CN114740137A - 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法 - Google Patents

一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法 Download PDF

Info

Publication number
CN114740137A
CN114740137A CN202210401752.3A CN202210401752A CN114740137A CN 114740137 A CN114740137 A CN 114740137A CN 202210401752 A CN202210401752 A CN 202210401752A CN 114740137 A CN114740137 A CN 114740137A
Authority
CN
China
Prior art keywords
mil
gox
glucose
dispersing
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210401752.3A
Other languages
English (en)
Inventor
高雪川
张曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN202210401752.3A priority Critical patent/CN114740137A/zh
Publication of CN114740137A publication Critical patent/CN114740137A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于GOx@GA@MIL‑101快速简便识别葡萄糖的方法,以交联法将GOx固定于MIL‑101(Fe)表面,然后将模拟类过氧化物酶MIL‑101(Fe)与天然葡萄糖氧化酶(GOx)进行串联催化协同氧化,从而实现过氧化氢和葡萄糖的共识别。上述方案中,将模拟类过氧化物酶MIL‑101(Fe)与天然葡萄糖氧化酶(GOx)结合,将二者进行串联催化协同氧化,从而达到对过氧化氢和葡萄糖共识别的目的;与其他铁基催化剂相比,具有更小的Km值,对底物有更高的亲和力,从而可以实现底物的快速识别;通过交联葡萄糖氧化酶对葡萄糖达到专一识别,不受其他小分子干扰。

Description

一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法
技术领域
本发明涉及葡萄糖识别技术领域,具体涉及一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法。
背景技术
目前,传统的葡萄糖检测的方法主要包括DNS比色,菲林滴定和高效液相色谱等,均需要花费大量的时间才能完成检测,同时一个样品往往需要多次重复操作,能够进行的实验组数十分有限,并且具有灵敏度差,专一性不强的特点,容易造成实验数据误差导致实验重复性差。
发明内容
为解决上述问题,本发明提供了一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法,样品数量远超于传统方法,同时其检测样品不需要预处理,比以往的传统方法提高了检测效率,且人体内其他小分子对其检测并不产生影响,对葡萄糖的检测具有专一性。
为实现上述目的,本发明采取的技术方案为:
一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法,以交联法将GOx固定于MIL-101(Fe)表面,然后将模拟类过氧化物酶MIL-101(Fe)与天然葡萄糖氧化酶(GOx)进行串联催化协同氧化,从而实现过氧化氢和葡萄糖的共识别;具体的:包括如下步骤:
S1、制备MIL-101:
取0.675gFeCl3·6H2O和0.206g对苯二甲酸置于烧杯中,经15mLN,N-2甲基甲酰胺溶解,在室温下超声搅拌15min,转移至25mL聚四氟乙烯反应釜中,110℃下反应20h后,将反应釜降至室温,将得到的产品以乙醇离心反复洗涤3-4次,60℃烘干6h,以玛瑙研钵研磨至粉末状备用;
S2、将10mg葡萄糖氧化酶(GOx)分散在10mL磷酸盐缓冲液中,室温下在磁力搅拌器中分散30min后,加入2.5wt%的戊二醛水溶液(GA),交联,得交联酶;
S3、取50mg制备好的MIL-101,分散到10mL配置好的磷酸盐缓冲液中,室温磁力搅拌分散30min,使之充分分散后,加入所得的交联酶,室温下与MIL-101交联1h后,以PBS洗涤未交联上的载体或酶,离心收集,转移至预先制冷的冷冻干燥机内干燥6h,得到GOx@GA@MIL-101,置于-20℃冰箱内冷藏备用;
S4、取30mg制备好的MIL-101分散于10mL水中,体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的H2O2,50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值,以H2O2浓度为横坐标,吸光度值为纵坐标,进行二次拟合,得到浓度在1.125x10-6-8.8x10-4mol/L的H2O2检测范围;
S5、取30mg制备好的GOx@GA@MIL-101分散于10mLPBS中,体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的葡萄糖(Glu),50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值,以葡萄糖浓度为横坐标,吸光度值为纵坐标,进行线性拟合,得到浓度在1-10 mM/L的Glu检测范围。
上述方案中,将模拟类过氧化物酶MIL-101(Fe)与天然葡萄糖氧化酶(GOx)结合,将二者进行串联催化协同氧化,从而达到对识别过氧化氢和葡萄糖共识别的目的;与其他铁基催化剂相比,具有更小的Km值,对底物有更高的亲和力,从而可以实现底物的快速识别;通过交联葡萄糖氧化酶对葡萄糖达到专一识别,不受其他小分子干扰。
附图说明
图1为交联葡萄糖氧化酶的实验操作及原理。
图2为MIL-101对不同浓度过氧化氢的检测结果。
图3为GOx@GA@MIL-101对不同浓度葡萄糖的检测结果。
图4为不同浓度葡萄糖与吸光度之间的线性关系。
图5为GOx@GA@MIL-101对葡萄糖的识别专一性结果。
图6为实验流程及原理示意图。
图7为比色原理化学反应方程式。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例
S1、制备MIL-101:
取0.675gFeCl3·6H2O和0.206g对苯二甲酸置于烧杯中,经15mLN,N-2甲基甲酰胺溶解,在室温下超声搅拌15min,转移至25mL聚四氟乙烯反应釜中,110℃下反应20h,待反应结束后,将反应釜降至室温,将得到的产品以乙醇离心反复洗涤3-4次,60℃烘干6h,以玛瑙研钵研磨备用;
S2、将10mg葡萄糖氧化酶(GOx)分散在10mL磷酸盐缓冲液中,室温下在磁力搅拌器中分散30min后,向其中加入2.5wt%的戊二醛水溶液(GA),开始交联,示意图1所示。
S3、取50mg制备好的MIL-101,分散到10mL配置好的磷酸盐缓冲液中,室温磁力搅拌分散30min,使之充分分散后,将制备好的交联酶加入,室温下与MIL-101交联1h后,以PBS洗涤未交联上的载体或酶,离心收集,转移至预先制冷的冷冻干燥机内干燥6h,得到GOx@GA@MIL-101,置于-20℃冰箱内冷藏备用。
S4、取S2制备好的MIL-101取30mg分散于10mL水中。体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的H2O2,50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值。以H2O2浓度为横坐标,吸光度值为纵坐标,进行二次拟合,得到浓度在1.125x10-6~8.8x10-4mol/L的H2O2检测范围,如图2所示:
S5、取S3制备好的GOx@GA@MIL-101 30mg分散于10mLPBS中。体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的葡萄糖(Glu),50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值。以葡萄糖浓度为横坐标,吸光度值为纵坐标,进行线性拟合,得到浓度在1-10 mM/L的Glu检测范围,如图3和图4所示:
经计算得到上述制备材料对H2O2和TMB的Km值为5.047×10-4、0.0196,比其他的Fe基催化剂和天然过氧化物酶对底物有着更高的亲和力,加快了反应进程。同时,对该材料进行专一性考察,模拟了人的体液环境,分别对尿酸(UA)、多巴胺(DA)、抗坏血酸(AA)、氯化钠(NaCl)进行检测,得到结果如图5所示。
本发明对H2O2和Glu两种底物的检测机理解释如图6所示;GOx@GA@MIL-101在O2的参与下,以交联的GOx为第一反应催化剂,氧化Glu,同时产生H2O2,为第二步的显色反应提供了底物;在H2O2的氧化及类过氧化物酶MIL-101的催化下,将无色的TMB底物氧化为黄色氧化态TMB。通过这一级联串联反应,鉴别低浓度葡萄糖的存在最终以TMB的吸光度值展现出来。具体反应式如图7所示。
综上所述,所制备的GOx@GA@MIL-101对H2O2和葡萄糖有着更灵敏的检测,以裸眼辩色即可达到检测低浓度葡萄糖的目的。此项方法的研究为纳米材料在医学领域的应用奠定了一定基础。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法,其特征在于:以交联法将GOx固定于MIL-101(Fe)表面,然后将模拟类过氧化物酶MIL-101(Fe)与天然葡萄糖氧化酶(GOx)进行串联催化协同氧化,从而实现过氧化氢和葡萄糖的共识别。
2.如权利要求1所述的一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法,其特征在于:包括如下步骤:
S1、制备MIL-101:
取0.675gFeCl3·6H2O和0.206g对苯二甲酸置于烧杯中,经15mLN,N-2甲基甲酰胺溶解,在室温下超声搅拌15min,转移至25mL聚四氟乙烯反应釜中,110℃下反应20h后,将反应釜降至室温,将得到的产品以乙醇离心反复洗涤3-4次,60℃烘干6h,以玛瑙研钵研磨至粉末状,备用;
S2、将10mg葡萄糖氧化酶(GOx)分散在10mL磷酸盐缓冲液中,室温下在磁力搅拌器中分散30min后,加入2.5wt%的戊二醛水溶液(GA),交联,得交联酶;
S3、取50mg制备好的MIL-101,分散到10mL配置好的磷酸盐缓冲液中,室温磁力搅拌分散30min,使之充分分散后,加入所得的交联酶,室温下与MIL-101交联1h后,以PBS洗涤未交联上的载体或酶,离心收集,转移至预先制冷的冷冻干燥机内干燥6h,得到GOx@GA@MIL-101,置于-20℃冰箱内冷藏备用;
S4、取30mg制备好的MIL-101分散于10mL水中,体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的H2O2,50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值,以H2O2浓度为横坐标,吸光度值为纵坐标,进行二次拟合,得到浓度在1.125x10-6-8.8x10-4mol/L的H2O2检测范围;
S5、取30mg制备好的GOx@GA@MIL-101分散于10mLPBS中,体系中加入1mLPBS缓冲液,850μLTMB,50μL不同浓度的葡萄糖(Glu),50μL浓HCl,在45℃条件下水浴加热,反应30s,将得到的变色样品置于452nm条件下检测得到吸光度值,以葡萄糖浓度为横坐标,吸光度值为纵坐标,进行线性拟合,得到浓度在1-10 mM/L的Glu检测范围。
CN202210401752.3A 2022-04-18 2022-04-18 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法 Pending CN114740137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210401752.3A CN114740137A (zh) 2022-04-18 2022-04-18 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210401752.3A CN114740137A (zh) 2022-04-18 2022-04-18 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法

Publications (1)

Publication Number Publication Date
CN114740137A true CN114740137A (zh) 2022-07-12

Family

ID=82281106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210401752.3A Pending CN114740137A (zh) 2022-04-18 2022-04-18 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法

Country Status (1)

Country Link
CN (1) CN114740137A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014336A (zh) * 2020-08-18 2020-12-01 济南大学 一种基于级联反应检测α-葡萄糖苷酶活性的普适性方法
CN113171453A (zh) * 2021-03-26 2021-07-27 中国科学院上海硅酸盐研究所 一种基于多孔铁基mof结构的放疗增敏材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014336A (zh) * 2020-08-18 2020-12-01 济南大学 一种基于级联反应检测α-葡萄糖苷酶活性的普适性方法
CN113171453A (zh) * 2021-03-26 2021-07-27 中国科学院上海硅酸盐研究所 一种基于多孔铁基mof结构的放疗增敏材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAN XIA等: "Enzymatic Cascade Reactions Mediated by Highly Efficient Biomimetic Quasi Metal−Organic Frameworks" *
陈海欣;张赛男;赵力民;陈瑶;: "固定化酶:从策略到材料设计" *

Similar Documents

Publication Publication Date Title
Niculescu et al. Redox hydrogel-based amperometric bienzyme electrodes for fish freshness monitoring
Shoaie et al. Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles
Yılmaz et al. Chitosan–ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors
US5356786A (en) Interferant eliminating biosensor
JP2633459B2 (ja) 電気生物化学的分析法及び電極
Ruff et al. A self‐powered ethanol biosensor
Ramanathan et al. Covalent immobilization of glucose oxidase to poly (O‐amino benzoic acid) for application to glucose biosensor
Dou et al. A disposable electrochemical immunosensor arrays using 4-channel screen-printed carbon electrode for simultaneous detection of Escherichia coli O157: H7 and Enterobacter sakazakii
Yang et al. Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan
Isildak et al. A novel conductometric creatinine biosensor based on solid-state contact ammonium sensitive PVC–NH2 membrane
Karalemas et al. Construction of a L-lysine biosensor by immobilizing lysine oxidase on a gold-poly (o-phenylenediamine) electrode
CN111487242A (zh) 一种基于铁卟啉二维MOFs类酶催化的过氧化氢检测方法
Ahammad et al. Hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto a gold nanoparticles-adsorbed poly (brilliant cresyl blue) film
Rad et al. Spectrophotometric assay for horseradish peroxidase activity based on pyrocatechol–aniline coupling hydrogen donor
Bicak et al. Poly (o-aminophenol) prepared by Cu (II) catalyzed air oxidation and its use as a bio-sensing architecture
Figueiredo et al. Electrochemical studies of galactose oxidase
Arslan et al. Development of a novel phenylalanine biosensor for diagnosis of phenylketonuria
Hajizadeh et al. chemical cross-linking of a redox mediator thionin for electrocatalytic oxidation of reduced β-nicotinamide adenine dinucleotide
Chairam et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on poly (aniline-co-o-aminobenzoic acid) modified glassy carbon electrode coated with chitosan film
Tatsuma et al. Peroxidase model electrodes: Sensing of imidazole derivatives with heme peptide-modified electrodes
Mizutani et al. L-Malate-sensing electrode based on malate dehydrogenase and NADH oxidase
CN102654475B (zh) 检测过氧化氢的生物电化学传感器及其制备方法
CN114740137A (zh) 一种基于GOx@GA@MIL-101快速简便识别葡萄糖的方法
Adeyoju et al. Kinetic characterization of the effects of organic solvents on the performance of a peroxidase‐modified electrode in detecting peroxides, thiourea and ethylenethiourea
Barbosa et al. Immobilization of peroxidase onto magnetite modified polyaniline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220712