CN111470863A - 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用 - Google Patents

一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN111470863A
CN111470863A CN202010250574.XA CN202010250574A CN111470863A CN 111470863 A CN111470863 A CN 111470863A CN 202010250574 A CN202010250574 A CN 202010250574A CN 111470863 A CN111470863 A CN 111470863A
Authority
CN
China
Prior art keywords
thick film
ceramic
strontium
film ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010250574.XA
Other languages
English (en)
Inventor
鲁圣国
赵鹏飞
王世斌
姚丽丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202010250574.XA priority Critical patent/CN111470863A/zh
Publication of CN111470863A publication Critical patent/CN111470863A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1236Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates
    • H01G4/1245Ceramic dielectrics characterised by the ceramic dielectric material based on zirconium oxides or zirconates containing also titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于电介质材料技术领域,公开一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其应用。所述厚膜陶瓷的分子式为PbxSryLaz(ZrnSnmTiv)O3,其中,x=0.85~0.88,y=0.06~0.09,z=0.06,n=0.45~0.8,m=0.15~0.5,v=0.05。本发明通过流延成型的工艺制备的掺锶锆钛锡酸镧铅弛豫性反铁电体陶瓷厚膜的厚度可控,其单层的厚度为40~50微米,多层的厚度可叠为500~1000层。该厚膜陶瓷其致密性好且均匀,并具有良好的储能性能和储能效率,其储能密度能达到3.7~3.9J/cm3,其储能效率高于89.5%,其在锆储能密度的电容器中有良好的应用前景。

Description

一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法 和应用
技术领域
本发明属电介质材料技术领域,具体地,涉及一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用。
背景技术
随着人们对可持续大功率储能系统的需求日益增加,发展先进的储能材料和相关技术是高性能储能装置的研究重点。电池和电容器是目前两种主要用于储能和转换的设备。电池把电能转化为化学能,通常具有更高的能量密度(约100Wh kg-1)。然而,由于所涉及的载流子的运动很慢,电池的输出功率通常是有限的。对于许多实际应用,如脉冲电力系统混合、动力汽车、医疗设备等,不仅需要较高的储能密度,还需要较高的输出功率。相比之下,电容器可以在极短的时间内释放储存的电荷(100ns),因此可以在很短的时间内产生了非常大的电流和功率密度,在上述领域中有非常广阔的应用前景。但电容器存在能量密度偏低的缺点,因此,如何提高电介质材料的储能密度一直是学术界和工业界研究的热点问题。
无机介电材料不仅具有较高的介电常数和相对较高的能量密度,而且可以在较高的操作温度下长期维持性能。无机介电材料主要包括线性材料、铁电材料和反铁电材料。线性介质由于其介电常数较低,极化率较低,线性介质的能量密度通常低1Jcm-3。铁电材料(FEs)是一种自发电极化的材料,其方向可以通过外加电场来改变。铁电材料通常具有较高的介电常数,但是大的残余极化将铁电材料的能量密度限制在较低的数值。相比之下,在反铁电材料(AFEs)中,在晶体结构中具有相同强度的相邻偶极子最初是沿相反的方向排列的,从而导致整体自发极化为零。然而,这些最初的反平行偶极子可以通过电场诱导的AFE-FE相变,被迫沿着足够强的外电场方向平行,从而达到大极化的FE状态。然后,一旦去除外部电场,诱导的FE相可以回复到初始的AFE相,从而产生所谓的双P-E电滞环。与这些AFE-FE相变相关的典型的高电场,加上AFE-FE相变过程中极化的显著变化,使得大量的能量得以储存和释放。因此,AFE材料在储能器件中具有巨大的应用潜力。陶瓷电容器作为一种储能器件,是电子设备在静电场作用下存储能量的核心元件。其中,锆钛酸铅系列的反铁电材料表现出了优异的储能、电卡效应等电学性能,使其在能量储存、固态制冷、介电调谐器等诸多领域具有重要应用。
发明内容
为了解决现有技术中存在的缺点和不足之处,本发明首要目的在于提供一种掺锶锆钛锡酸镧铅(PLZST)弛豫性反铁电厚膜陶瓷。
本发明的另一目的在于提供上述掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷的制备方法。
本发明的再一目的在于提供上述掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,所述厚膜陶瓷的分子式为PbxSryLaz(ZrnSnmTiv)O3,其中,x=0.85~0.88,y=0.06~0.09,z=0.06,n=0.45~0.8,m=0.15~0.5,v=0.05;所述厚膜陶瓷是按照化学计量比将PbO、La2O3、ZrO2、SnO2、SrCO3、TiO2加入乙醇或去离子水进行球磨混合;将球磨后的粉烘干,过筛制得陶瓷粉末A;将陶瓷粉末A在920~980℃预烧,然后将所得粉末加入乙醇进行二次球磨,将所得混合粉体烘干,过筛制得陶瓷粉体B;将所得陶瓷粉体B加入分散剂和溶剂A中,经滚磨得到预混浆料;再加入粘结剂并滚磨,然后加入溶剂B、粘结剂和塑化剂并在球磨得到流延浆料;将流延浆料经流延机在42~44℃烘干流延成型,制得厚膜陶瓷的生坯,然后设定压力为29~31MPa,温度为59~61℃,将生坯进行温等静压,在400~500℃排胶,然后在1300~1320℃烧结制得。
优选地,所述厚膜陶瓷的单层厚度为40~50μm,所述厚膜陶瓷的层数为500~1000层。
优选地,所述烘干的温度为40~70℃,所述烘干的时间为10~24h。
优选地,所述预烧的时间为2~3h,所述排胶的时间为3~4h,所述烧结的时间为2~2.5h,所述温等静压的保压时间为6~8min。
优选地,所述球磨的介质为二氧化锆球,所述球磨的转速为240~260rmp,所述球磨的时间为20~26h;所述滚磨的速率为200~220r/min,所述滚磨的时间为20~24h。
优选地,所述分散剂为辛基酚聚氧乙烯醚,所述粘结剂为聚乙烯醇缩丁醛,所述塑化剂为邻苯二甲酸二辛酯。
优选地,所述溶剂A和B均为无水乙醇和丁酮,所述无水乙醇和丁酮的质量比为1:(1~1.2)。
优选地,所述陶瓷粉体B、分散剂和溶剂A的质量比为50:(0.9~1):(40~42);所述预混浆料、粘结剂、溶剂B、塑化剂的质量比为50:(1.5~2):40:(2~2.5)。
所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷的制备方法,包括如下具体步骤:
S1.按照化学计量比将PbO、La2O3、ZrO2、SnO2、SrCO3、TiO2球磨介质为二氧化锆球,加入乙醇或去离子水进行球磨混合;将球磨后的粉烘干,过筛制得陶瓷粉末A;
S2.将陶瓷粉末A在920~980℃预烧,然后将所得粉末加入乙醇进行二次球磨,将所得混合粉体烘干,过筛制得陶瓷粉体B;
S3.将所得陶瓷粉体B加入分散剂和溶剂A中,经滚磨得到预混浆料;再加入粘结剂并滚磨,然后加入溶剂B、粘结剂和塑化剂并球磨得到流延浆料;
S4.将流延浆料经流延机在42~44℃烘干流延成型,制得厚膜陶瓷的生坯,然后设定压力为29~31MPa,温度为59~61℃,将生坯进行温等静压,在400~500℃排胶,然后在1300~1320℃烧结,制得掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷。
所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷在电介质领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过流延成型工艺制备掺锶锆钛锡酸镧铅弛豫性反铁电体厚膜陶瓷,利用Pb0.97La0.02(Zr,Sn,Ti)O3体系的三元相图设计得到同时具有高储能密度,高储能效率的PLZST反铁电/铁电陶瓷组分。
2.本发明掺锶锆钛锡酸镧铅厚膜陶瓷其致密性好且均匀,并具有良好的储能性能和储能效率,其储能密度能达到3.7~3.9J/cm3,其储能效率高于89.5%;由于其相对较高的介电常数和储能密度使其在锆储能密度的电容器中有良好的应用前景,但与弛豫性的铁电体相比,储能效率还是相对较低。
3.本发明通过流延成型的工艺制备的掺锶锆钛锡酸镧铅弛豫性反铁电体陶瓷厚膜的厚度可控,其单层的厚度为40~50微米,多层的厚度可叠为500~1000层。单层厚膜介质材料是作为多层陶瓷电容器(MLCCs)的重要组成部分,制备出性能良好的反铁电单层厚膜对制得多层陶瓷电容器具有重要意义。
4.本发明的制备方法可实现一次流制得大批厚膜陶瓷生坯,符合工业化生产的需求。
附图说明
图1为实施例1和2在950℃预烧2h所得PLZST粉体的XRD图。
图2为实施例1-2所得PLSZST陶瓷在1250℃下烧结3h的SEM照片。
图3为实施例1-2所得厚膜陶瓷随频率变化的介电常数和介电损耗曲线。
图4为实施例1-2所得厚膜陶瓷在不同电场下的电滞回线。
图5为实施例1-2所得厚膜陶瓷在不同电场下的储能密度和储能效率曲线。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
本发明实施例中采用PbO、La2O3、ZrO2、SnO2、SrCO3、TiO2均购于上海阿拉丁生化科技股份有限公司。
实施例1
1.按照化学计量比将PbO(过量3wt%)、La2O3、ZrO2、SnO2、SrCO3、TiO2置于尼龙球磨罐(250mL),球磨介质为二氧化锆球(球直径为3mm和5mm,质量比约1:1);加入20mL乙醇,采用普通行星球磨机球磨,转速设定240rmp/min,球磨时间为24h,制得混合粉体。
2.将混合粉体置于烘箱在60℃烘干10h,分别过40目和80目筛,制得陶瓷粉;
3.将陶瓷粉置于马弗炉中在950℃预烧2h,所得物采用普通行星球磨机球磨进行,转速设定240rmp/min,球磨时间为24h,置于烘箱在60℃烘干10h,分别过40目和80目筛,制得陶瓷粉体。
4.流延浆料配制:将得到的陶瓷粉体(约50g)置于滚磨罐,加入0.9g分散剂(辛基酚聚氧乙烯醚)和40g溶剂(质量比为1:1的无水乙醇和丁酮)。在220r/min的转速下滚磨20h得到预混浆料;再加入1.5g粘结剂(聚乙烯醇缩丁醛)并在200r/min的转速下滚磨10h,然后加入18g溶剂(质量比为1:1的无水乙醇和丁酮)、4g粘结剂(聚乙烯醇缩丁醛)和2g塑化剂(邻苯二甲酸二辛酯)并在200r/min的转速下球磨12h得到混合均匀的流延浆料(粘度为600~800mpa·p);
5.将流延浆料在膜带线速度为0.21mm/s的流延机上在43℃烘干,流延成型,制得厚膜陶瓷的生坯。
6.将步骤5所得厚膜陶瓷的生坯在压力设定值30MPa,温度设定60℃,保压时间6min,温等静压,400℃排胶3h后在1300℃烧结2h,制得掺锶锆钛锡酸镧铅厚膜陶瓷,化学成分为Pb0.88Sr0.06La0.06(Zr0.80Sn0.15Ti0.05)O3,(PLZST标记为A1)。
实施例2
与实施例1不同的在于:制得掺锶的锆钛锡酸镧铅厚膜陶瓷。化学成分为Pb0.85Sr0.09La0.06(Zr0.45Sn0.50Ti0.05)O3,(PLZST标记为A2)。
材料结构表征与性能测试:晶体结构分析:日本理学公司DMAX-UltimaIV X射线衍射仪(XRD)。表面形貌分析:日立S-3400(Ⅱ)型扫描电子显微镜(SEM)。介电性能:美国惠普公司HP4284A精密阻抗分析仪。铁电性能:美国Radiant公司RT-66A铁电综合测试系统。储能特性:电滞回线积分计算。
图1为实施例1和2中在950℃预烧2h的PLZST粉体的XRD图。从图1可知,与标准卡片的峰吻合,无杂峰,说明已经合成钙钛矿结构的PLZST粉体。两组样品都没有杂峰而且它们的衍射峰都比较尖锐。A1样品在(200)峰分裂,说明它是四方相结构;A2样品在45°时只有(200)峰,说明它的晶体结构为赝立方相结构。
图2为实施例1-2中PLZST厚膜陶瓷的SEM照片,其中,(a)为A1厚膜的截面,(b)为A2厚膜的截面。从图2中可以看出,PLZST厚膜陶瓷比较致密,晶粒与晶粒之间紧密相连,气孔较少。厚膜陶瓷的晶粒尺寸主要分布在1~2μm之间。用Archimedes方法测量样品实际密度,通过XRD得到的晶格常数计算其理论密度。从图2中可以看到,A1厚膜的厚度约为40μm,A2厚膜的厚度约为80μm。
图3为实施例1-2所得厚膜陶瓷随频率变化的介电常数和介电损耗曲线。其中,(a)A1,(b)A2。从图3可知,当测试电压为1V,测试温度为常温。随着频率增大,介电常数减小,介电损耗呈现先减小后增大的趋势。A1样品的介电损耗低1.2%,A2样品的介电损耗低于0.6%。
图4为实施例1-2所得厚膜陶瓷在不同电场下的电滞回线。其中,(a)A1,(b)A2。从图4中可知,剩余极化几乎为零,回线呈现出瘦长形状的双电滞回线,表明样品的弛豫性较好,A1样品能承受的最大电场为350kV/cm。A1样品的最大极化强度由13.91μC/cm2(250kV/cm)增加到21.01μC/cm2(350kV/cm)。A2样品的最大极化强度由2.14μC/cm2(100kV/cm)增加到7.00μC/cm2(230kV/cm)。
图5为实施例1-2所得厚膜陶瓷在不同电场下的储能密度和储能效率曲线。其中,(a)A1,(b)A2。从图5中可知,随着电场强度的逐渐增加,厚膜陶瓷的储能密度逐渐增大。其中,A1厚膜陶瓷在350kV/cm的电场作用下,其储能密度能达到3.795J/cm3,其储能效率高于89.5%;A2厚膜陶瓷在230kV/cm的电场作用下,其储能密度能达到0.808J/cm3,其储能效率高于90%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述厚膜陶瓷的分子式为PbxSryLaz(ZrnSnmTiv)O3,其中,x=0.85~0.88,y=0.06~0.09,z=0.06,n=0.45~0.8,m=0.15~0.5,v=0.05;所述厚膜陶瓷是按照化学计量比将PbO、La2O3、ZrO2、SnO2、SrCO3、TiO2加入乙醇或去离子水进行球磨混合,将球磨后的粉烘干、过筛制得陶瓷粉末A;将陶瓷粉末A在920~980℃预烧,然后将所得粉末加入乙醇进行二次球磨,将所得混合粉体烘干、过筛制得陶瓷粉体B;将所得陶瓷粉体B加入分散剂和溶剂A中,经滚磨得到预混浆料;再加入粘结剂并滚磨,然后加入溶剂B、粘结剂和塑化剂并球磨得到流延浆料;将流延浆料经流延机在42~44℃烘干流延成型,制得厚膜陶瓷的生坯,然后设定压力为29~31MPa,温度为59~61℃,将生坯进行温等静压,在400~500℃排胶,然后在1300~1320℃烧结制得。
2.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述厚膜陶瓷的单层厚度为40~50μm,所述厚膜陶瓷的层数为500~1000层。
3.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述烘干的温度为40~70℃,所述烘干的时间为10~24h。
4.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述预烧的时间为2~3h,所述排胶的时间为3~4h,所述烧结的时间为2~2.5h,所述温等静压的保压时间为6~8min。
5.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述球磨的介质为二氧化锆球,所述球磨的转速为240~260rmp,所述球磨的时间为20~26h;所述滚磨的速率为200~220r/min,所述滚磨的时间为20~24h。
6.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述分散剂为辛基酚聚氧乙烯醚,所述粘结剂为聚乙烯醇缩丁醛,所述塑化剂为邻苯二甲酸二辛酯。
7.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述溶剂A和B均为无水乙醇和丁酮,所述无水乙醇和丁酮的质量比为1:(1~1.2)。
8.根据权利要求1所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷,其特征在于,所述陶瓷粉体B、分散剂和溶剂A的质量比为50:(0.9~1):(40~42);所述预混浆料、粘结剂、溶剂B、塑化剂的质量比为50:(1.5~2):40:(2~2.5)。
9.根据权利要求1-8任一项所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.按照化学计量比将PbO、La2O3、ZrO2、SnO2、SrCO3、TiO2,球磨介质为二氧化锆球,加入乙醇或去离子水进行球磨混合;将球磨后的粉烘干,过筛制得陶瓷粉末A;
S2.将陶瓷粉末A在920~980℃预烧,然后将所得粉末加入乙醇进行二次球磨,将所得混合粉体烘干,过筛制得陶瓷粉体B;
S3.将所得陶瓷粉体B加入分散剂和溶剂A中,经滚磨得到预混浆料;再加入粘结剂并滚磨,然后加入溶剂B、粘结剂和塑化剂并在球磨得到流延浆料;
S4.将流延浆料经流延机在42~44℃烘干流延成型,制得厚膜陶瓷的生坯,然后设定压力为29~31MPa,温度为59~61℃,将生坯进行温等静压,在400~500℃排胶,然后在1300~1320℃烧结,制得掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷。
10.权利要求1-8任一项所述的掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷在电介质领域中的应用。
CN202010250574.XA 2020-04-01 2020-04-01 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用 Pending CN111470863A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010250574.XA CN111470863A (zh) 2020-04-01 2020-04-01 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010250574.XA CN111470863A (zh) 2020-04-01 2020-04-01 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111470863A true CN111470863A (zh) 2020-07-31

Family

ID=71749496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010250574.XA Pending CN111470863A (zh) 2020-04-01 2020-04-01 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111470863A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN113929454A (zh) * 2021-09-07 2022-01-14 成都宏科电子科技有限公司 一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器
CN115466113A (zh) * 2022-08-02 2022-12-13 同济大学 一种异质叠层结构铅基反铁电陶瓷及其制备与应用
CN115947598A (zh) * 2022-10-21 2023-04-11 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
US20080302658A1 (en) * 2007-06-08 2008-12-11 Tsutomu Sasaki Oxide body, piezoelectric device, and liquid discharge device
US20090207555A1 (en) * 2008-02-15 2009-08-20 Trs Technologies Antiferroelectric multilayer ceramic capacitor
CN108929112A (zh) * 2018-09-21 2018-12-04 广东工业大学 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
US20080302658A1 (en) * 2007-06-08 2008-12-11 Tsutomu Sasaki Oxide body, piezoelectric device, and liquid discharge device
US20090207555A1 (en) * 2008-02-15 2009-08-20 Trs Technologies Antiferroelectric multilayer ceramic capacitor
CN108929112A (zh) * 2018-09-21 2018-12-04 广东工业大学 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN111393149B (zh) * 2020-04-01 2022-08-12 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN113929454A (zh) * 2021-09-07 2022-01-14 成都宏科电子科技有限公司 一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器
CN115466113A (zh) * 2022-08-02 2022-12-13 同济大学 一种异质叠层结构铅基反铁电陶瓷及其制备与应用
CN115466113B (zh) * 2022-08-02 2023-08-04 同济大学 一种异质叠层结构铅基反铁电陶瓷及其制备与应用
CN115947598A (zh) * 2022-10-21 2023-04-11 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法
CN115947598B (zh) * 2022-10-21 2024-03-22 西安交通大学 一种可与贱金属内电极共烧的反铁电材料及其制备方法

Similar Documents

Publication Publication Date Title
Liu et al. Enhanced energy storage properties of BaTiO3-Bi0. 5Na0. 5TiO3 lead-free ceramics modified by SrY0. 5Nb0. 5O3
Yang et al. A novel lead-free ceramic with layered structure for high energy storage applications
Li et al. Constructing layered structures to enhance the breakdown strength and energy density of Na 0.5 Bi 0.5 TiO 3-based lead-free dielectric ceramics
CN111470863A (zh) 一种掺锶锆钛锡酸镧铅弛豫性反铁电厚膜陶瓷及其制备方法和应用
CN108929112B (zh) 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
JP2001316114A (ja) ペロブスカイト構造を有する酸化物、チタン酸バリウムおよびその製造方法ならびに誘電体セラミックおよびセラミック電子部品
Zhu et al. Energy-storage performance of NaNbO 3 based multilayered capacitors
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN108751990A (zh) 一种锆钛酸铅镧陶瓷及其制备方法与应用
CN112209711A (zh) 一种锆钛锡铌酸铅厚膜陶瓷及其制备方法和应用
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN113185285A (zh) 一种陶瓷介质材料及其独石电容器
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
Zhang et al. Enhanced energy-storage properties in lead-free (Bi0. 5Na0. 5) TiO3-based dielectric ceramics via glass additive and viscous polymer rolling process
Xu et al. High-temperature dielectrics in BNT-BT-based solid solution
CN111253151A (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN113683409A (zh) 具有优异温度稳定性的四方相a和b位共取代无铅压电织构陶瓷及其制备方法和应用
Liu et al. An Sr doping 0.65 (Bi 0.5 Na 0.5) TiO 3-0.35 (Sr 0.7+ x+ Bi 0.2) TiO 3 ceramic with tunable crystal structures and energy storage performances
CN113429203A (zh) 一种高耐击穿电场的锆锡酸铅厚膜陶瓷材料及其制备方法
CN115108826B (zh) 一种低电场驱动高储能密度和超快放电速率的弛豫铁电陶瓷材料及其制备方法
Chen et al. Effects of glass additions on energy storage performance of (Pb 0.97 La 0.02)(Zr 0.92 Sn 0.05 Ti 0.03) O 3 antiferroelectric thick films
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用
CN116813330B (zh) 一种基于a位缺陷的低损耗高能量转换效率的钛酸钡基无铅储能陶瓷材料及其制备方法
Diao et al. Structure, dielectric properties and energy storage performance of barium strontium titanate thin films prepared by spin-coating technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200731

RJ01 Rejection of invention patent application after publication