CN1147602C - 一种放射性同位素镉-109的制备工艺 - Google Patents

一种放射性同位素镉-109的制备工艺

Info

Publication number
CN1147602C
CN1147602C CNB011314397A CN01131439A CN1147602C CN 1147602 C CN1147602 C CN 1147602C CN B011314397 A CNB011314397 A CN B011314397A CN 01131439 A CN01131439 A CN 01131439A CN 1147602 C CN1147602 C CN 1147602C
Authority
CN
China
Prior art keywords
silver
cadmium
add
ions
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB011314397A
Other languages
English (en)
Other versions
CN1341761A (zh
Inventor
沈德恒
王刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CNB011314397A priority Critical patent/CN1147602C/zh
Publication of CN1341761A publication Critical patent/CN1341761A/zh
Application granted granted Critical
Publication of CN1147602C publication Critical patent/CN1147602C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种放射性同位素镉-109(109Cd)的制备工艺,涉及利用回旋加速器加速的质子束轰击银靶,生成的放射性同位素镉-109的分离提纯工艺。其特征在于根据氧化一还原电位原理,首先在质子轰击过的银靶溶解液中加入二价的铜离子或钴离子,作为镉离子的保护剂,然后加入过量水合肼定量地还原银离子,还部分地还原加入的保护剂,使镉离子不被还原。本发明较文献报道的用肼还原银靶溶解液中的银离子,提纯镉的工艺操作方便,流程短,银的去除率高一个量级。

Description

一种放射性同位素镉-109的制备工艺
一、技术领域
本发明属放射性同位素制备领域,特别是涉及一种利用回旋加速器照射生成的放射性同位素镉-109的分离、提纯工艺。
二、背景技术
镉-109是一种用途十分广泛的放射性同位素,这种同位素是利用回旋加速器加速的质子束轰击银靶,发生109Ag(p,n)109Cd反应,生成同位素镉-109(109Cd)而获得。因此,如何从大量银靶基体中分离、提纯出镉-109,这是生产这种同位素的关键。国外最新文献报道的方法是用肼还原质子轰击过的银靶的溶解液(称原料液)中的一价银离子(Ag1+),这种方法较早先的一些方法操作方便、快速,但其难点是加入肼的量不好控制,加肼过量时,将把原料液中部份镉-109正二价离子(Cd2+)还原掉,加肼量不足时,银离子的去除率就低,必须加置换法进一步去除剩余的银离子,增加了工艺步骤。如文献:“INIS”国际核情报系统数据库1976-1996光盘查到的,“Production ofCarrier free 109Cd,57Co and 54Mn from a Compositic Cyclotrontarget of enriched 109Ag and 56Fe.”AN 20-007621,报道了用不足量的水合肼作为还原剂,还原Ag1+,然后加入铜粉,进行Cu-Ag1+置换反应,置换剩余的Ag1+,使Ag1+的还原率为99.9%,再结合阴离子交换法提取109Cd。该法的缺点是操作麻烦,流程较长,见图1。
三、发明内容
本发明通过实施下述方案实现:
一种放射性同位素镉-109(109Cd)的制备工艺,包括用回旋加速器的质子束轰击银靶,生成镉同位素109Cd,用硝酸溶解银靶,再用肼还原银靶溶解液(称原料液)中大量的基体银离子(Ag1+),提纯镉-109离子(Cd2+),最后结合阴离子交换法提取Cd-109,其特征在于:根据氧化—还原电位序原理,首先在原料液中加入标准电极电位值大于镉离子(Cd2+),小于Ag1+的金属离子,作为Cd2+的保护剂,并使其不影响镉的分离;然后加入过量水合肼定量地还原银离子,还部分地还原加入的保护剂,而Cd2+不被还原,具体工艺步骤为:
(1)用硝酸溶解银靶;
(2)加热蒸干;
(3)加入保护剂金属离子,用0.05-0.15MOL/L的硝酸溶解;
(4)加入过量的水合肼还原Ag1+离子,同时部分地还原保护剂金属离子;
(5)过滤除银;
(6)加热滤液,蒸干之;
(7)用氢溴酸/硝酸混合溶液溶解之;
(8)用717型阴离子交换树脂柱吸附溶解液,加硝酸/氢溴酸混合液洗去未被还原的保护剂及银靶中的杂质65Zn2+
(9)用硝酸洗脱树脂上保留的109Cd离子。
其中原料液中加入的保护剂可以是二价的铜离子或钴离子。
另外加入保护剂的量为放射性同位素镉-109的量的1×104∽3×104倍。
本发明是基于下述基本原理:
根据氧化—还原电位原理,在标准条件下,一种物质的氧化态—还原态在某一电位下发生电极反应,根据两种物质的氧化态—还原态电位差的大小就能判断能否发生置换反应,若其电位差越大,发生置换的倾向就越大,在多种物质存在下,就出现了先后置换的顺序,再应用能斯特(Nernst)方程式:
Figure C0113143900051
(式中反应温度为25℃,n为反应中电子得失的数目)就可定量地计算出置换量。
本发明是在银靶原料液中提取镉—109,表1列出银、镉和肼的氧化—还原电位数据。
     表1 Ag,Cd和肼的氧化—还原标准电极电位值
  编号     电极反应 标准电极反应(E°,伏)
    1  Ag++e=Ag     0.799
    2  Cd2++2e=Cd     -0.402
    3  N2+4H2O+4e=N2H4+4OH-     -1.15
靶料液中主要是Ag+和Cd2+,从标准电极电位表中看出加入肼先还原Ag+,若肼过量,还将还原Cd2+,使109Cd丢失。如果在靶料液中加入其电极电位在:0.799>E°>-0.402之间的任一电极电位物质,则过量的肼先将Ag+还原得比较彻底(去除99.99%以上)再还原部分上述电极电位值的物质,从而保护了109Cd不被还原,避免了109Cd在除Ag步骤中的丢失,这种情况已被实验所证实,表2为在料液中加入Cu2+为例的实验结果。
        表2料液中Cu2+量对水合肼还原Cd2+的影响
             [Ag+∶肼=1∶7(当量比)]
Cu2+(mg)                  0           41.4    88      177       354
Ag+(0.615g)还原率(%)     >99.99     >99.99 >99.99 >99.99   >99.99
Cd2+(471μg)收率(%)      70.3        93.0    95.9    103.3     102.5
由表2看出,当水合肼过量,不加Cu2+时,将有30%的Cd2+被还原丢失掉,当料液中Cu2+≥177mg时,则Cd2+不被还原。
本发明的流程较文献报道的省去了用铜粉置换Ag1+的步骤,结果既简化了操作程序,又把Ag1+的去除率提高一个数量级。
四、附图说明
图1文献报道加肼还原银离子流程图(加铜粉)
图2本发明的加肼还原银离子流程图(不加铜粉)
五、具体实施方式:
例1:加入二价铜离子作保护剂
如图2所示,取银靶1.1克,用15mL,5MOL/L的硝酸溶解Ag靶;90℃加热,蒸干;加入24mL,0.1MOL/L的纯硝酸,其中含铜离子(Cu2+)200毫克,溶解之;加入464mL,8%肼还原上面加了铜离子的银靶原料液,银离子还原,得沉淀Ag;过滤之;加热(90℃),蒸干滤液;用20mL,0.1MOL/L HBr/0.3MOL/L HNO3溶解之,过717阴离子树脂柱;用80M1 0.1MOL/L HBr/0.3MOL/L HNO3洗去未被还原的Cu2+,以及银靶中的65Zn2+等杂质,镉—109保留在树脂上;最后用45mL,3MOL/L HNO3洗脱树脂上的镉—109。经测量沉淀的银、树脂滤出液、洗脱的杂质及洗脱后的树脂,其109Cd放射性几乎为零,说明镉—109的收率接近100%,Ag的去除率为99.99%。
例2:加入二价钴离子作保护剂
加入钴离子(Co2+)量为180毫克,其它条件相同。

Claims (1)

1.一种放射性同位素镉-109(109Cd)的制备工艺,包括用回旋加速器的质子束轰击银靶,生成镉同位素109Cd,用硝酸溶解银靶,所得银靶溶解液称为原料液,再用肼还原原料液中大量的基体银离子(Ag1+),提纯镉-109离子(Cd2+),最后结合阴离子交换法提取Cd-109,其特征在于:根据氧化—还原电位序原理,首先在原料液中加入Cu2+或Co2+金属离子,作为Cd2+的保护剂,并使其不影响镉的分离;然后加入过量水合肼定量地还原银离子和部分保护剂,而Cd2+不被还原,具体工艺步骤为:
(1)用硝酸溶解银靶;
(2)加热蒸干;
(3)加入保护剂金属离子,用0.05∽0.15MOL/L硝酸溶解;
(4)加入过量的水合肼还原Ag1+离子,同时部分地还原保护剂金属离子;
(5)过滤除银;
(6)加热滤液,蒸干之;
(7)用氢溴酸/硝酸混合溶液溶解之;
(8)用717型阴离子交换树脂柱吸附溶解液,加硝酸/氢溴酸混合液洗去未被还原的保护剂及银靶中杂质55Zn2+
(9)用硝酸洗脱树脂上保留的109Cd离子。
CNB011314397A 2001-09-10 2001-09-10 一种放射性同位素镉-109的制备工艺 Expired - Fee Related CN1147602C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011314397A CN1147602C (zh) 2001-09-10 2001-09-10 一种放射性同位素镉-109的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011314397A CN1147602C (zh) 2001-09-10 2001-09-10 一种放射性同位素镉-109的制备工艺

Publications (2)

Publication Number Publication Date
CN1341761A CN1341761A (zh) 2002-03-27
CN1147602C true CN1147602C (zh) 2004-04-28

Family

ID=4670576

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011314397A Expired - Fee Related CN1147602C (zh) 2001-09-10 2001-09-10 一种放射性同位素镉-109的制备工艺

Country Status (1)

Country Link
CN (1) CN1147602C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895877A (zh) * 2011-07-29 2013-01-30 北京有色金属研究总院 一种镉浓缩同位素的阴离子交换纯化方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201007354D0 (en) * 2010-04-30 2010-06-16 Algeta Asa Method
EP3251126B1 (en) * 2015-01-29 2019-05-15 Framatome GmbH Irradiation target for radioisotope production, method for preparing and use of the irradiation target
RU2617715C2 (ru) * 2015-07-24 2017-04-26 Объединенный Институт Ядерных Исследований Способ получения радиоизотопов серебра без носителя

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895877A (zh) * 2011-07-29 2013-01-30 北京有色金属研究总院 一种镉浓缩同位素的阴离子交换纯化方法
CN102895877B (zh) * 2011-07-29 2014-08-13 北京有色金属研究总院 一种镉浓缩同位素的阴离子交换纯化方法

Also Published As

Publication number Publication date
CN1341761A (zh) 2002-03-27

Similar Documents

Publication Publication Date Title
WO2003051494A2 (en) Method and apparatus for separating ions of metallic elements in aqueous solution
CN1147602C (zh) 一种放射性同位素镉-109的制备工艺
US5167938A (en) Process for strontium-82 separation
JP2010270359A (ja) 希土類金属の抽出剤及び抽出分離法
CN115522052A (zh) 一种乏燃料后处理高放废液中稀贵金属的回收方法
Kazi et al. Comparison of the measurement of Pu and Am isotopes by AMS using fluoride and oxide anion beams
EP0386747B1 (en) Method of producing ferromagnetic rare earth-transition metal-boron powder by precipitation
Das et al. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes
Vail et al. Method for the synthesis of iron hexacyanoferrate
Sane et al. Recovery of palladium from reprocessing waste solution
Popov THE SZILLARD CHALMERS EFFECT IN THE $ gamma $-QUANTUM IRRADIATION OF CHROMATES AND BICHROMATES
Sekine et al. Recoil implantation reaction in geometrical isomers of tris/benzoylacetonato/chromium/III
CN116564572A (zh) 一种去除医用同位素生产的靶处理废液中α核素的方法
Gusev PREPARATION OF ISOTOPE TARGETS IN AN ELECTROMAGNETIC SEPARATOR
MUTO et al. Chemical behavior of recoil species in chromium, molybdenum and tungsten hexacarbonyls in solution
WO2022055386A1 (ru) Способ разделения лютеция и иттербия методом хроматографии
Glavatskii et al. Influence of addition of rare earth metals to aluminum on the effectiveness of absorption of impurity oxygen from argon in a closed system
Ganivet Plutonium Extraction by the Formation of Insoluble Salts; EXTRACTION DU PLUTONIUM PAR FORMATION DE SELS INSOLUBLES
Kudryavtseva et al. Sorption procedure for recovery of {sup 90} Sr from nuclear fuel reprocessing solutions and its purification. II. Purification of {sup 90} Sr
Hibbits et al. THE ANALYSIS OF BERYLLIUM AND BERYLLIUM OXIDE. PART V. THE DETERMINATION OF CADMIUM
Guin et al. 18. Study of K-capture probability in the decay of Dy
Shikata et al. RESEARCH OF RADIOISOTOPES PRODUCTION WITH FAST NEUTRONS. I. PREPARATION OF CARRIER-FREE $ sup 58$ Co
Melnik et al. Extraction-chromatographic purification in Gd-153 production
KR20170091488A (ko) 신규한 구리 석출방법
Heytmeijer Recovery of yttrium and europium from contaminated solutions

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Shen Deheng

Inventor after: Wang Gang

Inventor before: Shen Deheng

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: SHEN DEHENG TO: SHEN DEHENG; WANG GANG

C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee