CN114752687A - 一种胸窗萤ssr分子标记及其引物组合和应用 - Google Patents

一种胸窗萤ssr分子标记及其引物组合和应用 Download PDF

Info

Publication number
CN114752687A
CN114752687A CN202210444640.6A CN202210444640A CN114752687A CN 114752687 A CN114752687 A CN 114752687A CN 202210444640 A CN202210444640 A CN 202210444640A CN 114752687 A CN114752687 A CN 114752687A
Authority
CN
China
Prior art keywords
ssr molecular
molecular marker
ssr
firefly
primer combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210444640.6A
Other languages
English (en)
Other versions
CN114752687B (zh
Inventor
付新华
朱馨蕾
刘全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Tingke Biotechnology Co ltd
Original Assignee
Wuhan Tingke Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Tingke Biotechnology Co ltd filed Critical Wuhan Tingke Biotechnology Co ltd
Priority to CN202210444640.6A priority Critical patent/CN114752687B/zh
Publication of CN114752687A publication Critical patent/CN114752687A/zh
Application granted granted Critical
Publication of CN114752687B publication Critical patent/CN114752687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种胸窗萤SSR分子标记,其特征在于,包括13组SSR分子标记中的一种或多种,所述13组SSR分子标记编号分别为:SSR308、SSR311、SSR313、SSR319、SSR320、SSR323、SSR324、SSR325、SSR405、SSR406、SSR501、SSR503、SSR504;且所述13组SSR分子标记位点的核苷酸序列如SEQ ID NO.1~13所示。通过本发明的胸窗萤SSR分子标记,建立技术体系,弥补了胸窗萤特异性分子标记的空白,可以用于萤火虫子代父权、遗传多样性、群体遗传学及种质进行鉴定分析,结果可被用于萤科昆虫的性选择及进化研究,以及胸窗萤的人工饲养、复育及保护的评估。

Description

一种胸窗萤SSR分子标记及其引物组合和应用
技术领域
本发明涉及DNA分子标记技术领域,具体涉及胸窗萤SSR分子标记,尤其涉及一种胸窗萤SSR分子标记及其引物组合和应用。
背景技术
简单重复序列(SSRs,SimpleSequenceRepeats),又叫做微卫星位点(Microsatellites),是由1~6bp的重复单元串联重复而成的序列(Sharmaetal.2007)。它们在原核、真核基因组中广泛分布,在基因编码区及非编码区都能找到(Lietal.2004)。作为分子标记,SSR有许多优点:在整个基因组中分布广泛、均匀且数量充足,因而多态性很高;SSR标记呈孟德尔共显性遗传,可以区分纯合、杂合基因型;PCR扩增仅需要少量DNA,且对DNA的质量要求不高。近年来还发现SSR在基因组中可能发挥着一些功能,例如影响基因调控、基因组系统组成等。因此从基因组水平上了解SSR的分布是非常重要的。传统获得SSR标记的方法需通过建立、筛选基因组文库、克隆测序、引物设计等一系列实验,耗费许多人力、物力。而现在,随着基因组测序越来越便捷,由基因组数据中直接开发SSR标记的方法也被运用得越来越多。
胸窗萤(Pyrocoelia pectoralis Olivier)普遍分布于中国湖北省,幼虫陆生。成虫性二型,雌萤翅退化,体型较雄萤大。雌虫能与不同雄虫多次交配,形成一雌多雄的交配格局。胸窗萤生活史存在一年生(以卵越冬,生活史一年)和二年生(以10.67%越冬幼虫发育形成的,生活史二年),是目前在萤火虫的研究中特殊的一个物种。
通过研究胸窗萤的SSR分子标记技术,可以用于萤火虫子代父权、遗传多样性、群体遗传学及种质进行鉴定分析,同时可被用于萤科昆虫的性选择及进化研究,以及胸窗萤的人工饲养、复育及保护的评估,然而,到目前为止,尚没有萤火虫SSR分子标记开发的相关报道。
发明内容
本发明提供的一种胸窗萤SSR分子标记及其引物组合和应用,旨在解决上述背景技术中存在的问题。
为了实现上述技术目的,本发明主要采用以下技术方案:
一种胸窗萤SSR分子标记,包括13组SSR分子标记中的一种或多种,所述13组SSR分子标记编号分别为:SSR308、SSR311、SSR313、SSR319、SSR320、SSR323、SSR324、SSR325、SSR405、SSR406、SSR501、SSR503、SSR504;且所述13组SSR分子标记位点的核苷酸序列如SEQID NO.1~13所示。
具体的,SSR308由SEQ ID NO.1所示的核苷酸序列组成,SEQ ID NO.1的核苷酸序列为:
ATTTCAAATCTCAAACTTTATTGTTTTCAAAATAAAAATGATACAAAATCTAACTGCAAATAGGAATTTCAGACCAAATCGATTATTTTTGTTACAACAATAACACTATTTTTTTTTATTTTTGTTGCTTTTTCGAAGTCATTTCACTCCACACGTTCCTCTATTTAAAAAGGTTCAACTGACGGAAGGACGGAAAAACCATCCGATTCTTTTGAAATCGAGGATAGCATAATATATTTTGAAAAATGGAACAAACCATTTCCATATAGGTACATAGATATATTAATTGAAAAATGAAAACTAAAGTACCTACTCACCGTTTTCAATTAAGACTCGATAATAATCGTCAAAGCGGAACTTCAAACTAAACATTAATTTCAAAAATTACTGAGGATGTAATAAAACATCTTACTGTTACTGCGTTCaataataataataataataataa tTAGTGTTATATCATTAAAAACAAGTGCAAGTGGAGGTAATCATGTTTTATAGATACTTATTCAAAAAATAAACTGAAAAAAAACTCCAATCGTTAAAAGAATCGCTACCTTTACCTGGTTTCATTAAAGGCAAAATAACTTGTTTGGTGACGTTAAGTCAAGGTGACCGTATTAGCTTCGTTGGTATTCGTAAACATTGAATTAATTATCTTACGTAATTACGTTTACGTTATTGAATAAAGTTCGTAAATAATAATGACGTCTTTGAAAATATTAGATTTCTCAGAAAAAAGACGTTTTATATAGCGAAAAACTGTATAAGACTGCGAAACGTCGTTCGTCCATTTTGTTTCGTACCTACGCCAAAATGGCGGTATATGCATTTATCTCCTAATTAATATTTAATAAAAACTGTTTACTGGAGTGAAATGATTTTTAAGTATGTGTCAAAGTACACCTTTGATAAGATGCTAATGCAAGATGGATTATAGGTAGGTATA;
SSR311由SEQ ID NO.2所示的核苷酸序列组成,SEQ ID NO.2的核苷酸序列为:
TTCAAGTGTGCTTATACAATCTGCCAAATTCATACTACAGAACAGTAATAATAATATTAATATTATTTAGTGATATTAATACGCGTAGTGTTTACATTCGACGCTATAACATTGTATCTAATATTTGGCAATACTTTAAGGCTTTTGTTAGTCCAATAAAATTGTAAAACATTTATTTTCAAAATTGTTCAGTATTAATGTAATTAAGCCGTTTATGGCGCCAATACTGGAAAAATAACGCAGAAAACCGTGTTGTTGGATTGATTGCAGTCGTCTAAGCTTTAATAGTATTTTCTGGAAAGGATAAATTAATAGAAATGATGCAGTTTTTTGTTATAAATTGTATTATAACCATGACTAATTTCAATCCTTTGCAAATATCTTCTTGTATGCTGAACAAATGGTTGAAAGGAAAAACTGTGCTAAATTTTAAAAACGTATTTGTGAATTTTATTTTGTGTCATACTACAGTAGTTTGTTATGACTTATGAGATGACAGtaataataataataataataataat aataataataaTGAAACCTTCACAGTAGACGTTGAGCAAATAACCTTTAACATACAAAACATTAGATTCTCATAGCAACCGGCGTTATTGCTCATTATAATTGTACCTCTGACATTGAGAGTTGATAATTACGCAACATTGCAAAAATGAGGAATATATAGGAAAAGTGACTTTGAAATTAATAATTATGTATATATATTCTAAATTGAAAATGGCCGTGGTTGCTCAAATACATACTTACCTTGTATATTCAAATTTCTAAGGTGTCTCTGAATTGTTAACGATAATTTTAAATTCTTTGCTGCTTTAAATCTATGGCTTTATTTAGCTCAAATGCCTGTGGTAACTCCTCTAATAACTGCGAGACTCATCAGAAGAGTAACGTTTGTTTTACTATAACTGAAACATCACCAACATAGACAAATAATTTTATATTATACACATTACAATTGTTTACTATTTTCATTACGTGGATACTTTAAACATATTGCTTAAGTGGTAGATGGCCTTG;
SSR313由SEQ ID NO.3所示的核苷酸序列组成,SEQ ID NO.3的核苷酸序列为:
CTAAATACACATTGATGTGGTTTGAGGGAAGAAAATGATATTGGATGGACCGAATGGGGATGCAAATTCAGAACACGATAGACGAAACGGAGGAGAAGTAATGATCATGGGCGATGTAAATGGTAGGGTAGAAAATCATCAGTTTAAACAGAAAAATATACACTAGATAACATGGGAAAAAGAAGGAAAAATCAATGATACACTACTTTCTGATAGACAAATAAGTGCATATGGAGGAGTATGGAAGACGTACCACCACTTATTAAAAGCTAGAGTGATACTAGATAAGAGAGTGAAAGAGAAAGAAACAAAAATGAAAAAAATAAGAAGCTATAAATTGAAGAAATACCAAGAACTAGAAAACTAATAAAAACAGTCGTCGACTTGTGCTACGACGACAAGGCAAACAGAGCATTATCAGGATTAAAGGCATAGTAAGGGAAAAAGAGGAAATACTTAAAGATGAGAGGCGAGTACGAAAGAAAATCTCGACCAAAATgaagaagaagaagaagaagaagaag aagaagaagaagaagaagaagaaGAGGAAAACGTTATCATGGGAGAAATTCGAGGAAAGACGAAAATAAAAAAAAAGCTTCCAGGGAAACAAGAGCAATAAGGGAAAAGTATTGACGGAGATGATCGAAGCAAACATTTCGTAAGGATCTCTCTTTTTTTAAGTTGTGATTAATATTGATATCGGCATTTATAACAATTTTTTTTCTTTCAGGCACACTCGGGACAAATATAACGTTACAGTGCCTTTACAAATCAACTGGAAGCGAATGTGATTCACCATCAGTTACTTATAACGTGACCATGTGCAGATTATGCCAAGAAAATTTGTGTAACCATTCGGTAATTCCCAACCAATTCATATCATATCAGCTGACTTGTTTTTATATTTTTACAATGTTAATTAAGTTGATAAGTTTTTATTTTTTGTAAAACTTTATCACTATTTTTATTGTAAGTATAATAAGTGCGATTACGTAGTAAATTTATTGTATAGCCAATGTACGTAAATTATCAAATAAATAA;
SSR319由SEQ ID NO.4所示的核苷酸序列组成,SEQ ID NO.4的核苷酸序列为:
CTTAAAAGCTCGGTTTTCCCTATCGAGGCAATATGTTTGGCCTATAAACAGAAATTATTTAAGCTAAAATATTACATGGGACTATTGGGTACTCCCAAAAACATACGTGTAGTAAGTGTGACACAAATTAATCAACACGTGCAGATGTCACTAATGTCAAAACGATTCTTCAGGAAGTAATCCGCAGAGGAGCCCGACCCTATTTAAACACAAACTTTTAAAGATCGCCTCGAAGATATTCAAGGTGAAAAAGTGCCTTCTCTATAAATTCCATTGCGCAAGGGCCTCTAGCATTGATTCAAGTTCCTTGGGTCCACCTTGCATAAAAATATATTTTCGAATACGTTCATTTGTTATTTTCCATTTGGTCAATGAAATACGATCTAATTATGAAATTAGATGCATTAGTTACGCCAGACAGTGTGACATCGTGTAAAGTTTCATTTGGGTTAGTTTAGGCCCACGACCTACAACTGTGTGTCTTAACACCTCTATTAAAtattattattattattattattatt attattattattatACCGAAAATTTCCAACACAAGTAGGAGTTAATCGAGATTAATTAAACTGGGGCGTGTTTGCAGAAATCTCGAGTTATTTTTAATTAATATTAATCTTGTTTGTTTCACTTGTGTCCATAGTTTAAAGATTAATGTATTTGTAAAATTGGAATTTATTTACTTTTACGTCTTGGTCTGTATCTCCACTTCTTGCGTGGGCCAGTACACTTTGGTCCTTATTTATTTCCACCGGCTCCAAAAACAGCTCCTGTAGATACAACTACCGCAGTAATCGATGACCAGCTGTTTGTATCACAAATAAGGCTTATTGATGTGCCATTAACCGTTTTTATTGTATTTTATTTTTGTTTGCTTAATAAGGAATTTATTATTATTATTATCATTGACGGTTAAAAGCAAATGTATGTTCAAAATAGGAACATTCGCTTCCTTGCAAAGCGGAATAATCTCTGCAGCACTTGTGCACCAGGATATTACAGTAATTTCAATCACAAAAAGAA;
SSR320由SEQ ID NO.5所示的核苷酸序列组成,SEQ ID NO.5的核苷酸序列为:
TTTTATTCGTATAGTAGATGTCACTATTATAATATTCTACAAATTTAAATAAAATTACCGCCTGGATATACGCATTCACATTTTTTCCTAAAATAATATAATTGTATGTTTACGGTGCTATTTAACATTTACATATTTTTATCAAGGTTGTTAGTTACAGTTCAATATACCTACTGATAATTTCTTAAATCCCAAAGTCCCCCTTCTATACCTACTAATAAAGTAATGTTTGTGTTGGAATAATAAATTTACACACGGAAATGTAAACTTTAAATAGTGTCGTACGACCATGATTTTTCATGTTGGACGATATGTAAATATTAAACTTTATTGGCATCTAAAAAATTCAAAATTGTCATAGCATAAATTATAAAGGAGAAAGTAATTATAAAGTTAAAAATTTGACCAAAGATATTCGTATCACGTTTTTGCGCATGAAACAAAATTTCTAACTGTAATCCGCGACTGTTTTGTTGTAGTCAAAAATATTAATATTGATataataataataataataataataa taataataataATGAAATTTAATCATGTGAAGCAGAAGGTACAATACATTCGTCCATACTTACCTACTTACAGAACCACTACGAATTATAATAATACTATACTAACTTAGAATATACTTTTTTTCCACGGTACTTATGATTAAATACAGAGAGGTGCGGTAGAGTCAATCCTTCACCAATTTACTACTTCCAATTAAATGTGTTCATTGTGTATGTACTAAATTTAGTGAAATTACTCGTTTTTATTATTTATTAGTTACTTACGGAGTTCCACAAAGTAAATTCAAAGAACATTAATAAAACTGTGCTTACTTTACAGACAGTTATGAGACAAAAAAAATATTTAAAAATGAAGATGACTTACCAGTCAACAATTCGATGTTTGTTAGTTTCTCGTAGAAAGGTGTTGTGAGAACGTCTGAGCGATTTATATATTTAAATTTGATTATACATATATTAGGTATACACATTATTGTATTTCCTGTCCCATTAATTGTTTTTCGCAAACTTT;
SSR323由SEQ ID NO.6所示的核苷酸序列组成,SEQ ID NO.6的核苷酸序列为:
ACTAGAGTCACTGTAGGGATTACTAATAAAACTTTACTGCCAGCAGTTTTGTTTGTGCGAGCGTCAAAGATGGACACTAGCAAAGAGAAAATACGCCATATTTTACAGTTTTTCTTGGTTAAAGGAGAAAACTGGTGGTGGATTCTGCATTACGATAGGAGGGTGGACATAGTCCACGCGTACATAGGCCTCAAATTCGGGTCCTGACTAGGGCCGTCCGACCCCGCCACGTCACTCAAGCCATTCCACACTTGAAATGAACCTGAGGATCCAGCCATCACGTGCAATTTTGGTTTCGTCGATTCCGTTCCGGTAAATTCAGATGCACCGATTGAAGGTCGATTGTCGATAACATCATGAAAATTGCCGAGTTCGACCGTCGTGTAAACACTGTTTCGATTGCCCAAAAAACCGTTTGGTATAGTGTTCCATCAGGACAGGGCACTCACATCGATAGTAACTCGCCAGAAGCTCTGGGAGGTTCTTATGCATCCACCTTataataataataataataataataa taataataataataataataGATTTATTGCCCAACAGAAAAAATTTCCAATTAACGGACATTCAGCTGCAAAAAAGTAAGGTTAAGTACTTATATATACAACTTAATAAAGTACAAAGGCGGATCCAAGGAGGGTCAAGATTATATATAAACAATAGTGATTGCGATGTCCACCGAATGTGGTAGAGAGTGATAGATCCTAATCATGCTGAGTCGAATAGGCGAGGTGCTTAGCATGTTGGTATGAGGTGCAGGATGATAAAAAGTTCGATGGTGTCGTTATACAGGATAACTAATAAGTGATAATAACTCAGTACAATCAATTAAGTTATTCAACAGTTTGTACAGAAACGTAACAGATATTTTCCTACGCCTAGACCCTAATAATATGAAATTAAAACGAGGCAGCAATAACTGATGGTCAAATCCTCTGGGAGGATAAATAGAGTCAGCATTATACAGTAGATATTTTAAAAATGTACGCTGCACTATCTCAAGTTTGTCTATCTGGTTTCTTTGCG;
SSR324由SEQ ID NO.7所示的核苷酸序列组成,SEQ ID NO.7的核苷酸序列为:
ATCATGTACGTACTTTCGGTTACTCTCTGTTATTTCCCTCTACTTCCTAATATTTCCTTACACTTCCCTATAATTGTACGTTAAAGTTGTTTAAATAAAACATTAAACAATGTTGTTTAAATAAAATTAATATTTGTCAAGAAACTCAAACACGAGAGACATTTTATAATAAGAAATATAAACTATGATATCTTCACAGAGTACCTATTTGATAATTCCATATGTACCATATGTGTAAAATAGAGTATATCTCAACCCACTTCTTATCTTTTGTTTATTTTAGTTAATTAGGCATCGTTAAAAAAATTGTTTTTCATTGTGTTACTTTGGTTCTGATGGATCACGCTGAGTTAGAAATACACGTGTTACAGTTGCACTTATGTTTGTGAGCTTCAAGCGATGCAACACAGGTATGTGCTTTGGCTTGTGACGTTAAGAGTCTTAACTTTTGTTTACGCTTTTTATGTAGATATTTTACTAACTGCTTATATAATATTACtattattattattattattattatt attattattatTTTGGAAGTGATTTTAAAGTGTAAGGCTCTTAACTTTTTCTCTTTTTATTCGTCAGTATTATTGAAATCTATTAATTTTTTTAAGGACGACCTTGAAAGCTTCAGACATTCCAGTGCAAGAGATTTGGCTGCATTAGCATCCGAACTTGCAAAAAGTGAAGAGGAAAGGCGCCACTTAACAGATTTAGTTACCGTACTAAGACAGAGAAGTTTGTCGAATTCTGAAGAGAATAGTCAAGAAAATGCTGAATTGAAACTGCTAGAGCAGAGACTTGAGGAAGCCCATTTACATTTAGCCGATATTAAAACATCGTGGAGTGATAAAATTGCTTCTTTAGAAACTCAGGTATAATATTCATTGATATTGCACTATTTGTGATCAGTAACATGTTCTTAGGTTGGTAGATTGAGCCGACAAGCCGCAGAAGAAAGTGCGGAAAGGAGAAGAGCGGTACAAGAGAAAGGTGTATTGTCCGAAAAGGTAAAACAAATGGAGTGCG;
SSR325由SEQ ID NO.8所示的核苷酸序列组成,SEQ ID NO.8的核苷酸序列为:
TGCAAAAGTGAGCTATTTATACTAGGTAGGTACTTAAAGTGGAAGTGGCATAACTAGTTTATAAATTCTGATAAGACTAAAGGACCTGAATCATCAGCATTTACTACAGAAAGCGTTTCTTGTTGAGAATTTCTAAACTTTCATAACAGTCAAGTTTCCTTCTTATTATTAACTATTTGCGTAATAACTAAAGAAATTTTTAATATGTAGGGTAACGGCAGATTTATCCCAAGAATTGTACCTATTTGAGGTGAGCCAAGTGCTCCTTGAAACAAATTTTGAATGATCTTTTAGTTTGCCCAATATACACTCGGTTACAGTTTTTACAATCGGTTTTATATATTCCGAACTTATCGTTCATATCTACTGGGCCTTTAGGATTACCTAAAAGCTTTTGTAAACTACATTCTGAAGTTGTGACCGTTTGCACATTTTCATTGCGCTTTTTAGCACCTTCAACTGAGGACTTTTGTAAAGGTTGTGTAATGGGAAAGCAAACaataataataataataataataata ataataataataataataatAAACTGTGAACAATTTGAATAGGTATTGGCCAGAGTGGGCGAAGTATGTAAAGCCAAATCTCAAATCTTATTCTCAAAGAAACTCTGTTTCAAAGATTTATTTTTATTTTTTATTTTACCTTTTTAAACATTAAAAATATAAATTTTCATTTATGTTTTTGTTGCTAATGTTACTAGATTTTTTTAATTTTTGGTTTTGTTTAGAGAACACAAAATTATTTCTTATTGCAAATGTAGTTCTCAAATGGGAATAAAACATTCTGTTTTTAAATAATAAAATTATTTGAGCGACAAATGCATTTATTTTATTATCCCCTATCTTCGTAATAACAACAGATAGTTTTTGAACCACTTTTGGCAAAATTAGATAATTCATGTAATAGAGGGTTAAGACTAAGAGACACAAATGCATTTGTTGACATTGTGACAAATGTGGGAATAAAATTCAAATAATTAAACGAAAACCAATAAAGAACTTGATAAATATTCACATGATGACC;
SSR405由SEQ ID NO.9所示的核苷酸序列组成,SEQ ID NO.9的核苷酸序列为:
TTTTTCTTTTCTTCCAATTTCATTCCTCTTCTTTTCATTTCTTCTCCCCCTTCTCTTCTCCTTAATCTCGACGTTTTGGCGCATGAGTTTTACATAATTTTCTTCCTTTGTCCATTCTTCTACTTCTTCACATATCGTTCTCCTTTTATTTACTGCAAACGGTGAGGCTCTGACTTGACACTGTATTTTTTTCCATTCTATAAACCTCTGCTATTTTCTTTTACTTCTTCCCATTTCTTTCTCTTTCTTTTCCTGCTCCTCTTTATCTTAATCTGATGTCCATATAATCAtattta tttatttatttatttatttattTCTTCTTTTGTCCGTCCCTTTCTGTCTTTCGCCTTTTCTTATTCTGTTCCCATTATATTCCTTTTCTTTTTATTTCTTCTCCTTCTTTTCTTAAACATCATTACACCAACGCGTAAGACTTTGAGTTCAG;
SSR406由SEQ ID NO.10所示的核苷酸序列组成,SEQ ID NO.10的核苷酸序列为:
ATCTAGAATTCGCAATTACTATAACTAGTTGATGACTTTGTCTTAAACATAAGCGTAAATTTATTCTGAAACAAGGTATATTCCTACCGAATTACGTGACTCCGTAGGTACCTTTCATTTATGCCTATAAATTTTTCGTTAATTTCTTAGAGAAATTAACAAAAACACGACATACTTTTTTAGCGAAATTAAAACAAATTTCTTGAATGGACGGACCTAGTTTGAGTGAAACTGTCATTCACAACCATAAGTTTATGACATTATTAACAATGTAATTGAGCGTGAGAAAGTCATGCAAAAaaataaataaataaataaatTATACACCTTATGGTTAAAATCGACCTTTCACAATCATCAAAATATCAAAGTAGGTATTAACAGCGTTCAAGGATAGAAATTTTGTAGAGCGTCG;
SSR501由SEQ ID NO.11所示的核苷酸序列组成,SEQ ID NO.11的核苷酸序列为:
CCTACGCCTAACACAACTCCTGCAAGAGCTCCCCCAGAATACGAAATCCTGCTAGAAAATGCACCCTACTCCATCCGTTAACATCTGTTAGCTCAGCGCGGAAAACAAATACATAACCAACAGATTACTGCCTATGCCATTTCTTTTCCAGAGTTAGCAGAAAACCGCCCAACCAGTCACCTGAAAACACTGAATTATAATTCAGTGCCTGAAACCCACTTTCCAACCACCTATTTGCAACGATGCGAACGATGATGACCACAGCAATGATAAGGACAACGATTAAACATATTTCTATTTATAGGTACATATCTCAAAAACTTTATTTTGTTTTTTTTGTAAATAACTTATTACCATGTACATCCAAAAATAATAATGTAACTACTAACATAAAACAACCGGCGTGGGCTGAAGAGGATAATAATCCTGAGCAGTCCAAACAACACTTAGGTACTAACCCAAAATGAATTGTAAATACTCCTTATAATAATAAACATTTttgaattgaattgaattgaattgaa ttgaattgaaGTTAGGTGTAAAGTAAACGTTTTTAACCCGAATTCTCACTATGTGCCAAATAAGACGTTGACAGTGAATCCACGTCCTTCGCCACCTCCACAAGGAGCAATTCTAGAGGTTTTTGGTTTTCCTAAAACAATACAACTCTGTCGACGTTTTTGTTTTCAAGATTACTTAAGATAACAGGTTAAGATAACATATAAGTTTTACAAAGAATCGTTTCACCTCTTTTTTGGATATGAGAGTTAATACTGTTACTAACGTAAGTAATGAACTTATAAAAGACTGTATATGTAGTTAGACACTAAATGTTCATCATGGCGTAATTCCAACGAAACAACTAAATCAGATTTTTTTGTTAAAGTAACAAGAAGAAAGACATTTTTGCGTGAAGTGAAAAGTAAGATACGAAACAGACTGATTAAAAATTAAATCCTCGTTAGTTTGCA;
SSR503由SEQ ID NO.12所示的核苷酸序列组成,SEQ ID NO.12的核苷酸序列为:
CAGACGCCACTTCCTTCATAGTGACTTTGACTTAAACGACATAATTAGCTGGAATTGTGAAATCGAAAGCTGTCGATCAGAATATAATAGTGGATTGTATATTTTTTAATTTACTTACCAACTTTCCGCTTCAAATTGTTAAAAACGAAATGTAGTAAATAGAATGGAGGGGGAGAATGTTTTAATACTCAAATTTTACCTCTCACGGCAAAATTTGAAAATTAAGATATTCTTCCTCTTTCATTACTGGAACCGATGCACTAAAATTACAACTAAAAATGTCCAATATTTCTTATTATATTTTGGAAAACATTTGTATCTAAAGATTCATCGATCTTCTCCGTATTAATCAATTAGATAATAATAATAATTTAAATTGTAATGTTTGGACACAGTAGTAACACTACATTTCAATTTAAATCAGACATGGGAGGCTAGTTAGTAACTTCAGGAATGAGCATATATCGAACGTAAGAGAGAAGACTATATTCAATGAAGGtacaatacaatacaatacaatacaa tacaaaatacaatacaaaatacaatacaaaatacaatacaaaatacaatacaatacagtacagtacagtacagtac agtacagtacagtacaatacaatacaatacaatacaaCAATACAACAATACAATACAATACAACAATACAACAATACAATACAATACAATACAACAATAAGTGTTAACAAAGTATTCGATTTCTACAACAATACAATTTATTTTCCCCCATATATTTCACCAACCACCTTTGTTCTCTCCAACACCTCCTTCGTCCAATCCTTCTCTTCCCCCTTTCCCCTAGTATATGCCGCCTTTTTCTCCTGTCCCTCCGCAGTTCTTCACACTTCACCGTCATATGCTGCCAACTTTGATACCCTTCCCTGCACAACCTGCACCTTCTTGCTCCCTCCAGTACTTATTCCCATTTTCCTCATTTCCACATCTAAACCGTGCTATCATTCCTTTCACCTACTGTACTACAGTGTAGTACAGGTTTTGAAGTTCAACAACATAATAGAAACGCCCCAAGGTAATCTACATAACAGTTACCCAACTGCCGTCAGGCAGAAGACACGAAATAACGTTAAGCCGCATAGAGGAACAAGAAGCAGACCG;
SSR504由SEQ ID NO.13所示的核苷酸序列组成,SEQ ID NO.13的核苷酸序列为:
CGAGTTAACAGAGAAAAACTATATGGTCGATTTATGAAAGAAAGAGTATATTTGACCCATGTACTCATGGCAATATAAAGTTTATGTAAATGTCAAAAGGAAAACGAACCCCAAAGAGGTGTCTCTTAATAAAGAAGGATTTGGGGAAAATTACGACATGAAAATATCTAAAAACAAAACAAAAGTACACAATAACAACAAAAACTGATATTCACCATAAGATCTTAAAGCAGATAGTTGAACTATCTGGGATGCAGCATCTCTTAATGAACAAAACAGAGACATACAAAGGATTGATCAAAGGGCCATATGCAAAACCTTATGGAGCTGGGCTAAAACCAGGCCGTAAAAAAACCTATGCCATTTGATAGATCTTTTTGCATAGACTAAAAGTGCTGCTGGCGACAAAGCTCGATTTCATTTACTTAGGTGACTTCAGCCTCCAAAGTTATCATTATACattatattatattatattatattatacattattattattattattATCCATTGATTTCAGATTATACATAGATACATGTTCCATTATAAAATAAAACAATATCAATGTAATTTCTATGGAATGTAATAGTAATAAGATGTTTAAAATATATTTTTTTCTTTTTAACATGATTTTTGCTTAGACCATTGTATTTGAAACATATTTGGGTATTACCATTGGGTAAATAATGTTAATGGTATTACGTAATAAAATATGTAAAGTATAATGCCTCCTAGATGTTTGCTATAATACAAATGATAACTTTGGAGGCCGAAAAGTCACCTAAGCAAATGAAATCGAGCTTTGCCGCCTACTTCTAATCTACGCAAAAAGATCTATCAAATGGCATCGGTCTCTTTACGGCCTGGTCTTAGTCCAGCTCAAATAAGGCCTTTGGACGTACGTGTAGAACTTTCAACCGAAATTTAAGAAAGAAAACACACCAAAAATTCCATGAGCGTAGCAGTTCGCACTCTTATGGGTGGTAACTGGTAAATGAGAGAAAA。
本发明还提供了用于扩增上述胸窗萤SSR分子标记位点的引物组合,所述SSR分子标记的正向引物组合的核苷酸序列如SEQ ID NO.14~26所示,反向引物组合的核苷酸序列如SEQ ID NO.27~39所示。
具体的:
Figure BDA0003616115780000081
Figure BDA0003616115780000091
其中,优选的,所述SSR分子标记的引物组合设计的条件如下:以被检测到的SSR上下游100bp侧翼序列进行引物设计,引物长度为20bp~28bp;退火温度为60℃~65℃;且每组引物的正向引物组合与反向引物组合之间的退火温度差的最大值为1℃;扩增序列时,核心单位包含3-5个碱基的串联重复。
优选的,引物长度为25bp;退火温度为63℃。
本发明还提供了一种胸窗萤SSR分子标记的获得方法,包括以下步骤:
S1胸窗萤基因组DNA的提取和检测;
S2对胸窗萤的基因组DNA样本进行PCR扩增:反应体系为:ddH2O,5.28μL;dNTP,0.8μL;Buffer,1μL;Mg2+,0.8μL;BSA,0.2μL;Primer forward,0.2μL;Primer Reverse,0.2μL;Taq,0.2μL;DNA模板,1μL;PCR扩增条件为94℃预变性5min;94℃变性30sec;60℃退火30sec,72℃延伸30sec;8个循环,每循环降1℃;然后94℃变性30sec;60℃退火30sec;72℃延伸30sec;27个循环;72℃延伸5min;4℃保存,得到PCR产物。
本发明的另一个目的是提供了胸窗萤SSR分子标记在萤火虫遗传分析或人工饲养中的应用。
同时,本发明还提供了胸窗萤SSR分子标记位点的引物组合在萤火虫遗传分析或人工饲养中的应用。
与现有技术相比,本发明具有以下有益效果:通过胸窗萤SSR分子标记,建立技术体系,弥补了胸窗萤特异性分子标记的空白,可以用于萤火虫子代父权、遗传多样性、群体遗传学及种质进行鉴定分析,结果可被用于萤科昆虫的性选择及进化研究,以及胸窗萤的人工饲养、复育及保护的评估。
附图说明
图1为13个SSR分子标记PCR扩增结果电泳图;
图2为不同交配次数亲子关系分布百分比的线箱图,其中,星号表示最大值和最小值,线体上边缘和下边缘表示内限和外限,箱体上边缘和下边缘分别表示上四分位数和下四分位数,箱体中线表示中位数,箱体中黑点表示平均值;其中,A为一只雌虫与两只雄虫交配;B为一只雌虫与三只雄虫交配。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例所需药剂为常规实验药剂,采购自市售渠道;实施例中未提及的实验方法为常规实验方法,在此不再一一赘述。
实施例1
1、胸窗萤全基因组SSR分析及引物设计
将胸窗萤基因组从头测序,拼装得到的scaffold文件作为输入文件,利用MISA进行全基因组SSR扫描,运用primer3,以被检测到的SSR上下游100bp侧翼序列进行引物设计。引物设计的条件如下:最适长度24bp;最短长度20bp;最长长度28bp;最适退火温度63℃;最低退火温度60℃;最高退火温度65℃;一对引物退火温度差的最大值为1℃。分析了SSR位点数量和类型,之后设计开发可用于不同雄性父权鉴定的高效SSR引物。考虑到保守性和稳定性,申请人主要用的是三碱基、四碱基及五碱基重复8~15次的微卫星。共设计了44对鉴定SSR的引物
2、胸窗萤基因组DNA的提取和检测
取胸窗萤标本(约0.1克),置于1.5ml的离心管中,采用改进过的CTAB法提取基因组DNA:1( )向上述加入标本的离心管中加入少许石英砂,再加入250μL的2×CTAB裂解液,用研磨棒进行充分研磨,直至呈匀浆状,再加入600μL的2×CTAB裂解液,颠倒混匀。(2)将装有研磨充分标本液的离心管置于65℃水浴1小时(其间每10分钟翻转离心管1次)。(3)加入苯酚和氯仿各300μL,翻转离心管几次,13000rpm离心10分钟。(4)收集上层水相,转至新的1.5mL离心管中。(5)重复(3)–(4)步2至3次,直至两相界面上无沉淀为止。(6)加入等体积的氯仿抽提一次,收集上层水相。(7)加入0.5–1倍体积预冷的异丙醇(或2倍体积的无水乙醇),4℃下13000rpm离心10分钟。(8)小心倒去上清液,将离心管扣压在干净的面巾纸上,吸干残留的上清液。(9)加入1mL预冷的75%乙醇,翻转离心管几次,13000rpm离心10分钟,弃除上清液,重复两次。(10)置于室温或真空系统中干燥。(11)加入50μL无菌水室温溶解,于-20℃保存备用。
电泳检测基因组DNA的提取情况:将提取的DNA样品与10×LoadingBuffer(已加溴酚蓝)按10:1混合上样于1%的琼脂糖凝胶,于150V电压下电泳10分钟,并于紫外灯下检测。
3、SSR片段的PCR扩增反应
对60只雄成虫基因组DNA样本进行PCR扩增,反应体系为:ddH2O,5.28μL;dNTP,0.8μL;Buffer,1μL;Mg2+,0.8μL;BSA,0.2μL;Primer forward,0.2μL;Primer Reverse,0.2μL;Taq,0.2μL;DNA模板,1μL;PCR扩增条件为PCR扩增条件为94℃预变性5min;94℃变性30sec;60℃退火30sec,72℃延伸30sec;8个循环,每循环降1℃;然后94℃变性30sec;60℃退火30sec;72℃延伸30sec;27个循环(根据每个座位情况对其进行调整);72℃延伸5min;4℃保存,PCR产物加5UL loading buffer,PCR仪器上94℃变性5min,点样于4300电泳槽上,琼脂糖凝胶电泳1.5-2h。电泳完成后根据胶图统计每个座位每个样品的多态性数据。挑选Number of Different Alleles>4的SSR位点进行多态性评估。以60只不同雄性亲本DNA为模板进行PCR扩增和筛选,根据电泳结果选择特异性好、胶图带型漂亮,易分辨、群体多态性好,等位基因多且分散的引物扩增结果,最终选择了本发明公开的13对SSR引物,用于雄性个体父权研究,如图1所示。
该13对SSR引物如下所示:
Figure BDA0003616115780000111
Figure BDA0003616115780000121
4、基于SSR数据的遗传多样性分析
使用遗传分析软件GenAlEx【Peakall,R.and Smouse P.E.(2006)GENALEX 6:genetic analysis in Excel.Population genetic software for teaching andresearch.Molecular Ecology Notes.6,288-295.】计算不同等位基因的数量(N),有效等位基因数(Ne),Shannon's信息指数(I)、观测杂合度(Ho)、期望杂合度(He),无偏期望杂合度(uHe),平均多态信息含量(PIC),并进行哈代-温伯格平衡卡方检验。
从结果看,在本研究的60个个体中,每个SSR等位基因数在4到34之间,平均为13.692±2.052。观察到的杂合性水平(Ho)从0.400到0.900,平均值为0.718±0.047.期望杂合度He从0.594到0.940,平均值为0.862±0.028.Ho是群体中每个位点杂合子个体的实际比例,而He是每个HWE估计的期望值。Ho和He是估计群体遗传多样性最广泛使用的参数之一。个体成员组成结构甚至种群进化信息可以从Ho和He处获得。当Ho=He时,这意味着种群是随机交配的。当Ho<He时,这意味着人口正在近亲繁殖。当Ho>He时,这意味着人口正在异交。13个位点的Ho均小于He,这可能是由于采集的胸窗萤来源地均为湖北武汉,而胸窗萤雌虫无翅,活动能力较弱,因此导致了种群数量较小,种群中存在近交和漂变。
多态性信息含量(power of information content,PIC)是衡量SSR标记遗传变异相对能力的指标。标记基因型多态性越高,PIC值越高【Pan,Y.-B.Highly polymorphicmicrosatellite DNA markers for sugarcane germplasm evaluation and varietyidentity testing.Sugar Tech.8,246–256(2006).】.PIC>0.50表明多态性标记信息量大,0.50>PIC>0.25表明信息量适中,PIC<0.25表明信息量较小。检测结果表明PIC水平在0.516至0.937之间,平均值为0.845±0.119.表明开发的13个SSR标记多态性标记信息量大。
有三个SSR位点不符合哈温平衡(p<0.01)【Rodriguez,S.,Gaunt,T.R.&Day,I.N.Hardy-Weinberg equilibrium testing of biological ascertainment forMendelian randomization studies.Am.J.Epidemiol.169,505–514(2009).】,分别是SSRloci:SSR325、SSR406和SSR503.HWE描述,在理想条件下,不存在突变、自然选择、个体进出、种群无限大、种群内随机交配。因此,基因频率不会随时间或世代而改变。然而,总会有一个或多个干扰因素(例如遗传漂变、自然选择、突变、基因流动、种群瓶颈、创始人效应和近亲繁殖)影响自然界中的基因频率【Masel,J.Rethinking Hardy-Weinberg and geneticdrift in undergraduate biology.BioEssays 34,701–710(2012).】.因此,HWE在本质上很难实现。在本研究中,13个标记中有3个位点偏离HWET平衡。
上述参数结果表明,选择的13个SSR位点的多态性强,在胸窗萤雄虫个体中是高度可变的。
实施例2
胸窗萤子代父权鉴定
挑选体长为24.20±2.78mm,体宽为7.27±0.59mm,体重为0.34±0.09g的雌虫,以及体长为17.73±1.35mm,体宽为6.78±0.59mm,体重为0.07±0.02g的雄虫进行交配,选取一只雌萤和2只雄萤交配(n=16),另一组设计为一只雌萤和3只雄萤交配(n=9),并产卵孵化为幼虫,分别收集每只雌虫和对应交配雄虫以及所有成功孵化的子代幼虫,进行SSR分析,利用荧光标记的PCR引物对多个微卫星多态位点进行扩增,然后采用高分辨率胶电泳对扩增片断进行分离,通过荧光检测系统(Licor 4300)确定扩增片断的长度,实现对微卫星多态位点的分型。利用软件CERVUS3.0【Kalinowski S T,Taper M L,Marshall TC.Revising how the computer program CERVUS accommodates genotyping errorincreases success in paternity assignment[J].Molecular ecology,2007,16(5):1099-1106.】根据基因的分离定律和自由组合定律进行父权鉴定和计算,统计每一个雄虫后代的比例,结果如图2所示。
结果表明当雌虫与两只雄虫交配后,第二只雄性父权(The second malepatriarchy)的均值为0.4618±0.0824(n=16,检测子代萤火虫个数1346只);第一只和第二只之间无显著差异,当雌虫与三只雄虫交配后,P1(第一只雄性父权The second malepatriarchy)均值为0.1459±0.0677,P2均值为0.2530±0.0986,P3(第三只雄性父权Thesecond male patriarchy)均值为0.6012±0.1013(n=9,检测子代萤火虫个数656只),第一只、第二只以及第三只之间存在显著差异(P<0.05)。上述结果表明,交配次数对父权分配影响显著,在交配次数中,交配两次对父权分配的影响不显著;交配三次对父权分配的影响显著,最后交配的雄萤父权所占比例最大。
上述结果主要是由于胸窗萤最后交配的雄萤通过将精液注入雌萤储精囊,挤压排除之前交配雄萤精子的方式,完成精子竞争行为所导致,且SSR的结果验证了上述推测。通过上述结果,有助于理解萤科昆虫的交配后性选择及进化,也可以为改进胸窗萤的人工饲养、复育及保护提供基础理论依据。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。
序列表
<110> 武汉霆科生物科技有限公司
<120> 一种胸窗萤SSR分子标记及其引物组合和应用
<130> 2022.04.12
<160> 39
<170> SIPOSequenceListing 1.0
<210> 1
<211> 949
<212> DNA
<213> Artificial sequence
<400> 1
atttcaaatc tcaaacttta ttgttttcaa aataaaaatg atacaaaatc taactgcaaa 60
taggaatttc agaccaaatc gattattttt gttacaacaa taacactatt tttttttatt 120
tttgttgctt tttcgaagtc atttcactcc acacgttcct ctatttaaaa aggttcaact 180
gacggaagga cggaaaaacc atccgattct tttgaaatcg aggatagcat aatatatttt 240
gaaaaatgga acaaaccatt tccatatagg tacatagata tattaattga aaaatgaaaa 300
ctaaagtacc tactcaccgt tttcaattaa gactcgataa taatcgtcaa agcggaactt 360
caaactaaac attaatttca aaaattactg aggatgtaat aaaacatctt actgttactg 420
cgttcaataa taataataat aataataatt agtgttatat cattaaaaac aagtgcaagt 480
ggaggtaatc atgttttata gatacttatt caaaaaataa actgaaaaaa aactccaatc 540
gttaaaagaa tcgctacctt tacctggttt cattaaaggc aaaataactt gtttggtgac 600
gttaagtcaa ggtgaccgta ttagcttcgt tggtattcgt aaacattgaa ttaattatct 660
tacgtaatta cgtttacgtt attgaataaa gttcgtaaat aataatgacg tctttgaaaa 720
tattagattt ctcagaaaaa agacgtttta tatagcgaaa aactgtataa gactgcgaaa 780
cgtcgttcgt ccattttgtt tcgtacctac gccaaaatgg cggtatatgc atttatctcc 840
taattaatat ttaataaaaa ctgtttactg gagtgaaatg atttttaagt atgtgtcaaa 900
gtacaccttt gataagatgc taatgcaaga tggattatag gtaggtata 949
<210> 2
<211> 1035
<212> DNA
<213> Artificial sequence
<400> 2
ttcaagtgtg cttatacaat ctgccaaatt catactacag aacagtaata ataatattaa 60
tattatttag tgatattaat acgcgtagtg tttacattcg acgctataac attgtatcta 120
atatttggca atactttaag gcttttgtta gtccaataaa attgtaaaac atttattttc 180
aaaattgttc agtattaatg taattaagcc gtttatggcg ccaatactgg aaaaataacg 240
cagaaaaccg tgttgttgga ttgattgcag tcgtctaagc tttaatagta ttttctggaa 300
aggataaatt aatagaaatg atgcagtttt ttgttataaa ttgtattata accatgacta 360
atttcaatcc tttgcaaata tcttcttgta tgctgaacaa atggttgaaa ggaaaaactg 420
tgctaaattt taaaaacgta tttgtgaatt ttattttgtg tcatactaca gtagtttgtt 480
atgacttatg agatgacagt aataataata ataataataa taataataat aataatgaaa 540
ccttcacagt agacgttgag caaataacct ttaacataca aaacattaga ttctcatagc 600
aaccggcgtt attgctcatt ataattgtac ctctgacatt gagagttgat aattacgcaa 660
cattgcaaaa atgaggaata tataggaaaa gtgactttga aattaataat tatgtatata 720
tattctaaat tgaaaatggc cgtggttgct caaatacata cttaccttgt atattcaaat 780
ttctaaggtg tctctgaatt gttaacgata attttaaatt ctttgctgct ttaaatctat 840
ggctttattt agctcaaatg cctgtggtaa ctcctctaat aactgcgaga ctcatcagaa 900
gagtaacgtt tgttttacta taactgaaac atcaccaaca tagacaaata attttatatt 960
atacacatta caattgttta ctattttcat tacgtggata ctttaaacat attgcttaag 1020
tggtagatgg ccttg 1035
<210> 3
<211> 1047
<212> DNA
<213> Artificial sequence
<400> 3
ctaaatacac attgatgtgg tttgagggaa gaaaatgata ttggatggac cgaatgggga 60
tgcaaattca gaacacgata gacgaaacgg aggagaagta atgatcatgg gcgatgtaaa 120
tggtagggta gaaaatcatc agtttaaaca gaaaaatata cactagataa catgggaaaa 180
agaaggaaaa atcaatgata cactactttc tgatagacaa ataagtgcat atggaggagt 240
atggaagacg taccaccact tattaaaagc tagagtgata ctagataaga gagtgaaaga 300
gaaagaaaca aaaatgaaaa aaataagaag ctataaattg aagaaatacc aagaactaga 360
aaactaataa aaacagtcgt cgacttgtgc tacgacgaca aggcaaacag agcattatca 420
ggattaaagg catagtaagg gaaaaagagg aaatacttaa agatgagagg cgagtacgaa 480
agaaaatctc gaccaaaatg aagaagaaga agaagaagaa gaagaagaag aagaagaaga 540
agaagaagag gaaaacgtta tcatgggaga aattcgagga aagacgaaaa taaaaaaaaa 600
gcttccaggg aaacaagagc aataagggaa aagtattgac ggagatgatc gaagcaaaca 660
tttcgtaagg atctctcttt ttttaagttg tgattaatat tgatatcggc atttataaca 720
attttttttc tttcaggcac actcgggaca aatataacgt tacagtgcct ttacaaatca 780
actggaagcg aatgtgattc accatcagtt acttataacg tgaccatgtg cagattatgc 840
caagaaaatt tgtgtaacca ttcggtaatt cccaaccaat tcatatcata tcagctgact 900
tgtttttata tttttacaat gttaattaag ttgataagtt tttatttttt gtaaaacttt 960
atcactattt ttattgtaag tataataagt gcgattacgt agtaaattta ttgtatagcc 1020
aatgtacgta aattatcaaa taaataa 1047
<210> 4
<211> 1038
<212> DNA
<213> Artificial sequence
<400> 4
cttaaaagct cggttttccc tatcgaggca atatgtttgg cctataaaca gaaattattt 60
aagctaaaat attacatggg actattgggt actcccaaaa acatacgtgt agtaagtgtg 120
acacaaatta atcaacacgt gcagatgtca ctaatgtcaa aacgattctt caggaagtaa 180
tccgcagagg agcccgaccc tatttaaaca caaactttta aagatcgcct cgaagatatt 240
caaggtgaaa aagtgccttc tctataaatt ccattgcgca agggcctcta gcattgattc 300
aagttccttg ggtccacctt gcataaaaat atattttcga atacgttcat ttgttatttt 360
ccatttggtc aatgaaatac gatctaatta tgaaattaga tgcattagtt acgccagaca 420
gtgtgacatc gtgtaaagtt tcatttgggt tagtttaggc ccacgaccta caactgtgtg 480
tcttaacacc tctattaaat attattatta ttattattat tattattatt attattatac 540
cgaaaatttc caacacaagt aggagttaat cgagattaat taaactgggg cgtgtttgca 600
gaaatctcga gttattttta attaatatta atcttgtttg tttcacttgt gtccatagtt 660
taaagattaa tgtatttgta aaattggaat ttatttactt ttacgtcttg gtctgtatct 720
ccacttcttg cgtgggccag tacactttgg tccttattta tttccaccgg ctccaaaaac 780
agctcctgta gatacaacta ccgcagtaat cgatgaccag ctgtttgtat cacaaataag 840
gcttattgat gtgccattaa ccgtttttat tgtattttat ttttgtttgc ttaataagga 900
atttattatt attattatca ttgacggtta aaagcaaatg tatgttcaaa ataggaacat 960
tcgcttcctt gcaaagcgga ataatctctg cagcacttgt gcaccaggat attacagtaa 1020
tttcaatcac aaaaagaa 1038
<210> 5
<211> 1035
<212> DNA
<213> Artificial sequence
<400> 5
ttttattcgt atagtagatg tcactattat aatattctac aaatttaaat aaaattaccg 60
cctggatata cgcattcaca ttttttccta aaataatata attgtatgtt tacggtgcta 120
tttaacattt acatattttt atcaaggttg ttagttacag ttcaatatac ctactgataa 180
tttcttaaat cccaaagtcc cccttctata cctactaata aagtaatgtt tgtgttggaa 240
taataaattt acacacggaa atgtaaactt taaatagtgt cgtacgacca tgatttttca 300
tgttggacga tatgtaaata ttaaacttta ttggcatcta aaaaattcaa aattgtcata 360
gcataaatta taaaggagaa agtaattata aagttaaaaa tttgaccaaa gatattcgta 420
tcacgttttt gcgcatgaaa caaaatttct aactgtaatc cgcgactgtt ttgttgtagt 480
caaaaatatt aatattgata taataataat aataataata ataataataa taataatgaa 540
atttaatcat gtgaagcaga aggtacaata cattcgtcca tacttaccta cttacagaac 600
cactacgaat tataataata ctatactaac ttagaatata ctttttttcc acggtactta 660
tgattaaata cagagaggtg cggtagagtc aatccttcac caatttacta cttccaatta 720
aatgtgttca ttgtgtatgt actaaattta gtgaaattac tcgtttttat tatttattag 780
ttacttacgg agttccacaa agtaaattca aagaacatta ataaaactgt gcttacttta 840
cagacagtta tgagacaaaa aaaatattta aaaatgaaga tgacttacca gtcaacaatt 900
cgatgtttgt tagtttctcg tagaaaggtg ttgtgagaac gtctgagcga tttatatatt 960
taaatttgat tatacatata ttaggtatac acattattgt atttcctgtc ccattaattg 1020
tttttcgcaa acttt 1035
<210> 6
<211> 1044
<212> DNA
<213> Artificial sequence
<400> 6
actagagtca ctgtagggat tactaataaa actttactgc cagcagtttt gtttgtgcga 60
gcgtcaaaga tggacactag caaagagaaa atacgccata ttttacagtt tttcttggtt 120
aaaggagaaa actggtggtg gattctgcat tacgatagga gggtggacat agtccacgcg 180
tacataggcc tcaaattcgg gtcctgacta gggccgtccg accccgccac gtcactcaag 240
ccattccaca cttgaaatga acctgaggat ccagccatca cgtgcaattt tggtttcgtc 300
gattccgttc cggtaaattc agatgcaccg attgaaggtc gattgtcgat aacatcatga 360
aaattgccga gttcgaccgt cgtgtaaaca ctgtttcgat tgcccaaaaa accgtttggt 420
atagtgttcc atcaggacag ggcactcaca tcgatagtaa ctcgccagaa gctctgggag 480
gttcttatgc atccacctta taataataat aataataata ataataataa taataataat 540
aatagattta ttgcccaaca gaaaaaattt ccaattaacg gacattcagc tgcaaaaaag 600
taaggttaag tacttatata tacaacttaa taaagtacaa aggcggatcc aaggagggtc 660
aagattatat ataaacaata gtgattgcga tgtccaccga atgtggtaga gagtgataga 720
tcctaatcat gctgagtcga ataggcgagg tgcttagcat gttggtatga ggtgcaggat 780
gataaaaagt tcgatggtgt cgttatacag gataactaat aagtgataat aactcagtac 840
aatcaattaa gttattcaac agtttgtaca gaaacgtaac agatattttc ctacgcctag 900
accctaataa tatgaaatta aaacgaggca gcaataactg atggtcaaat cctctgggag 960
gataaataga gtcagcatta tacagtagat attttaaaaa tgtacgctgc actatctcaa 1020
gtttgtctat ctggtttctt tgcg 1044
<210> 7
<211> 1035
<212> DNA
<213> Artificial sequence
<400> 7
atcatgtacg tactttcggt tactctctgt tatttccctc tacttcctaa tatttcctta 60
cacttcccta taattgtacg ttaaagttgt ttaaataaaa cattaaacaa tgttgtttaa 120
ataaaattaa tatttgtcaa gaaactcaaa cacgagagac attttataat aagaaatata 180
aactatgata tcttcacaga gtacctattt gataattcca tatgtaccat atgtgtaaaa 240
tagagtatat ctcaacccac ttcttatctt ttgtttattt tagttaatta ggcatcgtta 300
aaaaaattgt ttttcattgt gttactttgg ttctgatgga tcacgctgag ttagaaatac 360
acgtgttaca gttgcactta tgtttgtgag cttcaagcga tgcaacacag gtatgtgctt 420
tggcttgtga cgttaagagt cttaactttt gtttacgctt tttatgtaga tattttacta 480
actgcttata taatattact attattatta ttattattat tattattatt attattttgg 540
aagtgatttt aaagtgtaag gctcttaact ttttctcttt ttattcgtca gtattattga 600
aatctattaa tttttttaag gacgaccttg aaagcttcag acattccagt gcaagagatt 660
tggctgcatt agcatccgaa cttgcaaaaa gtgaagagga aaggcgccac ttaacagatt 720
tagttaccgt actaagacag agaagtttgt cgaattctga agagaatagt caagaaaatg 780
ctgaattgaa actgctagag cagagacttg aggaagccca tttacattta gccgatatta 840
aaacatcgtg gagtgataaa attgcttctt tagaaactca ggtataatat tcattgatat 900
tgcactattt gtgatcagta acatgttctt aggttggtag attgagccga caagccgcag 960
aagaaagtgc ggaaaggaga agagcggtac aagagaaagg tgtattgtcc gaaaaggtaa 1020
aacaaatgga gtgcg 1035
<210> 8
<211> 1044
<212> DNA
<213> Artificial sequence
<400> 8
tgcaaaagtg agctatttat actaggtagg tacttaaagt ggaagtggca taactagttt 60
ataaattctg ataagactaa aggacctgaa tcatcagcat ttactacaga aagcgtttct 120
tgttgagaat ttctaaactt tcataacagt caagtttcct tcttattatt aactatttgc 180
gtaataacta aagaaatttt taatatgtag ggtaacggca gatttatccc aagaattgta 240
cctatttgag gtgagccaag tgctccttga aacaaatttt gaatgatctt ttagtttgcc 300
caatatacac tcggttacag tttttacaat cggttttata tattccgaac ttatcgttca 360
tatctactgg gcctttagga ttacctaaaa gcttttgtaa actacattct gaagttgtga 420
ccgtttgcac attttcattg cgctttttag caccttcaac tgaggacttt tgtaaaggtt 480
gtgtaatggg aaagcaaaca ataataataa taataataat aataataata ataataataa 540
taataaactg tgaacaattt gaataggtat tggccagagt gggcgaagta tgtaaagcca 600
aatctcaaat cttattctca aagaaactct gtttcaaaga tttattttta ttttttattt 660
taccttttta aacattaaaa atataaattt tcatttatgt ttttgttgct aatgttacta 720
gattttttta atttttggtt ttgtttagag aacacaaaat tatttcttat tgcaaatgta 780
gttctcaaat gggaataaaa cattctgttt ttaaataata aaattatttg agcgacaaat 840
gcatttattt tattatcccc tatcttcgta ataacaacag atagtttttg aaccactttt 900
ggcaaaatta gataattcat gtaatagagg gttaagacta agagacacaa atgcatttgt 960
tgacattgtg acaaatgtgg gaataaaatt caaataatta aacgaaaacc aataaagaac 1020
ttgataaata ttcacatgat gacc 1044
<210> 9
<211> 448
<212> DNA
<213> Artificial sequence
<400> 9
tttttctttt cttccaattt cattcctctt cttttcattt cttctccccc ttctcttctc 60
cttaatctcg acgttttggc gcatgagttt tacataattt tcttcctttg tccattcttc 120
tacttcttca catatcgttc tccttttatt tactgcaaac ggtgaggctc tgacttgaca 180
ctgtattttt ttccattcta taaacctctg ctattttctt ttacttcttc ccatttcttt 240
ctctttcttt tcctgctcct ctttatctta atctgatgtc catataatca tatttattta 300
tttatttatt tatttatttc ttcttttgtc cgtccctttc tgtctttcgc cttttcttat 360
tctgttccca ttatattcct tttcttttta tttcttctcc ttcttttctt aaacatcatt 420
acaccaacgc gtaagacttt gagttcag 448
<210> 10
<211> 415
<212> DNA
<213> Artificial sequence
<400> 10
atctagaatt cgcaattact ataactagtt gatgactttg tcttaaacat aagcgtaaat 60
ttattctgaa acaaggtata ttcctaccga attacgtgac tccgtaggta cctttcattt 120
atgcctataa atttttcgtt aatttcttag agaaattaac aaaaacacga catacttttt 180
tagcgaaatt aaaacaaatt tcttgaatgg acggacctag tttgagtgaa actgtcattc 240
acaaccataa gtttatgaca ttattaacaa tgtaattgag cgtgagaaag tcatgcaaaa 300
aaataaataa ataaataaat tatacacctt atggttaaaa tcgacctttc acaatcatca 360
aaatatcaaa gtaggtatta acagcgttca aggatagaaa ttttgtagag cgtcg 415
<210> 11
<211> 974
<212> DNA
<213> Artificial sequence
<400> 11
cctacgccta acacaactcc tgcaagagct cccccagaat acgaaatcct gctagaaaat 60
gcaccctact ccatccgtta acatctgtta gctcagcgcg gaaaacaaat acataaccaa 120
cagattactg cctatgccat ttcttttcca gagttagcag aaaaccgccc aaccagtcac 180
ctgaaaacac tgaattataa ttcagtgcct gaaacccact ttccaaccac ctatttgcaa 240
cgatgcgaac gatgatgacc acagcaatga taaggacaac gattaaacat atttctattt 300
ataggtacat atctcaaaaa ctttattttg ttttttttgt aaataactta ttaccatgta 360
catccaaaaa taataatgta actactaaca taaaacaacc ggcgtgggct gaagaggata 420
ataatcctga gcagtccaaa caacacttag gtactaaccc aaaatgaatt gtaaatactc 480
cttataataa taaacatttt tgaattgaat tgaattgaat tgaattgaat tgaagttagg 540
tgtaaagtaa acgtttttaa cccgaattct cactatgtgc caaataagac gttgacagtg 600
aatccacgtc cttcgccacc tccacaagga gcaattctag aggtttttgg ttttcctaaa 660
acaatacaac tctgtcgacg tttttgtttt caagattact taagataaca ggttaagata 720
acatataagt tttacaaaga atcgtttcac ctcttttttg gatatgagag ttaatactgt 780
tactaacgta agtaatgaac ttataaaaga ctgtatatgt agttagacac taaatgttca 840
tcatggcgta attccaacga aacaactaaa tcagattttt ttgttaaagt aacaagaaga 900
aagacatttt tgcgtgaagt gaaaagtaag atacgaaaca gactgattaa aaattaaatc 960
ctcgttagtt tgca 974
<210> 12
<211> 1137
<212> DNA
<213> Artificial sequence
<400> 12
cagacgccac ttccttcata gtgactttga cttaaacgac ataattagct ggaattgtga 60
aatcgaaagc tgtcgatcag aatataatag tggattgtat attttttaat ttacttacca 120
actttccgct tcaaattgtt aaaaacgaaa tgtagtaaat agaatggagg gggagaatgt 180
tttaatactc aaattttacc tctcacggca aaatttgaaa attaagatat tcttcctctt 240
tcattactgg aaccgatgca ctaaaattac aactaaaaat gtccaatatt tcttattata 300
ttttggaaaa catttgtatc taaagattca tcgatcttct ccgtattaat caattagata 360
ataataataa tttaaattgt aatgtttgga cacagtagta acactacatt tcaatttaaa 420
tcagacatgg gaggctagtt agtaacttca ggaatgagca tatatcgaac gtaagagaga 480
agactatatt caatgaaggt acaatacaat acaatacaat acaatacaaa atacaataca 540
aaatacaata caaaatacaa tacaaaatac aatacaatac agtacagtac agtacagtac 600
agtacagtac agtacaatac aatacaatac aatacaacaa tacaacaata caatacaata 660
caacaataca acaatacaat acaatacaat acaacaataa gtgttaacaa agtattcgat 720
ttctacaaca atacaattta ttttccccca tatatttcac caaccacctt tgttctctcc 780
aacacctcct tcgtccaatc cttctcttcc ccctttcccc tagtatatgc cgcctttttc 840
tcctgtccct ccgcagttct tcacacttca ccgtcatatg ctgccaactt tgataccctt 900
ccctgcacaa cctgcacctt cttgctccct ccagtactta ttcccatttt cctcatttcc 960
acatctaaac cgtgctatca ttcctttcac ctactgtact acagtgtagt acaggttttg 1020
aagttcaaca acataataga aacgccccaa ggtaatctac ataacagtta cccaactgcc 1080
gtcaggcaga agacacgaaa taacgttaag ccgcatagag gaacaagaag cagaccg 1137
<210> 13
<211> 1005
<212> DNA
<213> Artificial sequence
<400> 13
cgagttaaca gagaaaaact atatggtcga tttatgaaag aaagagtata tttgacccat 60
gtactcatgg caatataaag tttatgtaaa tgtcaaaagg aaaacgaacc ccaaagaggt 120
gtctcttaat aaagaaggat ttggggaaaa ttacgacatg aaaatatcta aaaacaaaac 180
aaaagtacac aataacaaca aaaactgata ttcaccataa gatcttaaag cagatagttg 240
aactatctgg gatgcagcat ctcttaatga acaaaacaga gacatacaaa ggattgatca 300
aagggccata tgcaaaacct tatggagctg ggctaaaacc aggccgtaaa aaaacctatg 360
ccatttgata gatctttttg catagactaa aagtgctgct ggcgacaaag ctcgatttca 420
tttacttagg tgacttcagc ctccaaagtt atcattatac attatattat attatattat 480
attatacatt attattatta ttattatcca ttgatttcag attatacata gatacatgtt 540
ccattataaa ataaaacaat atcaatgtaa tttctatgga atgtaatagt aataagatgt 600
ttaaaatata tttttttctt tttaacatga tttttgctta gaccattgta tttgaaacat 660
atttgggtat taccattggg taaataatgt taatggtatt acgtaataaa atatgtaaag 720
tataatgcct cctagatgtt tgctataata caaatgataa ctttggaggc cgaaaagtca 780
cctaagcaaa tgaaatcgag ctttgccgcc tacttctaat ctacgcaaaa agatctatca 840
aatggcatcg gtctctttac ggcctggtct tagtccagct caaataaggc ctttggacgt 900
acgtgtagaa ctttcaaccg aaatttaaga aagaaaacac accaaaaatt ccatgagcgt 960
agcagttcgc actcttatgg gtggtaactg gtaaatgaga gaaaa 1005
<210> 14
<211> 18
<212> DNA
<213> Artificial sequence
<400> 14
caaagcggaa cttcaaac 18
<210> 15
<211> 20
<212> DNA
<213> Artificial sequence
<400> 15
gaacaaatgg ttgaaaggaa 20
<210> 16
<211> 18
<212> DNA
<213> Artificial sequence
<400> 16
acaaggcaaa cagagcat 18
<210> 17
<211> 18
<212> DNA
<213> Artificial sequence
<400> 17
atttgggtta gtttaggc 18
<210> 18
<211> 18
<212> DNA
<213> Artificial sequence
<400> 18
taatccgcga ctgttttg 18
<210> 19
<211> 18
<212> DNA
<213> Artificial sequence
<400> 19
aggacagggc actcacat 18
<210> 20
<211> 18
<212> DNA
<213> Artificial sequence
<400> 20
tatgtgcttt ggcttgtg 18
<210> 21
<211> 18
<212> DNA
<213> Artificial sequence
<400> 21
cgctttttag caccttca 18
<210> 22
<211> 21
<212> DNA
<213> Artificial sequence
<400> 22
ttatttactg caaacggtga g 21
<210> 23
<211> 19
<212> DNA
<213> Artificial sequence
<400> 23
tcttgaatgg acggaccta 19
<210> 24
<211> 18
<212> DNA
<213> Artificial sequence
<400> 24
gcgtgggctg aagaggat 18
<210> 25
<211> 20
<212> DNA
<213> Artificial sequence
<400> 25
tgagcatata tcgaacgtaa 20
<210> 26
<211> 18
<212> DNA
<213> Artificial sequence
<400> 26
ctaaaagtgc tgctggcg 18
<210> 27
<211> 18
<212> DNA
<213> Artificial sequence
<400> 27
aaccaggtaa aggtagcg 18
<210> 28
<211> 18
<212> DNA
<213> Artificial sequence
<400> 28
gccggttgct atgagaat 18
<210> 29
<211> 18
<212> DNA
<213> Artificial sequence
<400> 29
cttcgatcat ctccgtca 18
<210> 30
<211> 19
<212> DNA
<213> Artificial sequence
<400> 30
cacgcaagaa gtggagata 19
<210> 31
<211> 18
<212> DNA
<213> Artificial sequence
<400> 31
ttgactctac cgcacctc 18
<210> 32
<211> 18
<212> DNA
<213> Artificial sequence
<400> 32
tggacatcgc aatcacta 18
<210> 33
<211> 18
<212> DNA
<213> Artificial sequence
<400> 33
aagttcggat gctaatgc 18
<210> 34
<211> 18
<212> DNA
<213> Artificial sequence
<400> 34
acatacttcg cccactct 18
<210> 35
<211> 19
<212> DNA
<213> Artificial sequence
<400> 35
gcgaaagaca gaaagggac 19
<210> 36
<211> 20
<212> DNA
<213> Artificial sequence
<400> 36
tttctatcct tgaacgctgt 20
<210> 37
<211> 18
<212> DNA
<213> Artificial sequence
<400> 37
ttgtggaggt ggcgaagg 18
<210> 38
<211> 18
<212> DNA
<213> Artificial sequence
<400> 38
aacaaaggtg gttggtga 18
<210> 39
<211> 22
<212> DNA
<213> Artificial sequence
<400> 39
tgtttcaaat acaatggtct aa 22

Claims (6)

1.一种胸窗萤SSR分子标记,其特征在于,包括13组SSR分子标记中的一种或多种,所述13组SSR分子标记编号分别为:SSR308、SSR311、SSR313、SSR319、SSR320、SSR323、SSR324、SSR325、SSR405、SSR406、SSR501、SSR503、SSR504;且所述13组SSR分子标记位点的核苷酸序列如SEQ ID NO.1~13所示。
2.用于扩增如权利要求1所述的胸窗萤SSR分子标记位点的引物组合,其特征在于:所述SSR分子标记的正向引物组合的核苷酸序列如SEQ ID NO.14~26所示,反向引物组合的核苷酸序列如SEQ ID NO.27~39所示。
3.根据权利要求2所述的胸窗萤SSR分子标记位点的引物组合,其特征在于:所述SSR分子标记的引物组合设计的条件如下:以被检测到的SSR上下游100bp侧翼序列进行引物设计,引物长度为20bp~28bp;退火温度为60℃~65℃;且每组引物的正向引物组合与反向引物组合之间的退火温度差的最大值为1℃;扩增序列时,核心单位包含3-5个碱基的串联重复。
4.一种如权利要求1所述的胸窗萤SSR分子标记的获得方法,其特征在于,包括以下步骤:
S1胸窗萤基因组DNA的提取和检测;
S2对胸窗萤的基因组DNA样本进行PCR扩增:反应体系为:ddH2O,5.28μL;dNTP,0.8μL;Buffer,1μL;Mg2+,0.8μL;BSA,0.2μL;Primer forward,0.2μL;Primer Reverse,0.2μL;Taq,0.2μL;DNA模板,1μL;PCR扩增条件为94℃预变性5min;94℃变性30sec;60℃退火30sec,72℃延伸30sec;8个循环,每循环降1℃;然后94℃变性30sec;60℃退火30sec;72℃延伸30sec;27个循环;72℃延伸5min;4℃保存,得到PCR产物。
5.一种如权利要求1所述的胸窗萤SSR分子标记在萤火虫遗传分析或人工饲养中的应用。
6.一种如权利要求2所述的胸窗萤SSR分子标记位点的引物组合在萤火虫遗传分析或人工饲养中的应用。
CN202210444640.6A 2022-04-26 2022-04-26 一种胸窗萤ssr分子标记及其引物组合和应用 Active CN114752687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210444640.6A CN114752687B (zh) 2022-04-26 2022-04-26 一种胸窗萤ssr分子标记及其引物组合和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210444640.6A CN114752687B (zh) 2022-04-26 2022-04-26 一种胸窗萤ssr分子标记及其引物组合和应用

Publications (2)

Publication Number Publication Date
CN114752687A true CN114752687A (zh) 2022-07-15
CN114752687B CN114752687B (zh) 2023-09-22

Family

ID=82332692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210444640.6A Active CN114752687B (zh) 2022-04-26 2022-04-26 一种胸窗萤ssr分子标记及其引物组合和应用

Country Status (1)

Country Link
CN (1) CN114752687B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343767A (zh) * 2019-06-25 2019-10-18 天津市水产研究所 凡纳滨对虾微卫星分子标记特异性引物及其在遗传多样性分析中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343767A (zh) * 2019-06-25 2019-10-18 天津市水产研究所 凡纳滨对虾微卫星分子标记特异性引物及其在遗传多样性分析中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王余勇;郑霞林;付新华;雷朝亮;: "胸窗萤的生殖习性", 昆虫知识, no. 03 *

Also Published As

Publication number Publication date
CN114752687B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
Amalfitano et al. The mdx‐amplification‐resistant mutation system assay, a simple and rapid polymerase chain reaction‐based detection of the mdx allele
CN107475412B (zh) 一种与鸡产蛋性状相关的分子标记及其在鸡育种中的应用
CN111534579A (zh) 基于捕获测序的大片段重排检测的捕获探针、试剂盒和检测方法
CN114854880B (zh) 一种基于kasp技术的丝羽乌骨鸡玫瑰冠分子标记及其应用
CN112813177A (zh) 基于单倍型mc1r*31基因的种猪后代毛色预测方法
Parpinelli et al. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production
KR101499689B1 (ko) 넙치 암수 구분 단일염기다형성 마커
CN114752687B (zh) 一种胸窗萤ssr分子标记及其引物组合和应用
Nandamuri et al. A second locus contributing to the differential expression of the blue sensitive opsin SWS2A in Lake Malawi cichlids
CN112538487B (zh) 番茄不规则裂果关键调控基因及其鉴定方法和应用
CN102094081B (zh) 一种检测黄牛sh2b1基因单核苷酸多态性的方法
CN116347978A (zh) 鲻鱼中的性别决定标记及其使用方法
CN115852032B (zh) 与豇豆豆荚颜色相关的基因、kasp标记及其应用
CN103290125B (zh) 区分大白菜tnl-e基因野生/突变状态的分子标记及其应用
KR102578134B1 (ko) 수박의 여교배 세대단축 육종을 위한 단일염기 다형성 마커세트 및 이의 용도
CN113774128B (zh) Gja8基因突变位点在制备诊断白内障疾病的制品中的应用
CN113005214B (zh) 筛选毛白杨抗旱新品种的分子标记及其组合、方法和应用
Aliyya et al. Exploring SNPs (Single Nucleotide Polymorphisms) of Myostatin gene in coding region in Bali cattle
CN109022444B (zh) Ttc21b基因突变体及其应用
CN108841929A (zh) 一种人ATP7b基因外显子PCR扩增系统、检测试剂盒及其应用的方法
CN116397034B (zh) 一种与鸡鹿角冠性状相关的分子标记及其应用
CN113684281B (zh) 一种采用snp分子标记技术鉴别润州凤头白鸭黑色喙性状的方法
CN111926020B (zh) 两个对虾生长相关基因及其在遗传育种中的应用
Sruoga et al. Evaluation of genetic diversity of perch (Perca fluviatilis) and pikeperch (Sander lucioperca) populations from Curonian lagoon and inshore waters of the Baltic Sea
Zhu et al. Screening of seven microsatellite markers for litter size in Xinong Saanen dairy goat

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant