳米球负载氧化亚锰材料的合成方法
CN109110857A (zh) * 2018-07-25 2019-01-01 江苏大学 一种印迹SiW@PANI@Fe3O4@C的制备方法及应用
CN109626670A (zh) * 2018-12-13 2019-04-16 中国科学技术大学苏州研究院 一种多孔Fe/C/N复合材料及其制备方法
CN113231101A (zh) * 2021-05-19 2021-08-10 重庆工商大学 一种Cu-NM-101(Fe)光催化剂的制备及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154500A (zh) * 2017-05-24 2017-09-12 扬州大学 介孔碳纳米球负载氧化亚锰材料的合成方法
CN109110857A (zh) * 2018-07-25 2019-01-01 江苏大学 一种印迹SiW@PANI@Fe3O4@C的制备方法及应用
CN109626670A (zh) * 2018-12-13 2019-04-16 中国科学技术大学苏州研究院 一种多孔Fe/C/N复合材料及其制备方法
CN113231101A (zh) * 2021-05-19 2021-08-10 重庆工商大学 一种Cu-NM-101(Fe)光催化剂的制备及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Dan-Dan Chen等.Photocatalytic Cr(VI) sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe).《Appl Organomet Chem.》.2020,第1-9页. *
Shixiong Li等.Effects of electron-donating groups on the photocatalytic reaction of MOFs.《Catalysis Science & Technology》.2018,第1696-1703页. *
孙元元著.《可见光响应光催化材料的设计、合成及性能研究》.吉林大学出版社,2020,第50页. *

Also Published As

Publication number Publication date
CN114768871A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Li et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts
Guo et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Wang et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
Chen et al. Construction of CdLa2S4/MIL-88A (Fe) heterojunctions for enhanced photocatalytic H2-evolution activity via a direct Z-scheme electron transfer
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
CN103240130A (zh) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
Hou et al. Preparation of Cu 2 O@ TiOF 2/TiO 2 and its photocatalytic degradation of tetracycline hydrochloride wastewater
Qu et al. Europium single atom based heterojunction photocatalysts with enhanced visible-light catalytic activity
CN105148964B (zh) 一种三维还原氧化石墨烯‑Mn3O4/MnCO3纳米复合材料及其制备方法
CN111790408B (zh) 一种铋/锑基钙钛矿、光催化材料及其制备方法和应用
CN115069262B (zh) 一种氧空位修饰的MoO3-x/Fe-W18O49光催化剂及其制备和固氮中的应用
Sun et al. Honeycomb-like porous carbon loaded with CdS/ZnS heterojunction with enhanced photocatalytic performance towards tetracycline degradation and H2 generation
CN109289872B (zh) 一种全光谱响应二氧化碳还原复合光催化剂及其制备方法
CN104383945A (zh) 一种黑色溴氧化铋光催化剂及其制备方法
Yu et al. Controllable growth of coral-like CuInS2 on one-dimensional SiO2 nanotube with super-hydrophilicity for enhanced photocatalytic hydrogen evolution
CN111822055A (zh) 一种BiOBr/COF复合光催化剂的制备方法及应用
CN113856702A (zh) 一种硫化镉纳米棒/硫化亚铜纳米壳异质结构光催化剂及制备方法与应用
CN115301294A (zh) 一种硫化铟锌改性铁基金属有机框架及其制备方法和在吸附-光催化剂中的应用
CN112023947A (zh) 一种复合材料及其制备方法、应用
CN113893840B (zh) 一种复合光催化剂、制备方法及在染料废水中的应用
CN111185199A (zh) 一种z型异质结光催化剂及其制备方法和应用
CN107662906B (zh) 一种二硒化钨薄膜的制备方法和光催化还原二氧化碳的应用
CN114768871B (zh) PANI/NH2-MIL-101(Fe)复合材料及其制备方法和应用
CN111790409A (zh) 一种氧化镧-富铋型碘氧化铋复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant