CN114751736A - 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法 - Google Patents

一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法 Download PDF

Info

Publication number
CN114751736A
CN114751736A CN202210548173.1A CN202210548173A CN114751736A CN 114751736 A CN114751736 A CN 114751736A CN 202210548173 A CN202210548173 A CN 202210548173A CN 114751736 A CN114751736 A CN 114751736A
Authority
CN
China
Prior art keywords
srtio
dielectric
regulating
ceramic
insulating framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210548173.1A
Other languages
English (en)
Other versions
CN114751736B (zh
Inventor
洪涛
黄容
潘翔
李成宇
齐世顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202210548173.1A priority Critical patent/CN114751736B/zh
Publication of CN114751736A publication Critical patent/CN114751736A/zh
Application granted granted Critical
Publication of CN114751736B publication Critical patent/CN114751736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,所述绝缘骨架为Sr3Ti2O7,通过调节SrTiO3与Sr(NO3)2的摩尔比,采用液相包覆法制备Sr3Ti2O7包覆SrTiO3复合粉体,然后将复合粉体陶瓷半导化,得到不同介电常数和电阻值的介电陶瓷材料。该高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法通过包覆调节绝缘骨架的厚度可以调节SrTiO3介电常数和绝缘电阻率。

Description

一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法
技术领域
本发明涉及陶瓷电容器电介质材料领域,具体涉及一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法。
背景技术
随着不可再生能源的消耗,人们重点关注着能源的开发和利用。为了解决传统能源存在的问题,最开始人们寻找风能、太阳能等清洁、无污染的可再生能源。随着科技的进一步发展,除可再生能源的收集和转换外,能量的存储技术日益受到重视。而储能技术的关键在于研发出满足应用需求的储能器件。储能器件主要有电池、燃料电池、超级电容器和电介质电容器等几大类。在这些储能元器件中,电池与电化学电池拥有较高的储能密度,但是其功率密度非常低。这是因为两种元器件内部载流子的迁移率非常低,从而限制了其在高功率时的使用。此外,二者还受到使用寿命的限制以及处置不当造成的环境污染。电容器恰恰与之相反,它的功率密度高,循环使用寿命长,非常适用于高功率方面的应用。但是,传统电容器的储能密度相当小(10-2~10-1W·hr/kg),这极大地限制了其在储能领域的应用,故而提高电容器的储能密度是当下的研究重点。
介电陶瓷具有介电常数较高、化学性质稳定、漏导电流小等诸多优点,是一种常用的电容器固态介质材料。理想的介电陶瓷具有高的介电常数和放电储能密度,低的介电损耗和漏导电流,但目前的介电陶瓷体系很难达到该要求。目前,国内外研究人员针对储能介质陶瓷进行了大量的研究工作。根据陶瓷在偏压下的极化行为,将储能介质陶瓷分为线性电介质陶瓷、铁电陶瓷、反铁电陶瓷三大类。其中,用于储能领域应用的线性电介质陶瓷体系主要有TiO2、SrTiO3基陶瓷。SrTiO3基陶瓷室温下介电常数约为300,介电损耗较低,小于1%,击穿强度可达10~30kV/mm,是一种优良的线性电介质材料。陶瓷的有效储能密度与其介电常数和击穿强度密切相关,介电常数越大,击穿强度越高,有效储能密度越高。但是从另一方面看,陶瓷的介电常数越大,极化强度也越强,那么剩余极化强度也会随之增强,不利于储能密度的提高。另外,在通常情况下,当介电常数逐渐增加时,击穿强度会逐渐降低,即陶瓷的击穿场强与其介电常数之间存在反比例关系。因此,陶瓷的储能密度不会随其介电常数的增加而无限增加。介电常数极高的介电陶瓷通常并不能获得最大的储能密度,而介电常数中等并且击穿强度较高的介电陶瓷的储能密度更高。
针对目前STO三类介电陶瓷材料无法对其介电常数和电阻率进行有效调控的问题。采用融渗的方法,在STO晶界上融渗高电阻材料,从而对STO的电阻值和抗击穿能力进行调整,但是其工艺复杂,材料参数稳定性差,同时调节范围极其有限。例如专利“一种巨介电常数钛酸锶介质陶瓷及其制备方法”(申请号:202110653474.6)公开的采用传统固相法,通过掺杂改性制备Sr1-xEuxTiO3介质陶瓷,当x=0.01时其介电常数ε=10544,绝缘电阻率仅为1.04×108Ω·cm,耐压性能较差;专利“一种制备SrTiO3基巨介电常数介质陶瓷材料的方法”(申请号:201810107739.0)公开的将SrTiO3、Nb2O5、Li2CO3、SiO2、In2O3、MnO2、CuO和玻璃粉按一定质量百分比制备的介质陶瓷虽然介电常数达1.55×105,绝缘电阻率为9.38×108Ω·cm,所以绝缘电阻率较小,并且使用掺杂剂种类繁多。
发明内容
本发明的目的在于提供一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其通过包覆调节绝缘骨架的厚度可以调节SrTiO3介电常数和绝缘电阻率。
为实现上述目的,本发明提供如下技术方案:
一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,所述绝缘骨架为Sr3Ti2O7,通过调节绝缘骨架的厚度得到不同介电常数和电阻值的介电陶瓷材料。
优选地,绝缘骨架厚度调节方法如下,调整SrTiO3与Sr(NO3)2的摩尔比,制备Sr3Ti2O7包覆SrTiO3复合粉体,然后将复合粉体陶瓷半导化,采用液相包覆法制备Sr3Ti2O7包覆SrTiO3复合粉体,即得到不同介电常数和电阻值的介电陶瓷材料。
优选地,所述方法具体包括以下步骤:
(1)制备SrTiO3稳定悬浮液;
(2)制备Sr3Ti2O7包覆SrTiO3复合粉体的前驱体:配置Sr(NO3)2溶液,使SrTiO3与Sr(NO3)2的摩尔比为100:1-100:5,在Sr(NO3)2溶液中加入络合剂,然后将加入络合剂的Sr(NO3)2溶液加入SrTiO3稳定悬浮液中,在恒温水浴中搅拌后室温下静置,然后滤去上清液,得到Sr3Ti2O7包覆SrTiO3复合粉体的前驱体;
(3)将前驱体进行干燥后在600℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体;
(4)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:将黏合剂与复合粉体进行研磨造粒,造粒完成后,将粉体压制成型,然后在1350-1400℃下通氮氢混合气完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。
优选地,所述步骤(1)中,采用曲拉通X-100作分散剂制备分SrTiO3稳定悬浮液,在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2-5min,然后超声震荡20-40min。
优选地,所述步骤(2)中,络合剂为尿素,Sr(NO3)2与络合剂摩尔比为1:8-1:12。
优选地,所述步骤(2)中,恒温水浴的温度为20-70℃,搅拌时间为1-5h,室温静置时间为12-24h。
优选地,所述步骤(3)中,干燥温度为100-120℃,干燥时间为1-2h,煅烧温度为600-900℃,煅烧时间为1-2h。
优选地,所述步骤(4)中,黏合剂为聚乙烯醇,黏合剂与复合粉体的质量比为1:20-1:10。
优选地,所述步骤(4)中,氮氢混合气中氮气和氢气的摩尔比值为9:1-9:2。
与现有技术相比,本发明的有益效果是:
1)本发明通过不同的包覆量Sr(NO3)2所得到的STO,可以根据Sr(NO3)2的量进行连续调节介电常数和电阻值,Sr添加少,则介电常数大,电阻值低;Sr添加多,则介电常数小,电阻值高;
2)本发明直接用未还原的SrTiO3粉体进行包覆,得到的Sr3Ti2O7包覆SrTiO3复合陶瓷在1400℃的氮氢混合气下,一步实现还原半导化和烧结,整个制备工艺简单,设备要求低。
附图说明
图1是本发明实施例中SrTiO3包覆Sr3Ti2O7复合陶瓷示意图;
图2是发明实施例1-4中SrTiO3复合介电陶瓷的介电常数及绝缘电阻率趋势图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种高介电、高耐压的SrTiO3介电陶瓷的制备方法,包括以下步骤:
(1)首先按照SrTiO3与Sr(NO3)2的摩尔比为100:1称取2.500g SrTiO3,0.0288g Sr(NO3)2,按Sr(NO3)2与络合剂摩尔比为1:8,称取尿素0.0655g。以去离子水作为溶剂。
(2)制备SrTiO3稳定悬浮液:采用曲拉通X-100作分散剂制备SrTiO3稳定悬浮液。在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2min,然后超声震荡30min。
(3)制备前驱体包覆的SrTiO3复合粉体:Sr(NO3)2溶于去离子水中,加入络合剂尿素。将配制好的溶液加入上述SrTiO3稳定悬浮液中,在70℃恒温水浴中搅拌1h后,室温下放置24h后滤去上清液,得到Sr3Ti2O7包覆SrTiO3复合粉体的前驱体。
(4)将前驱体100℃干燥2h后在800℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体。
(5)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:采用5wt%聚乙烯醇作为黏合剂,与复合粉体(黏合剂与复合粉体的质量比为1:20)进行研磨造粒,造粒完成后,将粉体压制成型,然后在高温下通氮氢混合气(N2:H2=9:1摩尔比)还原烧成的方法完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。升温程序为800℃保温30min,随后以5℃/min升温至1400℃烧结5h,混合气体流速为80ml/min,制得Sr3Ti2O7包覆SrTiO3复合介电陶瓷。
将烧制好的样品取出,测试其介电性能。室温下介电常数相比于纯SrTiO3(εr≈300)有巨大提高,制得的电介质的介电常数达3310,25V电压下绝缘电阻率为4.53×1012Ω·cm。
实施例2
一种高介电、高耐压的SrTiO3介电陶瓷的制备方法,包括以下步骤:
(1)首先按照SrTiO3与Sr(NO3)2的摩尔比为100:1.5称取2.500g SrTiO3,0.0433gSr(NO3)2,按Sr(NO3)2与络合剂摩尔比为1:8,称取尿素0.0982g,以去离子水作为溶剂。
(2)制备SrTiO3稳定悬浮液:采用曲拉通X-100作分散剂制备SrTiO3稳定悬浮液。在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2min,然后超声震荡30min
(3)制备前驱体包覆的SrTiO3复合粉体:Sr(NO3)2溶于去离子水中,加入络合剂尿素。将配制好的溶液加入上述SrTiO3稳定悬浮液中,在70℃恒温水浴中搅拌1h后,室温下放置24h后滤去上清液,得到前驱体包覆SrTiO3复合粉体。
(4)将前驱体100℃干燥2h后在800℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体。
(5)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:采用5wt%聚乙烯醇作为黏合剂,与复合粉体(黏合剂与复合粉体的质量比为1:20)进行研磨造粒,造粒完成后,将粉体压制成型,然后在高温下通氮氢混合气(N2:H2=9:1摩尔比)还原烧成的方法完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。升温程序为800℃保温30min,随后以5℃/min升温至1400℃烧结5h,混合气体流速为80ml/min,制得Sr3Ti2O7包覆SrTiO3复合介电陶瓷。
将烧制好的样品取出,测试其介电性能。室温下介电常数相比于纯SrTiO3(εr≈300)有巨大提高,绝缘性能有巨大提升,制得的电介质的介电常数达2044,25V电压下绝缘电阻率为1.43×1013Ω·cm。
实施例3
一种高介电、高耐压的SrTiO3介电陶瓷的制备方法,包括以下步骤:
(1)首先按照SrTiO3与Sr(NO3)2的摩尔比为100:2.5称取2.500g SrTiO3,0.0721gSr(NO3)2,按Sr(NO3)2与络合剂摩尔比为1:8,称取尿素0.1637g,以去离子水作为溶剂。
(2)制备SrTiO3稳定悬浮液:采用曲拉通X-100作分散剂制备SrTiO3稳定悬浮液。在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2min,然后超声震荡30min。
(3)制备前驱体包覆的SrTiO3复合粉体:Sr(NO3)2溶于去离子水中,加入络合剂尿素。将配制好的溶液加入上述SrTiO3稳定悬浮液中,在70℃恒温水浴中搅拌1h后,室温下放置24h后滤去上清液,得到前驱体包覆SrTiO3复合粉体。
(4)将前驱体100℃干燥2h后在800℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体。
(5)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:采用5wt%聚乙烯醇作为黏合剂,与复合粉体(黏合剂与复合粉体的质量比为1:20)进行研磨造粒,造粒完成后,将粉体压制成型,然后在高温下通氮氢混合气(N2:H2=9:1摩尔比)还原烧成的方法完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。升温程序为800℃保温30min,随后以5℃/min升温至1400℃烧结5h,混合气体流速为80ml/min,制得Sr3Ti2O7包覆SrTiO3复合介电陶瓷。
将烧制好的样品取出,测试其介电性能。室温下介电常数相比于纯SrTiO3(εr≈300)有所提高,绝缘性能有巨大提升,制得的电介质的介电常数达1103,25V电压下绝缘电阻率为2.04×1013Ω·cm。
实施例4
一种高介电、高耐压的SrTiO3介电陶瓷的制备方法,包括以下步骤:
(1)首先按照SrTiO3与Sr(NO3)2的摩尔比为100:5称取2.500g SrTiO3,0.1442g Sr(NO3)2,按Sr(NO3)2与络合剂摩尔比为1:8,称取尿素0.3273g,以去离子水作为溶剂。
(2)制备SrTiO3稳定悬浮液:采用曲拉通X-100作分散剂制备SrTiO3稳定悬浮液。在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2min,然后超声震荡30min。
(3)制备前驱体包覆的SrTiO3复合粉体:Sr(NO3)2溶于去离子水中,加入络合剂尿素。将配制好的溶液加入上述SrTiO3稳定悬浮液中,在70℃恒温水浴中搅拌1h后,室温下放置24h后滤去上清液,得到前驱体包覆SrTiO3复合粉体。
(4)将前驱体100℃干燥2h后在800℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体。
(5)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:采用5wt%聚乙烯醇作为黏合剂,与复合粉体(黏合剂与复合粉体的质量比为1:20)进行研磨造粒,造粒完成后,将粉体压制成型,然后在高温下通氮氢混合气(N2:H2=9:1摩尔比)还原烧成的方法完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。升温程序为800℃保温30min,随后以5℃/min升温至1400℃烧结5h,混合气体流速为80ml/min,制得Sr3Ti2O7包覆SrTiO3复合介电陶瓷。
将烧制好的样品取出,测试其介电性能。室温下介电常数相比于纯SrTiO3(εr≈300)略有降低,绝缘性能有巨大提升,制得的电介质的介电常数达216,25V电压下绝缘电阻率为7.81×1013Ω·cm。
图1是本发明实施例中SrTiO3包覆Sr3Ti2O7复合陶瓷结构示意图。从图中可以看出在几个SrTiO3晶粒外部反应生成一层较薄的R-P相充当绝缘层,通过调控绝缘层的厚度使介电陶瓷获得不同的绝缘电阻,从而实现高耐压;图2是发明实施例1-4中SrTiO3复合介电陶瓷的介电常数及绝缘电阻率趋势图。说明可以根据包覆的量进行连续调节介电常数和电阻值,Sr添加少,则介电常数大,电阻值低;Sr添加多,则介电常数小,电阻值高。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (9)

1.一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述绝缘骨架为Sr3Ti2O7,通过调节绝缘骨架的厚度得到不同介电常数和电阻值的介电陶瓷材料。
2.根据权利要求1所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:绝缘骨架厚度调节方法如下,调整SrTiO3与Sr(N03)2的摩尔比,制备Sr3Ti207包覆SrTiO3复合粉体,然后将复合粉体陶瓷半导化,采用液相包覆法制备Sr3Ti2O7包覆SrTiO3复合粉体,即得到不同介电常数和电阻值的介电陶瓷材料。
3.根据权利要求1所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于,所述方法具体包括以下步骤:
(1)制备SrTi03稳定悬浮液;
(2)制备Sr3Ti2O7包覆SrTiO3复合粉体的前驱体:配置Sr(N03)2溶液,使SrTi03与Sr(NO3)2的摩尔比为100∶1-100∶5,在Sr(NO3)2溶液中加入络合剂,然后将加入络合剂的Sr(NO3)2溶液加入SrTiO3稳定悬浮液中,在恒温水浴中搅拌后室温下静置,然后滤去上清液,得到Sr3Ti2O7包覆SrTiO3复合粉体的前驱体;
(3)将前驱体进行干燥后在600℃煅烧2h,得到Sr3Ti2O7包覆SrTiO3复合粉体;
(4)Sr3Ti2O7包覆SrTiO3复合陶瓷半导化:将黏合剂与复合粉体进行研磨造粒,造粒完成后,将粉体压制成型,然后在1350-1400℃下通氮氢混合气完成Sr3Ti2O7包覆SrTiO3复合陶瓷晶粒的半导化。
4.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(1)中,采用曲拉通X-100作分散剂制备SrTiO3稳定悬浮液,在烧杯中加入SrTiO3粉体,倒入去离子水,使用玻璃棒搅拌初步分散SrTiO3粉体后加入分散剂继续搅拌2-5min,然后超声震荡20-40min。
5.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(2)中,络合剂为尿素,Sr(N03)2与络合剂摩尔比为1∶8-1∶12。
6.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(2)中,恒温水浴的温度为20-70℃,搅拌时间为1-5h,室温静置时间为12-24h。
7.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(3)中,干燥温度为100-120℃,干燥时间为1-2h,煅烧温度为600-900℃,煅烧时间为1-2h。
8.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(4)中,黏合剂为聚乙烯醇,黏合剂与复合粉体的质量比为1∶20-1∶10。
9.根据权利要求3所述的一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法,其特征在于:所述步骤(4)中,氮氢混合气中氮气和氢气的摩尔比值为9∶1-9∶2。
CN202210548173.1A 2022-05-18 2022-05-18 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法 Active CN114751736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210548173.1A CN114751736B (zh) 2022-05-18 2022-05-18 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210548173.1A CN114751736B (zh) 2022-05-18 2022-05-18 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法

Publications (2)

Publication Number Publication Date
CN114751736A true CN114751736A (zh) 2022-07-15
CN114751736B CN114751736B (zh) 2023-06-06

Family

ID=82335286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210548173.1A Active CN114751736B (zh) 2022-05-18 2022-05-18 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法

Country Status (1)

Country Link
CN (1) CN114751736B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336873B2 (ja) * 1996-08-30 2002-10-21 株式会社豊田中央研究所 複合セラミックス粒子及びその製造方法
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
CN103296272A (zh) * 2012-03-01 2013-09-11 日本化学工业株式会社 锂二次电池用正极活性物质及其制造方法、和锂二次电池
JP2014187102A (ja) * 2013-03-22 2014-10-02 Tdk Corp バリスタ機能付き積層型半導体セラミックコンデンサ
US20190304685A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Dielectric material, multi-layered capacitors and electronic devices comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336873B2 (ja) * 1996-08-30 2002-10-21 株式会社豊田中央研究所 複合セラミックス粒子及びその製造方法
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
CN103296272A (zh) * 2012-03-01 2013-09-11 日本化学工业株式会社 锂二次电池用正极活性物质及其制造方法、和锂二次电池
JP2014187102A (ja) * 2013-03-22 2014-10-02 Tdk Corp バリスタ機能付き積層型半導体セラミックコンデンサ
US20190304685A1 (en) * 2018-03-28 2019-10-03 Samsung Electronics Co., Ltd. Dielectric material, multi-layered capacitors and electronic devices comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAŠO ŠTURM等: "Nucleation and growth of planar faults in SrO-excess SrTiO3", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
葛雯雯等: "RP相Srn+1TinO3n+1的制备及测试", 《信息记录材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法
CN115894019B (zh) * 2022-12-13 2023-09-22 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Also Published As

Publication number Publication date
CN114751736B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
Zhao et al. Preparation and properties of BaxSr1− xCoyFe1− yO3− δ cathode material for intermediate temperature solid oxide fuel cells
Diao et al. Enhanced energy storage properties of BaTiO3 thin films by Ba0. 4Sr0. 6TiO3 layers modulation
CN103601487B (zh) 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法
KR20030057527A (ko) 통합형 에스오에프씨
KR101963980B1 (ko) 중·저온형 고체산화물연료전지용 공기극 분말 및 이의 제조방법
CN110668816B (zh) 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法
EP2506351A2 (en) Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the same
CN114751736B (zh) 一种高介电、高耐压的SrTiO3介电陶瓷的绝缘骨架调控方法
CN111470863A (zh) 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用
CN100583516C (zh) 一种a、b位共掺杂钛酸锶固体氧化物燃料电池阳极材料
CN115504784B (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
CN103553589A (zh) 一种制备CaCu3Ti4O12陶瓷材料的方法
Diao et al. Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films
Sındıraç et al. Fabrication of LSCF and LSCF-GDC nanocomposite thin films using polymeric precursors
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN115196960B (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
Xie et al. Pervoskite-type BaCo0. 7Fe0. 2Ta0. 1O3− δ cathode for proton conducting IT-SOFC
CN114292104B (zh) 一种脉冲电容器用储能陶瓷材料及其制备方法
CN105819850B (zh) 一种y8r型电容器陶瓷介质材料及其制备方法
CN112201478B (zh) 钛酸锶铋/铁酸铋异质电介质薄膜及其制备方法和应用
CN113979745B (zh) 一种介电陶瓷材料及其制备方法
KR20210085063A (ko) 고체산화물 연료전지용 공기극 소재, 및 이를 포함하는 중저온 고체산화물 연료전지용 공기극
Jiang et al. A novel cobalt-free La0. 6Sr0. 4Fe0. 9Nb0. 1O3 cathode for medium temperature solid oxide fuel cells
CN112028624B (zh) 一种bnt基储能陶瓷材料及其制备方法与应用
CN115745008B (zh) 一种铁酸铋掺杂的钙钛矿材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant