CN114705312B - 一种涡轮叶片表面温度测量方法 - Google Patents

一种涡轮叶片表面温度测量方法 Download PDF

Info

Publication number
CN114705312B
CN114705312B CN202210614843.5A CN202210614843A CN114705312B CN 114705312 B CN114705312 B CN 114705312B CN 202210614843 A CN202210614843 A CN 202210614843A CN 114705312 B CN114705312 B CN 114705312B
Authority
CN
China
Prior art keywords
turbine blade
alumina
platinum
layer
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210614843.5A
Other languages
English (en)
Other versions
CN114705312A (zh
Inventor
董和磊
牛艳艳
张磊
谭秋林
熊继军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202210614843.5A priority Critical patent/CN114705312B/zh
Publication of CN114705312A publication Critical patent/CN114705312A/zh
Application granted granted Critical
Publication of CN114705312B publication Critical patent/CN114705312B/zh
Priority to US18/326,621 priority patent/US11891917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/08Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured forming one of the thermoelectric materials, e.g. pointed type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • F01D17/085Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • G01K7/12Arrangements with respect to the cold junction, e.g. preventing influence of temperature of surrounding air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

本发明涉及涡轮叶片表面温度测量技术,具体是一种新型涡轮叶片表面温度测量方法。本发明解决了现有涡轮叶片表面温度测量方法测量成本较高、测量可靠性较差的问题。一种新型涡轮叶片表面温度测量方法,该方法是采用如下步骤实现的:步骤一:将涡轮叶片进行清洗后吹干;步骤二:先制备NiCrAlY缓冲层,再制备YSZ绝缘层;步骤三:制备氧化铝溶胶;步骤四:制备氧化铝绝缘层;步骤五:制备条形铂电极层;步骤六:制得铂填充引线;步骤七:先在条形铂电极层的末端表面连接铂丝,再在涡轮叶片上连接镍铬合金丝;步骤八:制备氧化铝保护层;步骤九:将热电偶的两个冷结点均与数据采集器连接。本发明适用于涡轮叶片表面温度测量。

Description

一种涡轮叶片表面温度测量方法
技术领域
本发明涉及涡轮叶片表面温度测量技术,具体是一种新型涡轮叶片表面温度测量方法。
背景技术
随着航空工业的快速发展,新一代航空飞行器的推重比不断提升,航空发动机的性能要求也在不断提高。作为航空发动机的核心热端部件,涡轮叶片的性能和使用寿命直接关系到航空发动机能否安全运行。而为了保证涡轮叶片的性能和使用寿命,对涡轮叶片的表面温度进行测量是十分必要的。目前,涡轮叶片表面温度测量方法主要包括薄膜热电偶(厚度一般在纳米至微米级别)测量法和厚膜热电偶(厚度一般在几十微米左右)测量法。这两种方法各有优点,但共同存在如下问题:其一,无论是薄膜热电偶和厚膜热电偶,都需要在涡轮叶片的表面制备两种不同的材料才能形成热电偶,由此导致制备过程较复杂,从而导致测量成本较高。其二,无论是薄膜热电偶和厚膜热电偶,在高温下都容易因热应力增加而发生开裂、脱落等现象,由此导致热电偶失效,从而导致测量可靠性较差。基于此,有必要发明一种新型涡轮叶片表面温度测量方法,以解决现有涡轮叶片表面温度测量方法测量成本较高、测量可靠性较差的问题。
发明内容
本发明为了解决现有涡轮叶片表面温度测量方法测量成本较高、测量可靠性较差的问题,提供了一种新型涡轮叶片表面温度测量方法。
本发明是采用如下技术方案实现的:
一种新型涡轮叶片表面温度测量方法,该方法是采用如下步骤实现的:
步骤一:将涡轮叶片进行清洗后吹干;
步骤二:先采用离子束溅射法在涡轮叶片的表面制备NiCrAlY缓冲层,再采用离子束溅射法在NiCrAlY缓冲层的表面制备YSZ绝缘层;
步骤三:采用溶胶凝胶法制备氧化铝溶胶;
步骤四:采用浸渍提拉法在YSZ绝缘层的表面制备氧化铝绝缘层;
步骤五:采用丝网印刷法在氧化铝绝缘层的表面制备条形铂电极层;
步骤六:先在条形铂电极层的首端表面钻设填充孔,使得涡轮叶片通过填充孔暴露出来,再向填充孔内填充铂浆料,然后进行高温烧结固化,制得铂填充引线;
步骤七:先在条形铂电极层的末端表面连接铂丝,再在涡轮叶片上连接镍铬合金丝;
步骤八:采用浸渍提拉法在氧化铝绝缘层的表面和条形铂电极层的表面制备氧化铝保护层;此时,涡轮叶片、条形铂电极层、铂填充引线、铂丝、镍铬合金丝共同构成热电偶;涡轮叶片作为热电偶的正极;条形铂电极层和铂填充引线共同作为热电偶的负极;铂丝和镍铬合金丝分别作为热电偶的两根补偿导线;铂填充引线与涡轮叶片的连接处作为热电偶的热结点;铂丝的末端和镍铬合金丝的末端分别作为热电偶的两个冷结点;
步骤九:将热电偶的两个冷结点均与数据采集器连接;热电偶实时测量涡轮叶片的表面温度,并将测量结果实时发送至数据采集器进行显示,由此实现涡轮叶片表面温度测量。
与现有涡轮叶片表面温度测量方法相比,本发明所述的一种新型涡轮叶片表面温度测量方法通过采用全新原理,使得涡轮叶片本身和铂材料相连形成热电偶,由此具备了如下优点:其一,本发明只需在涡轮叶片的表面制备一种材料(铂材料)即可形成热电偶,由此使得制备过程更简单,从而有效降低了测量成本。其二,本发明采用离子束溅射法制备出了表面平整、结构致密的NiCrAlY缓冲层,采用溶胶凝胶法和浸渍提拉法制备出了含有微孔(孔径可达纳米级)的氧化铝绝缘层,NiCrAlY缓冲层有利于释放因涡轮叶片与绝缘层之间热膨胀系数失配而产生的热应力,微孔可以促进温变时绝缘层热应力的缓冲释放,使绝缘层不至于在高温下集聚热应力。因此,本发明有效避免了热电偶在高温下因热应力增加而发生开裂、脱落等现象,由此有效避免了热电偶失效,从而有效增强了测量可靠性。
本发明有效解决了现有涡轮叶片表面温度测量方法测量成本较高、测量可靠性较差的问题,适用于涡轮叶片表面温度测量。
附图说明
图1是本发明的原理示意图。
图中:1-涡轮叶片,2-NiCrAlY缓冲层,3-YSZ绝缘层,4-氧化铝绝缘层,5-条形铂电极层,6-铂填充引线,7-铂丝,8-镍铬合金丝,9-氧化铝保护层,10-数据采集器。
具体实施方式
一种新型涡轮叶片表面温度测量方法,该方法是采用如下步骤实现的:
步骤一:将涡轮叶片1进行清洗后吹干;
步骤二:先采用离子束溅射法在涡轮叶片1的表面制备NiCrAlY缓冲层2,再采用离子束溅射法在NiCrAlY缓冲层2的表面制备YSZ绝缘层3;
步骤三:采用溶胶凝胶法制备氧化铝溶胶;
步骤四:采用浸渍提拉法在YSZ绝缘层3的表面制备氧化铝绝缘层4;
步骤五:采用丝网印刷法在氧化铝绝缘层4的表面制备条形铂电极层5;
步骤六:先在条形铂电极层5的首端表面钻设填充孔,使得涡轮叶片1通过填充孔暴露出来,再向填充孔内填充铂浆料,然后进行高温烧结固化,制得铂填充引线6;
步骤七:先在条形铂电极层5的末端表面连接铂丝7,再在涡轮叶片1上连接镍铬合金丝8;
步骤八:采用浸渍提拉法在氧化铝绝缘层4的表面和条形铂电极层5的表面制备氧化铝保护层9;此时,涡轮叶片1、条形铂电极层5、铂填充引线6、铂丝7、镍铬合金丝8共同构成热电偶;涡轮叶片1作为热电偶的正极;条形铂电极层5和铂填充引线6共同作为热电偶的负极;铂丝7和镍铬合金丝8分别作为热电偶的两根补偿导线;铂填充引线6与涡轮叶片1的连接处作为热电偶的热结点;铂丝7的末端和镍铬合金丝8的末端分别作为热电偶的两个冷结点;
步骤九:将热电偶的两个冷结点均与数据采集器10连接;热电偶实时测量涡轮叶片1的表面温度,并将测量结果实时发送至数据采集器10进行显示,由此实现涡轮叶片表面温度测量。
所述涡轮叶片1采用镍基高温合金制成;所述NiCrAlY缓冲层2的厚度为10μm~50μm;所述YSZ绝缘层3的厚度为10μm~50μm;所述氧化铝绝缘层4的厚度为1μm~2μm;所述条形铂电极层5的厚度为10μm~50μm、长度为5mm;所述填充孔的孔径为0.2mm~1mm;所述氧化铝保护层9的厚度为1μm~2μm。
所述步骤一的具体步骤为:先将涡轮叶片1放入去离子水中超声波清洗10min以去除表面的颗粒污染物,再将涡轮叶片1放入丙酮溶液中超声波清洗10min以去除表面的有机污染物,然后将涡轮叶片1放入乙醇溶液中超声波清洗10min以去除表面残留的丙酮溶液,而后再次将涡轮叶片1放入去离子水中超声波清洗10min以去除表面残留的乙醇溶液,最后用氮气将涡轮叶片1吹干。
所述步骤二中,离子束溅射法的具体参数为:溅射之前将真空室抽至真空度小于1×10-3Pa,离子源的离子能量为500eV~1000eV,离子源的离子束流为50mA~100mA,薄膜生长时间为30min~60min。
所述步骤三中,氧化铝溶胶的具体制备步骤为:以异丙醇铝作为前驱体,以乙二醇乙醚作为溶剂,以乙酰丙酮作为螫合剂;先将0.02mol异丙醇铝充分研磨之后加入50mL乙二醇乙醚中,再放入超声波清洗机内超声波粉碎0.5h,然后用磁力搅拌机在70℃~80℃下搅拌0.5h,而后滴加一定量乙酰丙酮,继续搅拌0.5h,最后在搅拌条件下滴加适量冰醋酸,继续搅拌1h,制得氧化铝溶胶;待氧化铝溶胶自然冷却后,过滤待用。
所述步骤四中,氧化铝绝缘层4的具体制备步骤为:先将氧化铝溶胶放入浸渍提拉机内,再将制备有YSZ绝缘层3的涡轮叶片1浸入氧化铝溶胶中,然后以50mm/min~100mm/min的提拉速度匀速提拉制备有YSZ绝缘层3的涡轮叶片1,使得YSZ绝缘层3的表面形成氧化铝液膜,而后放在加热台上在150℃下干燥10min,随后放入干燥箱内在450℃下干燥10min,最后放入管式炉内在600℃下退火2h,制得氧化铝绝缘层4。
所述步骤五中,条形铂电极层5的具体制备步骤为:先用丝网印刷机在氧化铝绝缘层4的表面印刷条形铂电极层5,再放入干燥箱内在150℃下干燥20min,然后放入马弗炉内在1000℃下烧结固化1h。
所述步骤七的具体步骤为:先选取铂丝7,用高温导电胶将铂丝7的首端粘接于条形铂电极层5的末端表面,再选取镍铬合金丝8,用高温导电胶将镍铬合金丝8的首端粘接于涡轮叶片1上,然后放入干燥箱内在80℃下干燥3h。
所述步骤八中,氧化铝保护层9的具体制备步骤为:先将氧化铝溶胶放入浸渍提拉机内,再将制备有氧化铝绝缘层4的涡轮叶片1浸入氧化铝溶胶中,然后以50mm/min~100mm/min的提拉速度匀速提拉制备有氧化铝绝缘层4的涡轮叶片1,使得氧化铝绝缘层4的表面形成氧化铝液膜,而后放在加热台上在150℃下干燥10min,随后放入干燥箱内在450℃下干燥10min,最后放入管式炉内在600℃下退火2h,制得氧化铝保护层9。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (9)

1.一种涡轮叶片表面温度测量方法,其特征在于:该方法是采用如下步骤实现的:
步骤一:将涡轮叶片(1)进行清洗后吹干;
步骤二:先采用离子束溅射法在涡轮叶片(1)的表面制备NiCrAlY缓冲层(2),再采用离子束溅射法在NiCrAlY缓冲层(2)的表面制备YSZ绝缘层(3);
步骤三:采用溶胶凝胶法制备氧化铝溶胶;
步骤四:采用浸渍提拉法在YSZ绝缘层(3)的表面制备氧化铝绝缘层(4);
步骤五:采用丝网印刷法在氧化铝绝缘层(4)的表面制备条形铂电极层(5);
步骤六:先在条形铂电极层(5)的首端表面钻设填充孔,使得涡轮叶片(1)通过填充孔暴露出来,再向填充孔内填充铂浆料,然后进行高温烧结固化,制得铂填充引线(6);
步骤七:先在条形铂电极层(5)的末端表面连接铂丝(7),再在涡轮叶片(1)上连接镍铬合金丝(8);
步骤八:采用浸渍提拉法在氧化铝绝缘层(4)的表面和条形铂电极层(5)的表面制备氧化铝保护层(9);此时,涡轮叶片(1)、条形铂电极层(5)、铂填充引线(6)、铂丝(7)、镍铬合金丝(8)共同构成热电偶;涡轮叶片(1)作为热电偶的正极;条形铂电极层(5)和铂填充引线(6)共同作为热电偶的负极;铂丝(7)和镍铬合金丝(8)分别作为热电偶的两根补偿导线;铂填充引线(6)与涡轮叶片(1)的连接处作为热电偶的热结点;铂丝(7)的末端和镍铬合金丝(8)的末端分别作为热电偶的两个冷结点;
步骤九:将热电偶的两个冷结点均与数据采集器(10)连接;热电偶实时测量涡轮叶片(1)的表面温度,并将测量结果实时发送至数据采集器(10)进行显示,由此实现涡轮叶片表面温度测量。
2.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述涡轮叶片(1)采用镍基高温合金制成;所述NiCrAlY缓冲层(2)的厚度为10μm~50μm;所述YSZ绝缘层(3)的厚度为10μm~50μm;所述氧化铝绝缘层(4)的厚度为1μm~2μm;所述条形铂电极层(5)的厚度为10μm~50μm、长度为5mm;所述填充孔的孔径为0.2mm~1mm;所述氧化铝保护层(9)的厚度为1μm~2μm。
3.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤一的具体步骤为:先将涡轮叶片(1)放入去离子水中超声波清洗10min以去除表面的颗粒污染物,再将涡轮叶片(1)放入丙酮溶液中超声波清洗10min以去除表面的有机污染物,然后将涡轮叶片(1)放入乙醇溶液中超声波清洗10min以去除表面残留的丙酮溶液,而后再次将涡轮叶片(1)放入去离子水中超声波清洗10min以去除表面残留的乙醇溶液,最后用氮气将涡轮叶片(1)吹干。
4.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤二中,离子束溅射法的具体参数为:溅射之前将真空室抽至真空度小于1×10-3Pa,离子源的离子能量为500eV~1000eV,离子源的离子束流为50mA~100mA,薄膜生长时间为30min~60min。
5.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤三中,氧化铝溶胶的具体制备步骤为:以异丙醇铝作为前驱体,以乙二醇乙醚作为溶剂,以乙酰丙酮作为螫合剂;先将0.02mol异丙醇铝充分研磨之后加入50mL乙二醇乙醚中,再放入超声波清洗机内超声波粉碎0.5h,然后用磁力搅拌机在70℃~80℃下搅拌0.5h,而后滴加一定量乙酰丙酮,继续搅拌0.5h,最后在搅拌条件下滴加适量冰醋酸,继续搅拌1h,制得氧化铝溶胶;待氧化铝溶胶自然冷却后,过滤待用。
6.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤四中,氧化铝绝缘层(4)的具体制备步骤为:先将氧化铝溶胶放入浸渍提拉机内,再将制备有YSZ绝缘层(3)的涡轮叶片(1)浸入氧化铝溶胶中,然后以50mm/min~100mm/min的提拉速度匀速提拉制备有YSZ绝缘层(3)的涡轮叶片(1),使得YSZ绝缘层(3)的表面形成氧化铝液膜,而后放在加热台上在150℃下干燥10min,随后放入干燥箱内在450℃下干燥10min,最后放入管式炉内在600℃下退火2h,制得氧化铝绝缘层(4)。
7.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤五中,条形铂电极层(5)的具体制备步骤为:先用丝网印刷机在氧化铝绝缘层(4)的表面印刷条形铂电极层(5),再放入干燥箱内在150℃下干燥20min,然后放入马弗炉内在1000℃下烧结固化1h。
8.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤七的具体步骤为:先选取铂丝(7),用高温导电胶将铂丝(7)的首端粘接于条形铂电极层(5)的末端表面,再选取镍铬合金丝(8),用高温导电胶将镍铬合金丝(8)的首端粘接于涡轮叶片(1)上,然后放入干燥箱内在80℃下干燥3h。
9.根据权利要求1所述的一种涡轮叶片表面温度测量方法,其特征在于:所述步骤八中,氧化铝保护层(9)的具体制备步骤为:先将氧化铝溶胶放入浸渍提拉机内,再将制备有氧化铝绝缘层(4)的涡轮叶片(1)浸入氧化铝溶胶中,然后以50mm/min~100mm/min的提拉速度匀速提拉制备有氧化铝绝缘层(4)的涡轮叶片(1),使得氧化铝绝缘层(4)的表面形成氧化铝液膜,而后放在加热台上在150℃下干燥10min,随后放入干燥箱内在450℃下干燥10min,最后放入管式炉内在600℃下退火2h,制得氧化铝保护层(9)。
CN202210614843.5A 2022-06-01 2022-06-01 一种涡轮叶片表面温度测量方法 Active CN114705312B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210614843.5A CN114705312B (zh) 2022-06-01 2022-06-01 一种涡轮叶片表面温度测量方法
US18/326,621 US11891917B2 (en) 2022-06-01 2023-05-31 Method for measuring surface temperatures of turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210614843.5A CN114705312B (zh) 2022-06-01 2022-06-01 一种涡轮叶片表面温度测量方法

Publications (2)

Publication Number Publication Date
CN114705312A CN114705312A (zh) 2022-07-05
CN114705312B true CN114705312B (zh) 2022-09-02

Family

ID=82177426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210614843.5A Active CN114705312B (zh) 2022-06-01 2022-06-01 一种涡轮叶片表面温度测量方法

Country Status (2)

Country Link
US (1) US11891917B2 (zh)
CN (1) CN114705312B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910307B1 (en) * 2020-05-14 2023-06-21 Alleima Tube AB A sensor and a system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210468A (ja) * 1990-01-16 1991-09-13 Kyoshiro Seki 厚膜磁性半導体及びその製造方法
CN101784951A (zh) * 2007-08-03 2010-07-21 金泰克斯公司 改进的薄膜涂层、电光元件和包括这些元件的组件
CN102353469A (zh) * 2011-09-29 2012-02-15 西北工业大学 高速飞行器外表面高温在线测量装置及其制备、测量方法
CN103017922A (zh) * 2011-09-26 2013-04-03 中国电子科技集团公司第四十八研究所 一种快速响应薄膜热电偶温度传感器及其制造方法
CN103226171A (zh) * 2012-01-30 2013-07-31 上海市电力公司 一种电缆载流热效应冗余度监测方法
CN103560204A (zh) * 2013-10-30 2014-02-05 清华大学 一种金属切削测温用薄膜热电偶及其制备方法
CN105588652A (zh) * 2015-12-15 2016-05-18 中国燃气涡轮研究院 一种基于空气喷涂的涡轮叶片温度测量方法
CN106768441A (zh) * 2016-12-21 2017-05-31 中国燃气涡轮研究院 一种基于等离子喷涂的涡轮叶片温度测量方法
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN110129851A (zh) * 2018-02-05 2019-08-16 美的集团股份有限公司 热电偶及其制备方法、电器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501974B2 (ja) * 1999-04-01 2004-03-02 横河電子機器株式会社 温度検出装置
US8334749B1 (en) * 2009-09-28 2012-12-18 General Electric Company Temperature detection in a gas turbine
CN101776645B (zh) * 2010-01-06 2012-05-02 湘潭大学 一种带热障涂层的叶片热疲劳失效的模拟测试方法
CN101894904B (zh) * 2010-07-15 2011-12-28 电子科技大学 一种金属基薄膜热电偶及其生产方法
CN103344350B (zh) * 2013-07-05 2015-07-08 西北工业大学 高温陶瓷基薄膜热电偶及其制作方法
CN105300544B (zh) * 2015-11-12 2018-11-23 西安交通大学 一种氧化物薄膜型热电偶及其制备方法
CN206905926U (zh) * 2017-06-27 2018-01-19 深圳市刷新智能电子有限公司 一种结构稳定性好的集成式热敏电路
CN108531848A (zh) * 2017-12-27 2018-09-14 中国航发四川燃气涡轮研究院 一种基于等离子喷涂的厚膜热电偶传感器制造方法
CN109916526A (zh) * 2019-03-11 2019-06-21 西北工业大学 一种用于涡轮叶片上ito薄膜热电偶电信号引出的背引线结构及制备方法
CN110068400B (zh) * 2019-04-26 2020-05-29 中北大学 基于声表面波技术的航空航天飞行器多参数监测系统
CN110132561B (zh) * 2019-05-15 2021-03-02 中北大学 一种面向极端环境的叶片应力/应变动态测试方法
CN110987215A (zh) * 2019-12-31 2020-04-10 电子科技大学 一种检测热障涂层隔热效果的薄膜温度传感器
CN112857439A (zh) * 2021-01-06 2021-05-28 中北大学 薄膜传感器及其制备方法
CN115628820A (zh) * 2022-09-14 2023-01-20 厦门大学 一种聚合物前驱体陶瓷薄膜热电偶及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210468A (ja) * 1990-01-16 1991-09-13 Kyoshiro Seki 厚膜磁性半導体及びその製造方法
CN101784951A (zh) * 2007-08-03 2010-07-21 金泰克斯公司 改进的薄膜涂层、电光元件和包括这些元件的组件
CN103017922A (zh) * 2011-09-26 2013-04-03 中国电子科技集团公司第四十八研究所 一种快速响应薄膜热电偶温度传感器及其制造方法
CN102353469A (zh) * 2011-09-29 2012-02-15 西北工业大学 高速飞行器外表面高温在线测量装置及其制备、测量方法
CN103226171A (zh) * 2012-01-30 2013-07-31 上海市电力公司 一种电缆载流热效应冗余度监测方法
CN103560204A (zh) * 2013-10-30 2014-02-05 清华大学 一种金属切削测温用薄膜热电偶及其制备方法
CN105588652A (zh) * 2015-12-15 2016-05-18 中国燃气涡轮研究院 一种基于空气喷涂的涡轮叶片温度测量方法
CN106768441A (zh) * 2016-12-21 2017-05-31 中国燃气涡轮研究院 一种基于等离子喷涂的涡轮叶片温度测量方法
CN110129851A (zh) * 2018-02-05 2019-08-16 美的集团股份有限公司 热电偶及其制备方法、电器
CN109338290A (zh) * 2018-11-02 2019-02-15 中国航空工业集团公司上海航空测控技术研究所 一种用于航空发动机涡轮叶片的薄膜温度传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
叶片上薄膜热电阻温度传感器的制备研究;崔成成;《CNKI》;20220131;正文第1-40页、附图1-5 *
基于SOI岛膜结构的高温压力传感器;杨娇燕等;《微纳电子技术》;20180723(第09期);全文 *
航空发动机热障涂层导电性能研究;段力 等;《航空制造技术》;20190901;正文第82-83页 *
铸造工业的感应加热 第五讲 感应熔炼电炉设计和感应器参数计算(下);李韵豪;《金属加工(热加工)》;20200501(第05期);全文 *

Also Published As

Publication number Publication date
US20230392509A1 (en) 2023-12-07
CN114705312A (zh) 2022-07-05
US11891917B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
CN114705312B (zh) 一种涡轮叶片表面温度测量方法
WO2017198005A1 (zh) 一种耐老化的晶体硅太阳能电池用背银浆及其制备方法
CN109053158A (zh) 热敏陶瓷粉体、ntc热敏芯片、温度传感器及制备方法
CN110504332A (zh) 一种perc电池的制备方法及双面选择性发射极perc电池
CN107673601B (zh) 一种perc铝浆用玻璃粉及其制备方法
CN109916526A (zh) 一种用于涡轮叶片上ito薄膜热电偶电信号引出的背引线结构及制备方法
CN111076836B (zh) 一种金属-氧化物型薄膜热电偶及其制备方法
CN109347450A (zh) 一种亚太赫兹波段20瓦脉冲功率放大器的加工方法
CN105294074B (zh) 一种采用丝网印刷工艺制备氧化物薄膜型热电偶的方法
CN103617852A (zh) 一种贴片式功率型热敏电阻元件及其制造方法
CN111141401B (zh) 一种探针式薄膜热电偶及其制备方法
CN102468092A (zh) 热阴极用热子的制备方法
CN111132397A (zh) 一种新能源汽车热管理的平板厚膜加热器及其制备工艺
CN111272314A (zh) 一种简易同轴量热计
CN107230795B (zh) 一种具备质子电导率的中温固体氧化物燃料电池电解质
CN110596745A (zh) 一种通用型同位素热源的电加热模拟热源
JP2015071513A (ja) Cigs太陽電池用絶縁基板およびcigs太陽電池
CN202649388U (zh) 大型风力发电机定子绝缘放电起始及熄灭电压的测试系统
CN102623568B (zh) 一种晶体硅太阳电池扩散死层的去除方法
JP5625538B2 (ja) p型拡散層形成組成物、p型拡散層の製造方法、及び太陽電池セルの製造方法
CN110519870A (zh) 一种石墨烯/贱金属合金导电材料、电阻浆料、发热体及其制备和应用
CN111653836A (zh) 一种具有功能层的高温熔盐电池及其制备方法
CN214096459U (zh) 一种陶瓷薄膜热电偶
CN110556542A (zh) 一种固体氧化物燃料电池的阴极材料及其制备方法
CN103617823B (zh) 一种低翘曲太阳能电池背铝浆料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant