CN114733498B - 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法 - Google Patents

一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法 Download PDF

Info

Publication number
CN114733498B
CN114733498B CN202210535196.9A CN202210535196A CN114733498B CN 114733498 B CN114733498 B CN 114733498B CN 202210535196 A CN202210535196 A CN 202210535196A CN 114733498 B CN114733498 B CN 114733498B
Authority
CN
China
Prior art keywords
polydimethylsiloxane
sponge
solution
ethylcellulose
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210535196.9A
Other languages
English (en)
Other versions
CN114733498A (zh
Inventor
孙小云
梅金凤
莫思琦
李忠玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202210535196.9A priority Critical patent/CN114733498B/zh
Publication of CN114733498A publication Critical patent/CN114733498A/zh
Application granted granted Critical
Publication of CN114733498B publication Critical patent/CN114733498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Abstract

本发明公开了一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法。本发明将乙基纤维素与氨基封端的聚二甲基硅氧烷交联,然后于1,4‑二氧六环有机溶剂中溶胀,通过冷冻干燥获得三维多孔海绵。所得多孔海绵具有疏水性,以及回弹性,可以在水中选择性吸附油类,可用物理压缩方法实现多次循环再生,在油水分离领域具有良好的应用前景。

Description

一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵 体的制备方法
技术领域
本发明属于材料制备和化工分离领域,具体涉及一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法。
技术背景
由于工业含油废水排放量的增加和石油泄漏的频繁,对海洋环境和人类健康产生了严重影响。近年来,采用吸附剂处理含油废水成为一种常用方法。利用油和水的不同润湿性,将分散的油选择性地吸附到多孔疏水材料中,是油水分离的关键。其中,吸油海绵由于三维(3D)多孔结构从而具有较高的吸附量,在油水分离应用中有较大优势。
聚二甲基硅氧烷(PDMS)具有生物相容性、柔韧性和疏水性,是合成吸油材料最常用的原料之一。由于聚二甲基硅氧烷聚合物本身不具有孔结构,在制备吸油海绵时,一般选用两种方法形成孔结构。一是将其涂覆在多孔性模板基体上,这种海绵在使用过程中有涂层脱落的风险;二是用颗粒模板进行造孔,而后去除模板,操作较为复杂。
针对上述问题,本发明公开一种有机溶剂模板法制备吸油海绵,该方法将用乙基纤维素进行力学性能增强的PDMS弹性体于有机溶剂中溶胀,而后冷冻干燥去除模板,形成力学性能优异、疏水性能优异的多孔结构海绵。
发明内容
本发明涉及的是以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体,所用原料中氨基封端的聚二甲基硅氧烷的结构式为:分子量无需特别限定。
本发明涉及的以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体,其制备方法是:
(1)将乙基纤维素溶于有机溶剂中,搅拌均匀得到乙基纤维素溶液;
乙基纤维素的结构式为:其中R为H和CH2CH3,粘度为9-11mPa·s。
进一步,有机溶剂为与聚二甲基硅氧烷有相似溶解度参数且易挥发的有机溶剂,可选为四氢呋喃(THF)、二氯甲烷(DCM)、三氯甲烷、1,4-二氧六环,优选为四氢呋喃。
(2)在步骤(1)乙基纤维素溶液中加入环氧氯丙烷,其中乙基纤维素和环氧氯丙烷质量比为13:10,用NaOH水溶液将pH调节至碱性,优选pH为8,在50-80℃反应2-12小时。
(3)在步骤(2)反应后的溶液中加入氨基封端的聚二甲基硅氧烷,用HCl溶液将pH调至酸性,优选pH为5,在50-80℃反应2-12小时。其中乙基纤维素和氨基封端的聚二甲基硅氧烷质量比为(0.5-1.5):10,进一步优选为1.0:10。
本发明限定乙基纤维素和氨基封端的聚二甲基硅氧烷质量比为(0.5-1.5):10,在此范围内,可得到具有弹性和均匀多孔结构的海绵,如果低于0.5:10孔结构不明显,高于1.5:10交联反应难以发生,无法成型。
(4)将戊二醛加入步骤(3)溶液中,戊二醛与氨基封端的聚二甲基硅氧烷的质量比为1:100,并倒入模具中进行室温固化,凝固成型即可。
(5)将步骤(4)中固化产物浸泡于含纳米二氧化硅的有机溶剂中进行完全溶胀,随后冷冻干燥得到聚二甲基硅氧烷/乙基纤维素海绵体。
进一步,优选后的有机溶剂为1,4-二氧六环。1,4-二氧六环有机溶剂中还含质量分数2%的纳米二氧化硅。
本发明涉及的反应机理为:将乙基纤维素以环氧氯丙烷修饰,再与氨基封端的聚二甲基硅氧烷交联,以戊二醛聚合聚二甲基硅氧烷以提高分子量,以1,4-二氧六环作为有机溶剂模板,通过冷冻干燥获得具有优异疏水性、回弹性三维多孔海绵,用纳米二氧化硅涂覆后可进一步增加表面疏水性。
相比于现有技术,本发明技术方案的优点在于:
(1)本发明提出以有机溶剂为模板的聚二甲基硅氧烷海绵造孔方法,操作简便,合成的海绵结构稳定。
(2)乙基纤维素增加了聚二甲基硅氧烷海绵的力学性能,起到增加刚性的作用,通过乙基纤维素改性后的聚二甲基硅氧烷,去除溶剂模板后才能形成孔道结构,具有优异的疏水性,合成的海绵在吸油后可以通过简单物理压缩实现再生,且多次使用后吸附性能没有明显下降。
附图说明
图1为本发明涉及的反应方程式。
图2为本发明实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体及原料的红外光谱图。
图3为本发明实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体的扫描电镜图。
图4为本发明实施例2制备的聚二甲基硅氧烷/乙基纤维素海绵体的扫描电镜图。
图5为本发明实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体的水接触角。
图6为本发明实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体对石油醚吸附-解吸的归一化吸附量及海绵质量变化图。
图7为本发明实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体的力学性能展示图。
图8为本发明实施例3制备的聚二甲基硅氧烷/乙基纤维素海绵体的扫描电镜图。
具体实施方式
以下结合具体实施例对本发明进行进一步的阐述,下述实施例中所用的材料、试剂均可从商业途径获得。
实施例1
(1)称取0.05g乙基纤维素加入到1mL四氢呋喃中,搅拌均匀得到乙基纤维素溶液。
(2)称取0.038g环氧氯丙烷,加入到步骤(1)的乙基纤维素溶液中,用0.1mol/L的NaOH溶液将pH调节至8,在60℃油浴中反应4小时。
(3)称取0.5g氨基封端的聚二甲基硅氧烷(市售,分子量为25000),加入到步骤(2)的反应后的溶液中,用0.1mol/L的HCl溶液将pH调至5,搅拌均匀。
(4)在步骤(3)的混合溶液中加入0.005g戊二醛,搅拌均匀后,转移至模具中,室温固化10小时。
(5)将步骤(4)中固化产物置于含质量分数2%纳米二氧化硅的1,4-二氧六环分散液中溶胀6小时,随后冷冻干燥(-50℃)得到聚二甲基硅氧烷/乙基纤维素海绵体。
所得海绵体接触角143.4°。
所得海绵体对甲苯、四氢呋喃和氯仿的静态吸附量分别为19.36g/g、27.94g/g和35.36g/g。
实施例1制备的聚二甲基硅氧烷/乙基纤维素海绵体吸附石油醚后,用挤压方法回收质量80%以上石油醚,而后以乙醇洗涤并烘干,再次吸附,循环15次,得到的归一化吸附量及海绵质量变化图如图5所示,可见吸附性能没有明显下降,海绵质量基本无变化。
从图7力学性能展示图可知:海绵受到弯折、挤压后可立即回复原状,弹性优异。
实施例2
(1)称取0.05g乙基纤维素加入到1mL四氢呋喃中,搅拌均匀。
(2)称取0.038g环氧氯丙烷,加入到步骤(1)的乙基纤维素溶液中,用0.1mol/L的NaOH溶液将pH调节至8,在60℃油浴中反应4小时。
(3)称取1.0g分子量为25000氨基封端的聚二甲基硅氧烷,加入到步骤(2)的混合溶液中,用0.1mol/L的HCl溶液将pH调至5,搅拌均匀。
(4)在步骤(3)的混合溶液中加入0.01g戊二醛,搅拌均匀后,转移至模具中,室温固化10小时。
(5)将步骤(4)中固化产物置于含质量分数2%纳米二氧化硅的1,4-二氧六环分散液中溶胀6小时,随后冷冻干燥得到聚二甲基硅氧烷/乙基纤维素海绵体。
所得海绵体接触角129.5°。
实施例3
(1)称取0.05g乙基纤维素加入到1mL四氢呋喃中,搅拌均匀。
(2)称取0.038g环氧氯丙烷,加入到步骤(1)的乙基纤维素溶液中,用0.1mol/L的NaOH溶液将pH调节至8,在60℃油浴中反应4小时。
(3)称取0.5g分子量为25000的氨基封端的聚二甲基硅氧烷,加入到步骤(2)的混合溶液中,用0.1mol/L的HCl溶液将pH调至5,搅拌均匀。
(4)在步骤(3)的混合溶液中加入0.005g戊二醛,搅拌均匀后,转移至模具中,室温固化10小时。
(5)将步骤(4)中固化产物置于1,4-二氧六环中溶胀6小时,随后冷冻干燥得到聚二甲基硅氧烷/乙基纤维素海绵体。
所得海绵体接触角129.1°。
实施例3与实施例1的区别在于,制备过程中不加纳米二氧化硅,得到海绵接触角仍较高,说明聚二甲基硅氧烷和乙基纤维素交联后的多孔海绵本身具有较好的疏水性,而纳米二氧化硅涂层进一步增加了疏水性。
对比例1
(1)称取0.05g乙基纤维素加入到1mL四氢呋喃中,搅拌均匀。
(2)称取0.038g环氧氯丙烷,加入到步骤(1)的乙基纤维素溶液中,用0.1mol/L的NaOH溶液将pH调节至8,在60℃油浴中反应4小时。
(3)称取0.5g分子量为25000的氨基封端的聚二甲基硅氧烷,加入到步骤(2)的混合溶液中,用0.1mol/L的HCl溶液将pH调至5,搅拌均匀。
(4)在步骤(3)的混合溶液中加入0.005g戊二醛,搅拌均匀后,转移至模具中,室温固化10小时。
(5)将步骤(4)中固化产物置于含质量分数2%纳米二氧化硅的四氢呋喃分散液中溶胀6小时,随后冷冻干燥。
对比例1与实施例1的区别在于,以四氢呋喃作为有机溶剂模板,由于四氢呋喃凝固点较低(-108.5℃),在现有条件下不易形成冷冻产物,影响冷冻干燥效果,因而难以得到具有多孔结构的海绵,没有吸附能力。
若使用水作为溶剂模板,由于聚二甲基硅氧烷/乙基纤维素交联产物具有疏水性,无法通过溶胀再冷冻干燥的方法得到多孔海绵体。
对比例2
(1)称取0.5g分子量为25000的氨基封端的聚二甲基硅氧烷,加入1mL四氢呋喃,搅拌均匀。
(2)在步骤(1)的溶液中加入0.005g戊二醛,搅拌均匀后,转移至模具中,室温固化10小时。
(3)将步骤(4)中固化产物置于含2%纳米二氧化硅的1,4-二氧六环分散液中溶胀6小时,随后冷冻干燥。
对比例2与实施例1的区别在于,不加乙基纤维素,将聚二甲基硅氧烷以戊二醛聚合也可得到形状规则的聚合物,但其在冷冻干燥时随着溶剂的挥发结构回缩,无法得到具有多孔结构的海绵,没有吸附能力。
对比例2得到的聚二甲基硅氧烷聚合物的接触角为92.1°。

Claims (4)

1.一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法,其特征在于,所述海绵体的制备按照以下步骤进行:
(1)将乙基纤维素溶于有机溶液中,搅拌均匀得到乙基纤维素溶液;有机溶剂选自四氢呋喃、二氯甲烷、三氯甲烷或1,4-二氧六环中的一种;乙基纤维素的粘度为9-11mPa·s;
(2)在步骤(1)的乙基纤维素溶液中加入环氧氯丙烷,将溶液调至碱性,并进行加热反应;
(3)在加热反应后的溶液中加入氨基封端的聚二甲基硅氧烷,将溶液调至酸性,进行加热反应,反应后加入戊二醛,搅拌均匀并倒入模具中进行室温固化,将固化产物浸泡于1,4-二氧六环有机溶剂中进行完全溶胀,冷冻干燥得到聚二甲基硅氧烷/乙基纤维素多孔海绵体;所述氨基封端的聚二甲基硅氧烷具有如下结构式:;乙基纤维素和环氧氯丙烷质量比为13:10,乙基纤维素和氨基封端的聚二甲基硅氧烷质量比为(0.5-1.5):10,戊二醛与氨基封端的聚二甲基硅氧烷的质量比为1:100。
2.根据权利要求1所述的以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法,其特征在于,步骤(2)将溶液调至碱性,并进行加热反应,是指用NaOH水溶液将pH值调节至8,在50-80 ℃反应2-12小时。
3.根据权利要求1所述的以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法,其特征在于,步骤(3)将溶液调至酸性,进行加热反应,是指用HCl溶液将pH调至5,在50-80℃反应2-12小时。
4.根据权利要求1所述的以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法,其特征在于,步骤(3)的1,4-二氧六环有机溶剂中还含质量分数2%的纳米二氧化硅。
CN202210535196.9A 2022-05-17 2022-05-17 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法 Active CN114733498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210535196.9A CN114733498B (zh) 2022-05-17 2022-05-17 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210535196.9A CN114733498B (zh) 2022-05-17 2022-05-17 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法

Publications (2)

Publication Number Publication Date
CN114733498A CN114733498A (zh) 2022-07-12
CN114733498B true CN114733498B (zh) 2023-08-22

Family

ID=82286940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210535196.9A Active CN114733498B (zh) 2022-05-17 2022-05-17 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法

Country Status (1)

Country Link
CN (1) CN114733498B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712358A (en) * 1995-06-07 1998-01-27 Amcol International Corporation Process for producing an oil sorbent copolymer and the product thereof
KR20150005865A (ko) * 2014-10-01 2015-01-15 한양대학교 산학협력단 하이드로겔 고분자를 주형으로 이용하는 탄소 코팅 래틀형 산화금속 입자의 제조방법, 및 이에 의하여 제조된 탄소 코팅 래틀형 산화금속 입자
CN107020068A (zh) * 2017-03-20 2017-08-08 同济大学 一种用于油水分离的碳纳米管增强的超疏水乙基纤维素海绵的制备方法
CN108355591A (zh) * 2018-03-02 2018-08-03 清华大学 聚二甲基硅氧烷引发乙基纤维素相分离制备微胶囊方法
CN112892499A (zh) * 2021-01-20 2021-06-04 常州大学 一种自发泡型氧化石墨烯/聚二甲基硅氧烷海绵体的制备方法
CN113956437A (zh) * 2021-10-28 2022-01-21 赛克赛斯生物科技股份有限公司 一种聚氨酯海绵及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712358A (en) * 1995-06-07 1998-01-27 Amcol International Corporation Process for producing an oil sorbent copolymer and the product thereof
KR20150005865A (ko) * 2014-10-01 2015-01-15 한양대학교 산학협력단 하이드로겔 고분자를 주형으로 이용하는 탄소 코팅 래틀형 산화금속 입자의 제조방법, 및 이에 의하여 제조된 탄소 코팅 래틀형 산화금속 입자
CN107020068A (zh) * 2017-03-20 2017-08-08 同济大学 一种用于油水分离的碳纳米管增强的超疏水乙基纤维素海绵的制备方法
CN108355591A (zh) * 2018-03-02 2018-08-03 清华大学 聚二甲基硅氧烷引发乙基纤维素相分离制备微胶囊方法
CN112892499A (zh) * 2021-01-20 2021-06-04 常州大学 一种自发泡型氧化石墨烯/聚二甲基硅氧烷海绵体的制备方法
CN113956437A (zh) * 2021-10-28 2022-01-21 赛克赛斯生物科技股份有限公司 一种聚氨酯海绵及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors";Ling Miao等;《Microporous and Mesoporous Materials》;第253卷;1-9 *

Also Published As

Publication number Publication date
CN114733498A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
Ebisike et al. Synthesis and characterization of Chitosan–silica hybrid aerogel using sol-gel method
CN105111470B (zh) 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
Wang et al. Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior
Toledo et al. Carboxymethyl cellulose/poly (acrylic acid) interpenetrating polymer network hydrogels as multifunctional adsorbents
CN112892499B (zh) 一种自发泡型氧化石墨烯/聚二甲基硅氧烷海绵体的制备方法
CN111825984A (zh) 一种固液填充的低表面能光滑功能材料及其制备方法
JP7148929B2 (ja) シクロデキストリンポリマー及びその製造方法
CN108341989B (zh) 可控亲-疏水转换的温敏性聚氨酯海绵及其制备方法与应用
CN1243058C (zh) 一种聚氨酯/分子筛复合材料及其制备方法
Temnikov et al. Simple and fast method for producing flexible superhydrophobic aerogels by direct formation of thiol-ene networks in scCO2
Alosmanov et al. Grafting of thermosensitive poly (N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability
Normatov et al. Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions
CN106398224A (zh) 单组份室温快速固化透明脱醇型硫化硅橡胶的制备方法
Kucuk et al. Silsesquioxane-modified chitosan nanocomposite as a nanoadsorbent for the wastewater treatment
Enescu et al. Polydimethylsiloxane modified chitosan. Part III: Preparation and characterization of hybrid membranes
Li et al. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly (vinyl alcohol) sponge for selective and versatile oil/water separation
CN114621495B (zh) 硅橡胶发泡材料及其制备方法
CN112778770B (zh) 一种高耐温硅橡胶发泡材料及其制备方法
CN105062085A (zh) 加成型有机硅模具胶及其制备方法
Rong et al. Enamine approach for versatile and reversible functionalization on cellulose related porous sponges
Ding et al. Robust, sustainable, hierarchical multi-porous cellulose beads via pre-crosslinking strategy for efficient dye adsorption
CN114733498B (zh) 一种以有机溶剂为模板的聚二甲基硅氧烷/乙基纤维素海绵体的制备方法
Cao et al. Fabrication of self-healing nanocomposite hydrogels with the cellulose nanocrystals-based Janus hybrid nanomaterials
Li et al. Phytic acid-assist for self-healing nanocomposite hydrogels with surface functionalization of cellulose nanocrystals via SI-AGET ATRP
CN111849148A (zh) 聚氨酯弹性阻尼胶泥材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant