CN114724743A - 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆 - Google Patents

一种含纳米晶/非晶复合铜锆银粉的复合导电银浆 Download PDF

Info

Publication number
CN114724743A
CN114724743A CN202110007166.6A CN202110007166A CN114724743A CN 114724743 A CN114724743 A CN 114724743A CN 202110007166 A CN202110007166 A CN 202110007166A CN 114724743 A CN114724743 A CN 114724743A
Authority
CN
China
Prior art keywords
powder
parts
cuzrag
nanocrystalline
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110007166.6A
Other languages
English (en)
Other versions
CN114724743B (zh
Inventor
兰司
陈敏
伏澍
胡祥
娄宇
冯涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110007166.6A priority Critical patent/CN114724743B/zh
Priority claimed from CN202110007166.6A external-priority patent/CN114724743B/zh
Publication of CN114724743A publication Critical patent/CN114724743A/zh
Application granted granted Critical
Publication of CN114724743B publication Critical patent/CN114724743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明公开一种含纳米晶/非晶复合铜锆银粉的复合导电银浆的制备方法,该方法通过纳米晶/非晶复合CuZrAg粉是用物理方法制备得到,即使用激光加热金属靶材使金属元素汽化,相比于通过改性银粉从而提高其导电性的方法。通过物理添加方法的制备工艺简单,省略了繁琐的化学反应流程,更避开了很多化学法制备纳米金属颗粒时用到的危险化学品,故本发明的安全系数远远高于大部分化学改性方法;此外,本发明的操作流程简单,纳米晶/非晶复合CuZrAg粉生产效率高,只需简单添加即可。

Description

一种含纳米晶/非晶复合铜锆银粉的复合导电银浆
技术领域
本发明属导电银浆领域,尤其涉及一种含纳米晶/非晶复合铜锆银粉的复合导电银浆。
背景技术
一般来说,烧结型导电银浆需要在高于500℃的温度下烧结成膜,玻璃粉或氧化物为粘结相。银粉按照粒径进行分类,平均粒径(Dav)为1-100nm为纳米银粉;0.1μm<平均粒径(Dav)<10μm为银微粉;平均粒径(Dav)>10μm为粗银粉。目前制备粉末的方法有很多,就银粉而言,可以使用物理法(液体雾化法、蒸发冷凝法),化学法(硝酸银分解热分解法、液相还原法)。其中蒸发冷凝法是制备纳米粒子的一种重要方法,所得产品粒径一般分布5-100nm之间,且得到的纳米粒子有纯度高、粒径分布窄、表面干净等优点。目前,导电银浆已广泛应用于各类电子产品,但随着电子产品向更轻、更薄、功能更强大的方向发展,对导电银浆的性能也提出了更高的要求。目前商用导电银浆的方阻为8-15mΩ/□,若能进一步提高其导电性能,则很有可能成为电子产品新一代的“宠儿”。因此,有许多研究人员在现有导电银浆的基础上进行改性,如添加微量的石墨烯,以提高银浆的导电性能。但大部分添加物的成本往往远超于导电银浆的成本,因此不具有市场竞争力,也难以推广。
发明内容
本发明的目的是提供一种含有纳米晶/非晶复合CuZrAg粉的复合导电银浆。
为了实现上述目的,本发明采用如下技术方案:
一种含纳米晶/非晶复合CuZrAg粉的复合导电银浆,由以下重量份的原料制得:
微米银粉53-58份、纳米晶/非晶复合CuZrAg粉0.5-5份,分散剂BYK0.5份、玻璃粉1份、载体40.5份,载体的配比为:松油醇40份、丁基卡必醇35.4份、丁基卡必醇醋酸酯8份、醇酯十二8份、乙基纤维素6.6份、司班85 2份。
结合图1,本发明提供了一种容器装置:包含一高真空制粉腔室,包含一个外置激光发射器,用于激发金属靶材中的原子。包含一个液氮冷却罐,用于对腔体中金属纳米颗粒的吸附沉积;包含一个方柱形收粉罐置于液氮冷却罐的下方,用于收集冷却罐上刮落的金属纳米颗粒;包含一组机械泵和分子泵,用于保证腔室内的超高真空度。
含纳米晶/非晶复合CuZrAg粉制备方法为:
将CuZrAg靶材进行表面预处理,打磨,抛光去除表面氧化层,用酒精超声清洗后,固定在高真空制粉腔体内相应位置。
将腔室密封,通过机械泵和分子泵将制粉腔内气压抽至超高真空状态(低于10-6Pa),待真空稳定后,向制粉腔内缓慢输入800Pa的高纯氦气。
向液氮冷却罐中输入液氮,直至液氮罐充满液氮。
将外置激光器瞄准腔体内的金属靶材,调整激光角度使发射出的激光垂直于靶材,同时调整激光器距离靶材的距离,使得激光发射镜头到靶材的距离在70-80cm之间。以保证激光打到靶材上的功率是最大功率。金属靶表面蒸发出的金属蒸汽或金属原子和腔室中的惰性气体氦气发生碰撞并快速降温,形成新的固相纳米粉末,由于液氮罐内超低温液氮的原因,吸附并沉积在液氮罐外侧铜辊表面。
转动铜辊旁的刮刀,将铜辊上的纳米晶/非晶复合CuZrAg粉刮落至下方的方柱形收粉罐中。
按微米银粉53-58份、纳米晶/非晶复合CuZrAg粉0.5-5份,分散剂BYK0.5、玻璃粉1、载体40.5,载体的配比为:松油醇40、丁基卡必醇35.4、丁基卡必醇醋酸酯8、醇酯十二8、乙基纤维素6.6、司班85 2的配方混合,搅拌24小时;得到含有纳米晶/非晶复合CuZrAg粉的复合导电银浆。
该方法流程简单,需要的化学药品少,可以快速高效的得到复合导电银浆,且本发明不限于添加纳米晶/非晶复合CuZrAg粉末,还可以添加其他体系/成分的纳米晶/非晶复合粉末。
本发明与现有的导电银浆的方法相比,具有如下的优点和效果:
(1)本发明所使用到的纳米晶/非晶复合CuZrAg粉是用物理方法制备得到,即使用激光加热金属靶材使金属元素汽化,相比于通过改性银粉从而提高其导电性的方法,这种物理添加方法的制备工艺简单,省略了繁琐的化学反应流程,更避开了很多化学法制备纳米金属颗粒时用到的危险化学品,本发明的安全系数远远高于大部分化学改性方法;
(2)相比于现有的导电银浆工艺,本发明的操作流程简单,纳米晶/非晶复合CuZrAg粉生产效率高,只需简单添加即可;
(3)本发明所用到的纳米晶/非晶复合CuZrAg粉中Ag的占比仅为17.5%,Cu和Zr相比于Ag都是价格更低的原材料,从而使得整体银浆的成本下降,考虑到增加此种纳米晶/非晶复合CuZrAg粉获得的巨大的导电性的提高以及成本的降低,其高性能迎合市场需求,高性价比符合市场规律,具有广泛的商业前景。
附图说明
图1为高真空制粉腔室示意图。
图2为纳米晶/非晶复合CuZrAg粉透射电子显微镜图。
图3为纳米晶/非晶复合CuZrAg粉选区电子衍射图。
图4为对比例1中未添加纳米晶/非晶复合CuZrAg粉的导电银浆网络扫描电镜图。
图5为实施例3纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的导电银浆网络扫描电镜图。
具体实施方式
下面结合数据对本发明做进一步描述,具体实施方式不限于此。本发明主要提供不同分数的CuZrAg浆料对商用导电银浆的改性结果,因此在进行实施例之前先要进行纳米晶/非晶复合CuZrAg粉的制备,操作步骤如发明内容所述。下面介绍具体实施例。
结合图1,本发明提供了一种用于处理容器装置:包含一高真空制粉腔室,包含一个外置激光发射器,用于激发金属靶材中的原子。包含一个液氮冷却罐,用于对腔体中金属纳米颗粒的吸附沉积;包含一个方柱形收粉罐置于液氮冷却罐的下方,用于收集冷却罐上刮落的金属纳米颗粒;包含一组机械泵和分子泵,用于保证腔室内的超高真空度。
对比例1
不含纳米晶/非晶复合CuZrAg粉导电银浆的制备。
其各组分所占总浆料的质量分数为:银粉58、分散剂BYK0.5、玻璃粉1、载体40.5,载体的配比为:松油醇40、丁基卡必醇35.4、丁基卡必醇醋酸酯8、醇酯十二8、乙基纤维素6.6、司班85 2,混合搅拌24小时后得到不含纳米晶/非晶复合CuZrAg粉导电银浆。
采用丝网印刷机将得到的导电银浆刷于20mm×10mm的Si基板上,自然平流10min,在200℃下干燥15min,然后在800℃下保温1min快速烧结成膜。使用四探针电阻仪测得其方阻为8.7mΩ/□。
实施例1
5g含0.5%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的制备。
其各组分所占总浆料的质量分数为:银粉57.5、纳米晶/非晶复合Cu47.5Zr35Ag17.5粉0.5、分散剂BYK0.5、玻璃粉1、载体40.5,载体由以下质量份的原料配成:松油醇40、丁基卡必醇35.4、丁基卡必醇醋酸酯8、醇酯十二8、乙基纤维素6.6、司班85 2。
步骤1:将CuZrAg靶材(原子比为47.5:35:17.5)进行表面预处理,打磨,抛光去除表面氧化层,用酒精超声清洗后,固定在高真空制粉腔体内相应位置。
步骤2:将腔室密封,通过机械泵和分子泵将制粉腔内气压抽至超高真空状态(低于10-6Pa),待真空稳定后,向制粉腔内缓慢输入800Pa的高纯氦气。
步骤3:向液氮冷却罐中输入液氮,直至液氮罐充满液氮。
步骤4:将外置激光器瞄准腔体内的金属靶材,调整激光角度使发射出的激光垂直于靶材,同时调整激光器距离靶材的距离,使得激光发射镜头到靶材的距离在70-80cm之间。以保证激光打到靶材上的功率是最大功率。金属靶表面蒸发出的金属蒸汽或金属原子和腔室中的惰性气体氦气发生碰撞并快速降温,形成新的固相纳米粉末,由于液氮罐内超低温液氮的原因,吸附并沉积在液氮罐外侧铜辊表面。
步骤5:转动铜辊旁的刮刀,将铜辊上的纳米晶/非晶复合CuZrAg粉刮落至下方的方柱形收粉罐中。
步骤6:按微米银粉57.5份、纳米晶/非晶复合CuZrAg粉0.5份,分散剂BYK0.5、玻璃粉1、载体40.5,载体的配比为:松油醇40、丁基卡必醇35.4、丁基卡必醇醋酸酯8、醇酯十二8、乙基纤维素6.6、司班85 2的配方配制5g复合导电银浆,搅拌24小时;得到含有0.5%纳米晶/非晶复合CuZrAg粉的复合导电银浆。
方阻测试方法同实施例1,测得含0.5%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的方阻为7.03mΩ/□。
实施例2
5g含1%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的制备方法同实施例1,其中微米银粉质量份57份,纳米晶/非晶复合Cu47.5Zr35Ag17.5粉质量份1份
方阻测试方法同实施例1,测得含0.5%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的方阻为5.63mΩ/□。
实施例3
5g含2%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的制备方法同实施例1,其中微米银粉质量份56份,纳米晶/非晶复合Cu47.5Zr35Ag17.5粉质量份2份。
方阻测试方法同实施例1,测得含0.2%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的方阻为6.89mΩ/□。
实施例4
5g含1%纳米晶/非晶复合Cu47.5Zr25Ag27.5粉的复合导电银浆的制备方法同实施例1,其中微米银粉质量份57份,纳米晶/非晶复合Cu47.5Zr35Ag17.5粉质量份1份。
方阻测试方法同实施例1,测得含0.1%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的复合导电银浆的方阻为5.10mΩ/□。
高温烧结后制成的电极表面银白,光滑无缺陷,浆料附着力好。除实施例以外,我们还制备了其他添加不同含量以及不同铜锆银成份的纳米晶/非晶铜锆银粉的复合导电银浆并测试其方阻,具体方阻变化规律如表1所示。
表1
方阻/mΩ/□ 0% 0.5% 0.75% 1% 1.5% 2% 3% 5%
Cu<sub>47.5</sub>Zr<sub>35</sub>Ag<sub>17.5</sub> 8.7 7.03 6.47 5.63 6.32 6.89 8.02 8.86
Cu<sub>47.5</sub>Zr<sub>30</sub>Ag<sub>22.5</sub> 8.7 6.85 6.39 5.34 6.21 6.65 7.82 8.81
Cu<sub>47.5</sub>Zr<sub>25</sub>Ag<sub>27.5</sub> 8.7 6.77 6.21 5.10 6.09 6.57 7.59 8.60
通过采用上述技术方案,导电银浆的成本略微降低,而导电性能得到了极大的提高,烘烤后的导电银浆网络也得到了非常好的改善。未添加纳米晶/非晶复合CuZrAg粉的导电银浆网络如图4所示,添加1%纳米晶/非晶复合Cu47.5Zr35Ag17.5粉的导电银浆网络图5所示。

Claims (7)

1.一种含纳米晶/非晶复合CuZrAg粉的复合导电银浆,其特征在于,由以下重量份的原料制得:
微米银粉53-58份、纳米晶/非晶复合CuZrAg粉0.5-5份,分散剂BYK0.5份、玻璃粉1份、载体40.5份,载体的配比为:松油醇40份、丁基卡必醇35.4份、丁基卡必醇醋酸酯8份、醇酯十二8份、乙基纤维素6.6份、司班85 2份。
2.一种用于制备复合导电银浆容器装置,其特征在于,该装置包含一高真空制粉腔室,包含一个外置激光发射器,用于激发金属靶材中的原子;包含一个液氮冷却罐,用于对腔体中金属纳米颗粒的吸附沉积;包含一个方柱形收粉罐置于液氮冷却罐的下方,用于收集冷却罐上刮落的金属纳米颗粒;包含一组机械泵和分子泵,用于保证腔室内的超高真空度。
3.一种含纳米晶/非晶复合CuZrAg粉制备方法,其特征在于,该方法具体为
将CuZrAg靶材进行表面预处理,打磨,抛光去除表面氧化层,用酒精超声清洗后,固定在高真空制粉腔体内相应位置;
将腔室密封,通过机械泵和分子泵将制粉腔内气压抽至超高真空状态,待真空稳定后,向制粉腔内缓慢输入800Pa的高纯氦气;
向液氮冷却罐中输入液氮,直至液氮罐充满液氮;
将外置激光器瞄准腔体内的金属靶材,调整激光角度使发射出的激光垂直于靶材,同时调整激光器距离靶材的距离;
转动铜辊旁的刮刀,将铜辊上的纳米晶/非晶复合CuZrAg粉刮落至下方的方柱形收粉罐中;
按配方混合,搅拌24小时;得到含有纳米晶/非晶复合CuZrAg粉的复合导电银浆。
4.根据权利要求3所述的制备方法,其特征在于,超高真空状态为低于10-6Pa。
5.根据权利要求3所述的制备方法,其特征在于,使得激光发射镜头到靶材的距离在70-80cm之间。
6.根据权利要求3所述的制备方法,其特征在于,配方为微米银粉53-58份、纳米晶/非晶复合CuZrAg粉0.5-5份,分散剂BYK0.5份、玻璃粉1份、载体40.5份,载体的配比为:松油醇40份、丁基卡必醇35.4份、丁基卡必醇醋酸酯8份、醇酯十二8份、乙基纤维素6.6份、司班852份。
7.根据权利要求3所述的制备方法,其特征在于,CuZrAg靶材为市购。
CN202110007166.6A 2021-01-05 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆 Active CN114724743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110007166.6A CN114724743B (zh) 2021-01-05 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110007166.6A CN114724743B (zh) 2021-01-05 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆

Publications (2)

Publication Number Publication Date
CN114724743A true CN114724743A (zh) 2022-07-08
CN114724743B CN114724743B (zh) 2024-04-19

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049250A (ko) * 2008-11-03 2010-05-12 전자부품연구원 복합금속 나노입자의 제조방법 및 제조장치
CN106876000A (zh) * 2017-01-22 2017-06-20 湖南省国银新材料有限公司 一种混合金属粉、制备方法、导电银浆和用途
CN108311707A (zh) * 2018-03-07 2018-07-24 中国科学院光电研究院 超细粉末的制备装置和制备方法
CN108962420A (zh) * 2018-07-25 2018-12-07 原晋波 一种太阳能电池正面高附着导电浆料及其制备方法
CN109256234A (zh) * 2018-11-14 2019-01-22 轻工业部南京电光源材料科学研究所 一种高性能导电银浆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100049250A (ko) * 2008-11-03 2010-05-12 전자부품연구원 복합금속 나노입자의 제조방법 및 제조장치
CN106876000A (zh) * 2017-01-22 2017-06-20 湖南省国银新材料有限公司 一种混合金属粉、制备方法、导电银浆和用途
CN108311707A (zh) * 2018-03-07 2018-07-24 中国科学院光电研究院 超细粉末的制备装置和制备方法
CN108962420A (zh) * 2018-07-25 2018-12-07 原晋波 一种太阳能电池正面高附着导电浆料及其制备方法
CN109256234A (zh) * 2018-11-14 2019-01-22 轻工业部南京电光源材料科学研究所 一种高性能导电银浆及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEFAN KOTTHAUS等: ""Study of Isotropically Conductive Bondings Filled with Aggregates of Nano-Sized Ag-Particles"", 《IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY—PART A》, 31 March 1997 (1997-03-31), pages 1 - 6 *

Similar Documents

Publication Publication Date Title
CN101932663A (zh) 导电油墨
JP2013258128A (ja) 導電性ペースト
Rosen et al. Thin copper flakes for conductive inks prepared by decomposition of copper formate and ultrafine wet milling
Mahmood et al. Conductivity enhancement by fluorine doping in boron-doped ZnO thin films deposited by the electrospraying method
EP2303957A1 (en) Polymer thick film silver electrode composition for use in thin-film photovoltaic cells
JP6096143B2 (ja) 銀被覆フレーク状銅粉及びその製造方法、並びに導電性ペースト
JP2016139598A (ja) 銀コート銅粉、及びそれを用いた銅ペースト、導電性塗料、導電性シート
Manickam et al. Structural, optical, electrical and electrochemical properties of Fe: Co 3 O 4 thin films for supercapacitor applications
CN109473197B (zh) 一种含有银-超分子有机凝胶的高分辨率导电银浆及其制备方法
Che et al. Nanoparticles-aided silver front contact paste for crystalline silicon solar cells
CN114724743A (zh) 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆
CN114724743B (zh) 一种含纳米晶/非晶复合铜锆银粉的复合导电银浆
JP6067515B2 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
CN102560455A (zh) 一种超薄钨膜包覆金刚石的制备方法
Huynh et al. Synthesis of gallium-doped zinc oxide (GZO) nanoparticles for GZO/Silver nanowire nanocomposite transparent conductive electrodes
Lee et al. Structural, electrical, and optical properties of antimony-doped tin oxide films prepared at room temperature by radio frequency magnetron sputtering for transparent electrodes
SABLI et al. SnSe Thin film electrodes prepared by vacuum evaporation: enhancement of photoelectrochemical efficiency by argon gas condensation method
CN109468619B (zh) 碳纳米管表面镀覆方法
CN106744673A (zh) 一种横向生长非晶硅纳米线的制备方法
KR101540030B1 (ko) Ag가 코팅된 그래핀나노플레이트 및 이의 제조방법
CA3174962A1 (en) Carboxylic acid-containing nickel powder and carboxylic acid-containing nickel powder production method
JP2017066443A (ja) Niコート銅粉、及びそれを用いた導電性ペースト、導電性塗料、導電性シート
Lee et al. Characterization of copper complex paste: manufacture of thin Cu-seed films on alumina substrates
Sharma et al. Development of novel single-source precursor of tin for deposition of tin oxide thin films for various applications
Rivkin et al. Copper and silver inks for ink jet printing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant