CN114709281A - 一种基于氧化镓异质结构的日盲紫外探测器及制备方法 - Google Patents

一种基于氧化镓异质结构的日盲紫外探测器及制备方法 Download PDF

Info

Publication number
CN114709281A
CN114709281A CN202210349931.7A CN202210349931A CN114709281A CN 114709281 A CN114709281 A CN 114709281A CN 202210349931 A CN202210349931 A CN 202210349931A CN 114709281 A CN114709281 A CN 114709281A
Authority
CN
China
Prior art keywords
sso
layer
beta
gallium oxide
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210349931.7A
Other languages
English (en)
Inventor
贺怀乐
卢凯翔
赵天丽
邢志文
钱松程
王顺利
郭道友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202210349931.7A priority Critical patent/CN114709281A/zh
Publication of CN114709281A publication Critical patent/CN114709281A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于氧化镓异质结构的日盲紫外探测器及制备方法,所述探测器依次包括蓝宝石衬底,置于蓝宝石衬底上方的β‑Ga2O3光吸收层,置于β‑Ga2O3光吸收层上方的SSO层,置于SSO层上方的第一测试电极以及置于β‑Ga2O3光吸收层上方的第二测试电极;其中于β‑Ga2O3光吸收层与SSO层,形成β‑Ga2O3/SSO异质结,构成内界电场,以分离光生载流子。所制备的氧化镓基紫外探测器性能稳定,灵敏度高,响应速度快,具有自供电性能可实现对波长小于280nm的日盲紫外光的有效探测,在高压电晕检测领域具有很大的应用前景。

Description

一种基于氧化镓异质结构的日盲紫外探测器及制备方法
技术领域
本发明涉及光电探测技术领域,具体涉及到一种基于氧化镓异质结构的日盲紫外探测器及制备方法。
背景技术
氧化镓(Ga2O3)禁带宽度为4.2-5.3eV(不同晶体结构,光学各向异性表现为不同的带隙),是一种直接带隙的Ⅲ-VI族宽带隙半导体材料,具有带隙大、击穿电场强度高、饱和电子漂移速度快、热导率大、介电常数小、抗辐射能力强,具有良好的化学稳定性,在日盲光电探测器领域有着广泛的应用,尤其是在高压电晕检测领域前景光明。
目前,基于Ga2O3的日盲光电探测器因其高光敏性和低误报率而受到广泛关注,在军事和民用领域都具有广阔的应用前景。虽然一些研究集中在光电导型Ga2O3太阳隐蔽光电探测器,设备结构简单,易于集成,一些缺点阻止他们被广泛使用,如缓慢的反应速度,更大的暗电流,需要外部电源等。光伏型光探测器(均质结、异质结和肖特基结)利用结效应提高光探测性能,可以在无功率的情况下工作,很好地满足了开发低能耗新一代器件的目标。虽然基于同种结Ga2O3 p-n结的器件理论上具有良好的光探测性能,但由于自补偿效应,尚未获得p型Ga2O3。由于异质结结光电探测器具有灵敏度高、响应速度快、制备工艺简单等特点,已经开发出了大量Ga2O3基异质结型光电探测器。
为了提高探测器的光电性能的技术难题,很多企业和科研院所进行了大量的研究,但并没有达到预期的效果,因此如何解决上述问题对于氧化镓日盲紫外探测器在高压电晕检测领域的应用有着重要实现意义。
发明内容
为了克服上述现有技术中的缺陷,本发明提供了一种基于氧化镓异质结构的日盲紫外探测器及制备方法,利用溶液处理的SrSnO3纳米粒子与Ga2O3通过简单的溶液处理方法构建了一种异质结太阳盲光电探测器,通过对SrSnO3在氧气氛中退火,并进行Y元素掺杂,构建SSO层,以减少氧空位,提高其电导率。
技术方案
一种基于氧化镓异质结构的日盲紫外探测器,包括蓝宝石的衬底,置于所述衬底上方的β-Ga2O3薄膜,置于所述β-Ga2O3薄膜上方的SSO层,置于所述SSO层上的第一测试电极,置于所述SSO层一侧且位于所述β-Ga2O3薄膜上的第二测试电极,所述β-Ga2O3薄膜与所述SSO层形成β-Ga2O3/SSO异质结,构成内界电场,以分离光生载流子。
优选地,所述β-Ga2O3薄膜的厚度为300~700nm,所述SSO层的厚度为50~300nm。
优选地,所述β-Ga2O3薄膜的面积大于所述SSO层的面积,所述SSO层的面积为所述β-Ga2O3薄膜的面积的三分之二。
优选地,所述SSO层为SrSnO3,且所述SrSnO3需在氧气氛围中退火且进行Y元素掺杂形成Y-O2-SrSnO3,所述退火的氧气流量为1-100sccm,退火温度为100~900℃,退火时间5-120min,Y元素掺杂量为0.01-0.1%。
优选地,所述第一测试电极和所述第二测试电极均为Ti/Au复合电极,所述Ti/Au复合电极由Ti层和Au层构成,所述Ti层厚度为10~50nm,所述Au层厚度为10~100nm。
一种基于氧化镓异质结构的日盲紫外探测器的制备方法,包括以下步骤:
步骤一:将蓝宝石的所述衬底进行预处理,分别用丙酮,无水乙醇和去离子水超声10min,将处理后的所述衬底放入沉积室内采用金属氧化物化学气相沉积法(MOCVD)生长β-Ga2O3薄膜,形成β-Ga2O3光吸收层,即所述β-Ga2O3薄膜,所述MOCVD的生长沉积条件如下,三乙基镓(TEGa)和高纯O2为前驱体,高纯Ar作为载气,TEGa的气体流量为10~500sccm,工作气压为25Torr。
步骤二:在所述衬底和所述β-Ga2O3光吸收层上旋涂SSO溶液,形成所述SSO层,获得位于所述衬底上的所述β-Ga2O3/SSO异质结;
步骤三,采用磁控溅射方法在所述β-Ga2O3/SSO异质结的所述SSO层上制作Ti/Au薄膜第一测试电极,在所述β-Ga2O3薄膜上制作Ti/Au薄膜第二测试电极,形成基于氧化镓基异质结构的日盲紫外探测器。
优选地,步骤二中的所述SSO溶液:将SSO粉末分散在乙二醇甲醚溶液中,超声50分钟获得分散后的SSO溶液。
优选地,步骤二中的所述旋涂SSO溶液:旋转参数为500转速旋转5秒或3000转速旋转40秒。
优选地,步骤三中的所述磁控溅射方法:磁控溅射工艺条件包括:真空度为1×10- 4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为1.2Pa,溅射功率为40W,Ti层溅射时间为2分钟,Au层溅射时间为5分钟。
本发明与现有技术相比,具有以下有益效果:
利用溶液处理的SrSnO3纳米粒子与Ga2O3通过简单的溶液处理方法构建了一种异质结太阳盲光电探测器,通过对SrSnO3在氧气氛中退火,并进行Y元素掺杂,构建SSO层,以减少氧空位,提高其电导率;基于β-Ga2O3/SSO异质结的光电探测器具有良好的光电性能;Y-O2-SrSnO3光生效率高的电子输运和β-Ga2O3/SSO异质结内建场大是其显著性能的原因,为高性能Ga2O3自供电光电探测器的研制提供了一种可行的策略,有望进一步推动Ga2O3自供电光电探测器的应用。
附图说明
图1为本发明一种基于氧化镓异质结构的日盲紫外探测器的结构示意图;
图2是蓝宝石衬底上的β-Ga2O3/SSO异质结在0V偏压及光强度1.6mW/cm2的254nm的I-t曲线;
图3是在蓝宝石衬底上制备的氧化镓薄膜未处理和氧气处理后的PL图谱。
附图标记
衬底1,β-Ga2O3薄膜2,SSO层3,第一测试电极4,第二测试电极5。
具体实施方式
为更好地说明阐述本发明内容,下面结合附图和实施实例进行展开说明:
有图1-图3所示,本发明公开了一种基于氧化镓异质结构的日盲紫外探测器,包括蓝宝石的衬底1,置于所述衬底1上方的β-Ga2O3薄膜2,置于所述β-Ga2O3薄膜2上方的SSO层3,置于所述SSO层3上的第一测试电极4,置于所述SSO层3一侧且位于所述β-Ga2O3薄膜2上的第二测试电极5,所述β-Ga2O3薄膜2与所述SSO层3形成β-Ga2O3/SSO异质结,构成内界电场,以分离光生载流子。
优选地,所述β-Ga2O3薄膜2的厚度为300~700nm,所述SSO层3的厚度为50~300nm。
优选地,所述β-Ga2O3薄膜2的面积大于所述SSO层3的面积,所述SSO层3的面积为所述β-Ga2O3薄膜2的面积的三分之二。
优选地,所述SSO层3为SrSnO3,且所述SrSnO3需在氧气氛围中退火且进行Y元素掺杂形成Y-O2-SrSnO3,所述退火的氧气流量为1-100sccm,退火温度为100~900℃,退火时间5-120min,Y元素掺杂量为0.01-0.1%。
优选地,所述第一测试电极4和所述第二测试电极5均为Ti/Au复合电极,所述Ti/Au复合电极由Ti层和Au层构成,所述Ti层厚度为10~50nm,所述Au层厚度为10~100nm。
一种基于氧化镓异质结构的日盲紫外探测器的制备方法,包括以下步骤:
步骤一:将蓝宝石的所述衬底1进行预处理,分别用丙酮,无水乙醇和去离子水超声10min,将处理后的所述衬底1放入沉积室内采用金属氧化物化学气相沉积法(MOCVD)生长β-Ga2O3薄膜,形成β-Ga2O3光吸收层,即所述β-Ga2O3薄膜2,所述MOCVD的生长沉积条件如下,三乙基镓(TEGa)和高纯O2为前驱体,高纯Ar作为载气,TEGa的气体流量为10~500sccm,工作气压为25Torr。
步骤二:在所述衬底1和所述β-Ga2O3光吸收层上旋涂SSO溶液,形成所述SSO层3,获得位于所述衬底1上的所述β-Ga2O3/SSO异质结;
步骤三,采用磁控溅射方法在所述β-Ga2O3/SSO异质结的所述SSO层3上制作Ti/Au薄膜第一测试电极4,在所述β-Ga2O3薄膜2上制作Ti/Au薄膜第二测试电极5,形成基于氧化镓基异质结构的日盲紫外探测器。
优选地,步骤二中的所述SSO溶液:将SSO粉末分散在乙二醇甲醚溶液中,超声50分钟获得分散后的SSO溶液。
优选地,步骤二中的所述旋涂SSO溶液:旋转参数为500转速旋转5秒或3000转速旋转40秒。
优选地,步骤三中的所述磁控溅射方法:磁控溅射工艺条件包括:真空度为1×10- 4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为1.2Pa,溅射功率为40W,Ti层溅射时间为2分钟,Au层溅射时间为5分钟。
具体地,所用的蓝宝石的衬底1是(1-102)面Al2O3,厚度约为430±15nm,单面抛光,抛光面粗糙度≤0.3nm;
先取一片10mm×10mm×0.5mm(0001)面的α-Al2O3的衬底1,将衬底1依次浸泡到丙酮、乙醇、去离子水中各超声10分钟,取出后再用去离子水冲洗,将处理后的衬底1放入沉积室内采用金属氧化物化学气相沉积法(MOCVD)生长β-Ga2O3薄膜2,形成β-Ga2O3光吸收层,其中,MOCVD生长沉积条件如下,三乙基镓(TEGa)和高纯O2为前驱体,高纯Ar作为载气,TEGa的气体流量为300sccm,工作气压为25Torr,沉积时间为1.5小时;
然后将10mgSSO粉末分散在1ml乙二醇甲醚溶液中,超声50分钟分散SSO粉末,待用;
然后将制备的β-Ga2O3薄膜2用热释放胶带遮挡1/3,并用移液枪吸取100μLSSO溶液滴在未遮挡处,3000转速旋转40秒,形成SSO层3;在80℃加热台上加热20分钟,并除去热释放胶带,获得位于所述蓝宝石衬底上的β-Ga2O3/SSO异质结;
将位于衬底1上的β-Ga2O3/SSO异质结用镂空的掩膜板遮挡,采用磁控溅射方法先后溅射厚度为10nm的Ti金属层和50nm的Au层,获得两个个直径为2.5mm的Ti/Au复合电极,分别为第一测试电极4和第二测试电极5,其中,磁控溅射工艺条件如下:真空度为1×10- 4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为1.2Pa,溅射功率为40W,Ti层溅射时间为2分钟,Au层溅射时间为5分钟。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (10)

1.一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:包括蓝宝石的衬底(1),置于所述衬底(1)上方的β-Ga2O3薄膜(2),置于所述β-Ga2O3薄膜(2)上方的SSO层(3),置于所述SSO层(3)上的第一测试电极(4),置于所述SSO层(3)一侧且位于所述β-Ga2O3薄膜(2)上的第二测试电极(5),所述β-Ga2O3薄膜(2)与所述SSO层(3)形成β-Ga2O3/SSO异质结,构成内界电场。
2.根据权利要求1所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述β-Ga2O3薄膜(2)的厚度为300~700nm,所述SSO层(3)的厚度为50~300nm。
3.根据权利要求2所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述β-Ga2O3薄膜(2)的面积大于所述SSO层(3)的面积,所述SSO层(3)的面积为所述β-Ga2O3薄膜(2)的面积的三分之二。
4.根据权利要求3所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述SSO层为SrSnO3,且SrSnO3需在氧气氛围中退火且进行Y元素掺杂形成Y-O2-SrSnO3
5.根据权利要求4所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述SSO层(3)为SrSnO3,且所述SrSnO3需在氧气氛围中退火且进行Y元素掺杂形成Y-O2-SrSnO3,所述退火的氧气流量为1-100sccm,退火温度为100~900℃,退火时间5-120min。
6.根据权利要求5所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述Y元素的掺杂量为0.01-0.1%。
7.根据权利要求5所述的一种基于氧化镓异质结构的日盲紫外探测器,其特征在于:所述第一测试电极(4)和所述第二测试电极(5)均为Ti/Au复合电极,所述Ti/Au复合电极由Ti层和Au层构成,所述Ti层厚度为10~50nm,所述Au层厚度为10~100nm。
8.一种基于氧化镓异质结构的日盲紫外探测器的制备方法,其特征在于,包括以下步骤:
步骤一:将蓝宝石的所述衬底(1)进行预处理,分别用丙酮,无水乙醇和去离子水超声10min,将处理后的所述衬底(1)放入沉积室内采用金属氧化物化学气相沉积法(MOCVD)生长β-Ga2O3薄膜,形成β-Ga2O3光吸收层,即所述β-Ga2O3薄膜(2),所述MOCVD的生长沉积条件如下,三乙基镓(TEGa)和高纯O2为前驱体,高纯Ar作为载气,TEGa的气体流量为10~500sccm,工作气压为25Torr。
步骤二:在所述衬底(1)和所述β-Ga2O3光吸收层上旋涂SSO溶液,形成所述SSO层(3),获得位于所述衬底(1)上的所述β-Ga2O3/SSO异质结;
步骤三,采用磁控溅射方法在所述β-Ga2O3/SSO异质结的所述SSO层3上制作Ti/Au薄膜第一测试电极(4),在所述β-Ga2O3薄膜(2)上制作Ti/Au薄膜第二测试电极(5),形成基于氧化镓基异质结构的日盲紫外探测器。
9.根据权利要求8所述的一种基于氧化镓异质结构的日盲紫外探测器的制备方法,其特征在于:步骤二中的所述SSO溶液:将SSO粉末分散在乙二醇甲醚溶液中,超声50分钟获得分散后的SSO溶液,步骤二中的所述旋涂SSO溶液:旋转参数为500转速旋转5秒或3000转速旋转40秒。
10.根据权利要求9所述的一种基于氧化镓异质结构的日盲紫外探测器的制备方法,其特征在于:步骤三中的所述磁控溅射方法:磁控溅射工艺条件包括:真空度为1×10-4Pa,衬底温度为室温,工作气氛为Ar气,工作气压为1.2Pa,溅射功率为40W,Ti层溅射时间为2分钟,Au层溅射时间为5分钟。
CN202210349931.7A 2022-04-02 2022-04-02 一种基于氧化镓异质结构的日盲紫外探测器及制备方法 Pending CN114709281A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210349931.7A CN114709281A (zh) 2022-04-02 2022-04-02 一种基于氧化镓异质结构的日盲紫外探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210349931.7A CN114709281A (zh) 2022-04-02 2022-04-02 一种基于氧化镓异质结构的日盲紫外探测器及制备方法

Publications (1)

Publication Number Publication Date
CN114709281A true CN114709281A (zh) 2022-07-05

Family

ID=82171902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210349931.7A Pending CN114709281A (zh) 2022-04-02 2022-04-02 一种基于氧化镓异质结构的日盲紫外探测器及制备方法

Country Status (1)

Country Link
CN (1) CN114709281A (zh)

Similar Documents

Publication Publication Date Title
CN108281509B (zh) 氧化物半导体基光电探测器及提高其性能的方法
CN109461790B (zh) 氧化镓/石墨烯异质结零功耗光电探测器及其制造方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
Jia et al. Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (< 10 µm)
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
TW201907574A (zh) 二維電子元件與相關製造方法
CN103227230A (zh) 一种侧向生长ZnMgO纳米线日盲区紫外探测器及其制备方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN110993707B (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN114709281A (zh) 一种基于氧化镓异质结构的日盲紫外探测器及制备方法
CN109768111A (zh) 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN110350043B (zh) 一种自组装结晶/非晶氧化镓相结光电探测器及其制造方法
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
Nasab et al. Nanostructural and barrier property characterization of ZnO/PEDOT: PSS heterojunction by adjusting RF power in the magnetron sputtering deposition technique
CN111244222B (zh) 六方氮化硼紫外光探测器及制备方法
CN111162180A (zh) 一种大面积钙钛矿太阳能电池
CN112071942B (zh) 基于NiFe2O4/SiC紫外光电二极管及制备方法
CN210092131U (zh) 一种大面积钙钛矿太阳能电池
TW201126742A (en) High-efficiency amorphous silicon photovoltaic devices
CN115763585A (zh) 一种紫外光探测器及其制备方法
JP2757896B2 (ja) 光起電力装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination