CN114736356B - 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 - Google Patents

用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 Download PDF

Info

Publication number
CN114736356B
CN114736356B CN202210497677.5A CN202210497677A CN114736356B CN 114736356 B CN114736356 B CN 114736356B CN 202210497677 A CN202210497677 A CN 202210497677A CN 114736356 B CN114736356 B CN 114736356B
Authority
CN
China
Prior art keywords
dibenzo
thick
dinaphthyl
thick dinaphthyl
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210497677.5A
Other languages
English (en)
Other versions
CN114736356A (zh
Inventor
蒋加兴
韩昌志
解沛璇
张崇
王芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202210497677.5A priority Critical patent/CN114736356B/zh
Publication of CN114736356A publication Critical patent/CN114736356A/zh
Application granted granted Critical
Publication of CN114736356B publication Critical patent/CN114736356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一类用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法,该光催化剂采用简单的二元或三元共聚合的Suzuki偶联反应进行制备,其构建单元包括:二苯并稠二萘和二苯并噻吩砜。用于聚合的二苯并稠二萘基单体和二苯并噻吩砜基单体带有相同的或者不同的可聚合官能团,可发生Suzuki偶联反应。本发明聚合物光催化剂具有光催化产氢活性高、表观量子效率高、结构和组成连续可调的特点,且其制备过程简单、产率高、性能稳定,在太阳光下就可以释放氢气,可用于光催化产氢领域。

Description

用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及 其制备方法
技术领域
本发明属于光催化分解水制氢材料技术领域,具体涉及一类光催化分解水制氢活性高的二苯并稠二萘基聚合物光催化剂及其制备方法。
背景技术
利用太阳能分解水产氢是一种将太阳能转化为化学能的简单经济且高效的技术手段,一直备受全球科学家的高度关注。近几十年以来,国内外围绕提高半导体光催化剂的光催化效率开展了大量的科学研究,已经开发了上千种半导体光催化剂用于光催化分解水产氢/产氧。
半导体光催化剂是利用太阳能光催化分解水产氢的关键材料,而提高半导体光催化剂的光催化活性主要是通过调控半导体的结构、组成来实现。其中,有机聚合物光催化剂由于合成方法多样、结构易设计及理化性质易调控等优势,在光催化分解水制氢领域具有巨大的发展潜力,近年来受到了广泛的研究关注。其中,D-A型聚合物光催化剂由于受体单元的强拉电子效应,可以有效地促进光生电子的分离效率,进而提高聚合物光催化剂的光催化活性。尤其,在以二苯并噻吩砜为电子受体时,所得D-A型聚合物光催化剂的光催化活性较高。例如,当以二苯并噻吩砜作为电子受体,芘基作为电子供体时,通过改变二苯并噻吩砜与芘单元的连接位点所得的聚合物PySO(Small,2018,14,1801839)、P16PySO(Appl.Surf.Sci.,2019,495,143537)和PyDOBT-1(Macromolecules,2018,51,9502-9508),以TEOA为牺牲剂未负载Pt时,在可见光下分别获得了4.74mmol h-1 g-1、6.38mmol h-1 g-1和5.70mmol h-1 g-1的光催化产氢活性。氟取代的二苯并噻吩砜与芘基通过Suzuki偶联反应所得的聚合物PyDF,以TEOA为牺牲剂未负载Pt时,在可见光下获得了4.09mmol h-1 g-1的光催化产氢速率(J.Mater.Chem.A,2020,8,2404-2411)。当以9,9-螺二芴作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物S-CMP3在以三乙胺(TEA)为牺牲剂未负载Pt时获得了3.11mmol h-1 g-1的可见光催化产氢活性(Chem.Mater.,2019,31,305-313)。苯基与二苯并噻吩砜通过Suzuki偶联反应所得聚合物P7(Angew.Chem.Int.Ed.,2016,55,1792-1796)和DBTD-CMP1(ACS Catal.,2018,8,8590-8596),在可见光下,分别以TEA和TEOA为牺牲剂,未负载Pt时,分别获得了3.68mmol h-1 g-1和2.46mmol h-1 g-1的光催化产氢速率。当以苯并三噻吩作为电子给体时,其与二苯并噻吩砜通过Suzuki偶联反应所得聚合物BTT-CPP,在以抗坏血酸(AA)作为牺牲剂未负载Pt时,在可见光下获得了12.63mmol h-1 g-1的光催化产氢速率(Macromolecules,2021,54,2661-2666)。
目前所报道的大多数具有高光催化活性的有机聚合物光催化剂都是基于芘作为电子供体,这极大的限制有机聚合物光催化剂的发展,因此需要开发一些新型的电子供体。其次,以上列举的有机聚合物光催化剂都是由两种功能化的单体通过偶联反应聚合得到。研究表明,通过三元或者多元共聚的方式可以调控聚合物的光学性质、电学性质和调控有机聚合物的光催化活性。例如,Cooper等人采用三元共聚的方式得到了一系列有机聚合物光催化剂CP-CMP1-15,通过调节三种单元的投料比实现了对有机聚合物光学带隙、比表面积和光催化性能的调控(J.Am.Chem.Soc.2015,137,3265-3270)。通过调节四苯乙烯基、苯基和9-芴酮的投料比,所得三元共聚物F0.5CMP在以Na2S/Na2SO4为牺牲剂未负载Pt时获得了0.66mmol h-1 g-1的可见光产氢活性(Chem.Eur.J.,2019,25,3867-3874)。当在聚合物骨架中引入苯单元作为桥键连接芘单元和二苯并噻吩砜单元时,通过调节供体单元和受体单元的投料比,所得D-π-A聚合物PyBS-3(Adv.Mater.,2021,2008498)在以TEOA为牺牲剂未负载Pt时,获得了14mmol h-1 g-1的可见光分解水产氢活性。当以AA作为牺牲剂时,获得了36mmol h-1 g-1的可见光分解水产氢活性,相比于PyDOBT-1,性能得到了大幅度提升,这主要是由于苯桥键的引入降低了分子之间的扭曲程度,有利于电子的传输。
发明内容
本发明的目的是提供一类在紫外可见光和可见光照射下具有高光催化分解水制氢活性的二苯并稠二萘基聚合物光催化剂,并为该类聚合物光催化剂提供一种工艺步骤简单、收率高的制备方法。
针对上述目的,本发明所采用的二苯并稠二萘基聚合物光催化剂的结构如式A或式B所示:
式A中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:2,式B中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比=1:3~10。
本发明二苯并稠二萘基聚合物光催化剂的制备方法为:在氮气保护下,将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中或将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-二溴二苯并噻吩砜和3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A(记为DBC-BTDO)或式B(记为DBC-BTDOs)所示的二苯并稠二萘基聚合物光催化剂,反应方程式如下:
上述制备式A方法中,优选2,7,10,15-四溴二苯并稠二萘与3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的摩尔比为1:2,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的2~5倍。
上述制备式B方法中,优选2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜的摩尔比为1:0.5~4,3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的用量为2,7,10,15-四溴二苯并稠二萘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
上述制备方法中,进一步优选加热至回流反应36~48小时。
上述制备方法中,所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
本发明的有益效果如下:
1、本发明将二苯并稠二萘单元和二苯并噻吩砜单元直接结合起来,或者在二苯并稠二萘之间和二苯并噻吩砜之间再次引入具有强拉电子能力的二苯并噻吩砜,促进光生电子和空穴的分离,提高聚合物分子链的共平面性,获得了具有高光催化分解水制氢活性的聚合物光催化剂。
2、本发明聚合物光催化剂采用二元或者三元共聚法制备,所得光催化剂重复性好、比表面积大、带隙窄、可见光活性高、光催化产氢稳定性高,在太阳光照射下具有高的光催化产氢活性,光生电子和空穴分离效果好,制备过程简单,成本较低,毒害小,有利于环境保护和大规模应用。与大多数报道的有机聚合物光催化剂相比,本发明所制备的光催化剂用于催化分解水产氢表现出更加优异的光催化性能,处于国内外领先水平。
附图说明
图1是实施例1和2制备的聚合物光催化剂的红外光谱图。
图2是实施例1和2制备的聚合物光催化剂固体核磁共振碳谱图。
图3是实施例1和2制备的聚合物光催化剂的扫描电子显微镜照片。
图4是实施例1和2制备的聚合物光催化剂的XRD图谱。
图5是实施例1和2制备的聚合物光催化剂的紫外可见吸收光谱图。
图6是实施例1和2制备的聚合物光催化剂在波长大于420nm的光照下光催化产氢速率与光照时间的关系图。
图7是实施例1和2制备的聚合物光催化剂在波长大于300nm的光照下光催化产氢速率与光照时间的关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
在氮气保护下,将20mL N,N-二甲基甲酰胺、4mL 2mol/L碳酸钾水溶液加入到装有322.0mg(0.5mmol)2,7,10,15-四溴二苯并稠二萘、468.2mg(1.0mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色固体粉末DBC-BTDO。
实施例2
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有128.8mg(0.2mmol)2,7,10,15-四溴二苯并稠二萘、234.1mg(0.5mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、37.4mg(0.1mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-1,且DBC-BTDOs-1中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:3。
实施例3
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有64.4mg(0.1mmol)2,7,10,15-四溴二苯并稠二萘、187.3mg(0.4mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、74.8mg(0.2mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-2,且DBC-BTDOs-2中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:6。
实施例4
在氮气保护下,将20mL N,N-二甲基甲酰胺、2mL 2mol/L碳酸钾水溶液加入到装有64.4mg(0.1mmol)2,7,10,15-四溴二苯并稠二萘、280.9mg(0.6mmol)3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、149.6mg(0.4mmol)3,7-二溴二苯并噻吩砜和20.0mg(17.3μmol)四(三苯基膦)钯的反应瓶中,加热至150℃回流反应48小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水多次洗涤,在100℃真空条件下干燥24小时,得到黄绿色粉末DBC-BTDOs-3,且DBC-BTDOs-3中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:10。
采用红外光谱和固体核磁碳谱对实施例1~4制备的聚合物的化学结构进行表征,结果见图1~2。图1中,1608cm-1和1456cm-1处的峰归结为芳香骨架的振动,1305cm-1和1156cm-1处的峰为砜基的振动峰。图2中,110~150ppm为芳香环上碳原子的出峰信号区域,其中,138ppm为与砜基上的硫原子相连接的碳原子的信号峰。由图3可知,实施例1和实施例2制备产物呈纳米颗粒形态,实施例3和实施例4制备产物呈纳米片形态。图4的XRD结果表明实施例1~4产物均为无定型结构,实施例3和实施例4产物的衍射峰归结于π-π堆积效应。由图5可知,实施例1~4制备的聚合物具有非常相近的紫外可见光吸收范围。
为了证明本发明的有益效果,采用实施例1~4制备的聚合物光催化剂分别进行了光催化分解水产氢测试,具体方法如下:
将10mg聚合物光催化剂超声分散在100mL含1mol/L AA的水和DMF体积比为9:1的混合液中,AA作为牺牲剂,DMF作为分散剂,待聚合物催化剂分散后倒入反应器,接入光催化系统,光源为300W氙灯,420nm滤光片用来模拟可见光,在可见光和紫外-可见光下进行光催化分解水产氢测试,采用气相色谱进行光催化分解水产氢在线分析,结果见表1和图6、图7。
表1 光学带隙和产氢速率
由表1可见,本发明聚合物光催化剂在可见光下具有非常高的光催化活性,紫外可见光下产氢速率最高可达214.43mmol h-1 g-1,与文献(Macromolecules 2018,51,9502-9508)中的有机聚合物PyDOBT-1相比,紫外可见光下的光催化产氢速率提高了16~17倍,可见光下的光催化产氢速率提高了16~17倍;与文献(Chem.Mater.;2019,31,305-313)中的有机聚合物S-CMP3相比,紫外可见光下的光催化产氢速率提高了35~36倍,可见光下聚合物的光催化产氢速率提高了29~30倍。
图6和图7表明,实施例1~4的聚合物光催化剂不仅具有非常高的光催化产氢活性,还具有较高的光催化产氢稳定性,且光催化活性可以通过组分调控来进行调节。

Claims (6)

1.一类用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂,其特征在于所述聚合物光催化剂的结构如式A或式B所示:
式A中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:2,式B中二苯并稠二萘单元与二苯并噻吩砜单元的摩尔比为1:3~10。
2.一种权利要求1所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:在氮气保护下,将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中或将碳酸钾水溶液、2,7,10,15-四溴二苯并稠二萘、3,7-二溴二苯并噻吩砜和3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜、四(三苯基膦)钯加入到有机溶剂中,加热至回流反应24~72小时,反应结束后冷却到室温,用二氯甲烷、甲醇和水洗涤,真空干燥,得到式A或式B所示的二苯并稠二萘基聚合物光催化剂,反应方程式如下:
3.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:制备式A所示的二苯并稠二萘基聚合物光催化剂的方法中,所述2,7,10,15-四溴二苯并稠二萘与3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的摩尔比为1:2,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘中溴官能团摩尔量的2~5倍。
4.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:制备式B所示的二苯并稠二萘基聚合物光催化剂的方法中,所述2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜的摩尔比为1:0.5~4,3,7-双(4,4,5,5-四甲基-1,3,2-二噁硼烷-2-基)二苯并噻吩砜的用量为2,7,10,15-四溴二苯并稠二萘摩尔量的两倍与3,7-二溴二苯并噻吩砜摩尔量之和,四(三苯基膦)钯的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的0.8%~2%,碳酸钾的加入量为2,7,10,15-四溴二苯并稠二萘与3,7-二溴二苯并噻吩砜中总的溴官能团摩尔量的2~5倍。
5.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:加热至回流反应36~48小时。
6.根据权利要求2所述的二苯并稠二萘基聚合物光催化剂的制备方法,其特征在于:所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃中任意一种。
CN202210497677.5A 2022-05-09 2022-05-09 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法 Active CN114736356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210497677.5A CN114736356B (zh) 2022-05-09 2022-05-09 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210497677.5A CN114736356B (zh) 2022-05-09 2022-05-09 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN114736356A CN114736356A (zh) 2022-07-12
CN114736356B true CN114736356B (zh) 2024-01-30

Family

ID=82285355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210497677.5A Active CN114736356B (zh) 2022-05-09 2022-05-09 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114736356B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578382A (zh) * 2021-07-29 2021-11-02 陕西师范大学 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010081A1 (en) * 2003-07-16 2005-02-03 Sumitomo Chemical Company, Limited Aromatic monomer-and conjugated polymer-metal complexes
CA2619594C (en) * 2005-08-18 2014-04-08 Nissan Chemical Industries, Ltd. Thiophene compound having sulfonyl group and process for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578382A (zh) * 2021-07-29 2021-11-02 陕西师范大学 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts;Changzhi Han et al;《Chemical Science》;第12卷;第1796-1802页 *
光活性联二萘酚及其衍生物的合成(二);刘全忠, 龚流柱, 蒋耀忠;精细与专用化学品(第02期);第4-7页 *

Also Published As

Publication number Publication date
CN114736356A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN113578382B (zh) 高光催化分解水制氢活性的含噻吩基聚合物光催化剂及其制备方法
Xu et al. Rational design of donor-π-acceptor conjugated microporous polymers for photocatalytic hydrogen production
Xu et al. Designing fluorene-based conjugated microporous polymers for blue light-driven photocatalytic selective oxidation of amines with oxygen
CN112159517B (zh) 朝格尔碱基共轭微孔聚合物光催化剂及其制备方法和应用
CN114177940B (zh) 一种单原子Cu锚定共价有机框架材料的制备及其应用
CN114570429B (zh) 一种单原子负载共价有机框架材料及其制备与在光解水制氢中的应用
Pan et al. Regiospecific, functionalized poly (phenylenevinylene) using the Heck coupling reaction
CN110280306B (zh) 一种基于共轭多孔有机光催化剂高效分解水制氢的方法
Chu et al. Salt-templated porous melamine-based conjugated polymers for selective oxidation of amines into imines under visible light
CN114736356B (zh) 用于光催化分解水制氢的二苯并稠二萘基聚合物光催化剂及其制备方法
CN110227544B (zh) 蜂巢结构卟啉COP与g-C3N4复合材料的合成及在光催化降解染料方面的应用
CN115286757B (zh) 基于多氮烯烃连接的共价有机框架材料及其制备方法和应用
CN115181265A (zh) 一种亚甲基修饰共价三嗪骨架材料及其制备方法和应用
CN113321787B (zh) 一种氮氧自由基功能化多孔有机聚合物纳米管及其制备方法和应用
CN114308126A (zh) 一种K4Nb6O17微米花/Co-TCPP MOF析氢催化剂及其制备方法与应用
CN114805797B (zh) 一种含氮杂环的共轭多孔有机聚合物及制备方法和应用
CN114405544B (zh) 一种共轭聚合物负载金属铂纳米颗粒及其制备方法与在光催化析氢上的应用
Xu et al. Conjugated porous polymers regulated by thiophene and polycyclic aromatic hydrocarbons for photocatalytic water splitting toward hydrogen production
CN117106162B (zh) 一种基于三唑三嗪基共轭微孔聚合物及其应用
CN113416299B (zh) 侧链悬挂生物碱基的有机共轭聚合物光催化剂
CN114558618B (zh) 一类叠氮-炔环加成多酸基光催化剂的制备方法
CN117209516A (zh) 一种具有强电荷分离的硼-胺络合物单体、硼-胺共轭聚合物及其制备方法和应用
Liu et al. Extending the 2D Covalent Organic Frameworks by Inserting Anthracene for Promoted White-light-mediated Photocatalysis
CN117089050A (zh) 一种卟啉基柔性共轭微孔聚合物及其制备方法和应用
Li et al. Direct Conversion from

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant