CN114703497A - 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法 - Google Patents

用于光辅助电催化分解水产氢的等离子体催化剂及制备方法 Download PDF

Info

Publication number
CN114703497A
CN114703497A CN202210444623.2A CN202210444623A CN114703497A CN 114703497 A CN114703497 A CN 114703497A CN 202210444623 A CN202210444623 A CN 202210444623A CN 114703497 A CN114703497 A CN 114703497A
Authority
CN
China
Prior art keywords
metal
water
photo
plasma catalyst
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210444623.2A
Other languages
English (en)
Inventor
刘敏
张晓东
李黄经纬
傅俊伟
李红梅
林璋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210444623.2A priority Critical patent/CN114703497A/zh
Publication of CN114703497A publication Critical patent/CN114703497A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了用于光辅助电催化分解水产氢的等离子体催化剂及制备方法,等离子体催化剂包括:二维材料;金属纳米粒子,金属纳米粒子负载在所述二维材料上;金属纳米粒子具有等离子体共振效应,包括Au、Ag、Cu、Al纳米粒子中的一种或多种;制备方法包括:将二维材料分散于金属纳米粒子溶胶中;经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂。本发明用于光辅助电催化分解水产氢的等离子体催化剂的金属纳米粒子表面具有等离子体共振效应,有效降低了电催化分解水产氢的过电位,显著地减少了能耗,实现了催化效率的最大化。

Description

用于光辅助电催化分解水产氢的等离子体催化剂及制备方法
技术领域
本发明属于制氢催化剂技术领域,涉及用于光辅助电催化分解水产氢的等离子体催化剂及制备方法。
背景技术
氢能是一种重要的清洁能源,以水为原料,进行电解水制氢是满足可再生电力储存需求的最有希望的方法之一。目前工业氢主要通过在碱性溶液中电解水来生产,包括阴极析氢反应(HER)和阳极析氧反应(OER),制备过程中所采用的催化剂主要是以Pt为代表的贵金属材料,其催化析氢活性佳,但是因资源匮乏、价格昂贵,限制了其大规模应用。目前利用金属纳米颗粒、非贵金属材料制备低成本、高效能的电解水制氢催化剂,替代贵金属的应用,取得了重要进展,但是,如何提高催化剂的利用率以及降低过电位减少耗能是当前研究的难点。
发明内容
为了达到上述目的,本发明提供用于光辅助电催化分解水产氢的等离子体催化剂及制备方法,该催化剂的金属纳米粒子表面具有等离子体共振效应,有效降低了电催化分解水产氢的过电位,显著地减少了能耗,实现了催化效率的最大化;同时,该等离子体催化剂的原材料成本低,制备方法简单,适用于大规模地工业化生产和使用,解决了现有技术中存在的问题。
本发明所采用的技术方案是,用于光辅助电催化分解水产氢的等离子体催化剂,包括:
二维材料;
金属纳米粒子,所述金属纳米粒子负载在所述二维材料上;
其中,所述金属纳米粒子具有等离子体共振效应,包括Au、Ag、Cu、Al纳米粒子中的一种或多种。
进一步地,二维材料包括:碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料中的一种或几种。
更进一步地,过渡金属硫化合物包括:MoS2、WS2、MoSe2中的一种;二维金属有机框架材料包括:MAMS-1、UiO-67、NTU-9、Fe(Py2th) 中的一种;二维共价有机框架材料包括:COF-1、PolyTB-COF、COF-43中的一种。
进一步地,金属纳米粒子的微观形态包括纳米棒状、纳米块状、纳米突刺状、纳米球状中的一种。
本发明的另一发明目的,在于提供上述用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,包括:
将二维材料分散于金属纳米粒子溶胶中;
经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂。
进一步地,金属纳米粒子溶胶的制备过程,包括以下步骤:
以冰水为溶剂,向冰水中添加NaBH4、抗坏血酸、葡萄糖、氯化亚锡、亚硫酸钠中的一种作为还原剂,配制浓度为0.01M~5M的还原液;
将所述还原液以1: 10~500的体积比加入至含有金属化合物和稳定剂的溶液中,经搅拌以及室温下避光老化,得到浓度为0.01mM-10mM的金属纳米粒子溶胶。
更进一步地,含有金属化合物和稳定剂的溶液中:金属化合物包括Au、Ag、Cu或Al化合物中的一种,其浓度为0.01M~15M;稳定剂包括柠檬酸钠、PVP、十二烷基硫酸钠中的一种,其浓度为0.001M~15M。
进一步地,二维材料与金属纳米粒子溶胶的质量体积比为1mg:(1mL~50mL)。
进一步地,金属纳米粒子的负载量为1wt%~20wt%。
本发明的有益效果是:本发明实施例制备的等离子体催化剂具有较高的金属纳米粒子负载量,不易发生团聚,稳定性好,改善了现有技术中金属纳米粒子负载量低,并且容易团聚失活的问题;利用金属纳米粒子的等离子体激元场提高其光吸收能力,降低反应势垒,提高电催化反应的效能,有效降低过电位,减少能耗;制备的二维材料具有更高的电导率,有利于电子传输。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例Au纳米粒子的微观形貌图。
图2是本发明实施例Al纳米粒子的微观形貌图。
图3是本发明实施例Ag纳米粒子、N-Mo2C与Ag/N-Mo2C的紫外-可见吸收光谱图。
图4是本发明实施例Ag/N-Mo2C的透射电镜图。
图5是本发明实施例有无光照射下,Ag纳米粒子、N-Mo2C与Ag/N-Mo2C的电催化水分解制氢(HER)曲线图。
图6是本发明实施例有无光照射下,Ag纳米粒子、N-Mo2C与Ag/N-Mo2C的电催化水分解制氢过电位对比柱状图。
图7是本发明实施例Ag纳米粒子、N-Mo2C与Ag/N-Mo2C的光电流响应曲线。
图8是本发明实施例Au/ MoS2的电催化水分解制氢(HER)电流-时间曲线图。
图9是本发明实施例Al/ WS2的电催化水分解制氢(HER) 电流-时间曲线图。
图10是本发明实施例Cu/ MoS2的电催化水分解制氢(HER) 电流-时间曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
采用化学合成方式制备二维材料:
将制备二维材料的原料转移至管式炉中,在Ar/H2的混合气氛下(Ar占H2体积的5%~20%),加热至300℃~1500℃,保温0.5h~5h,自然冷却至室温,得到二维材料;所得二维材料还可与氮源以1:10的质量比混合,并转移至管式炉中,在Ar/H2的混合气氛下(Ar占H2体积的5%~20%),加热至300℃~1200℃,保温0.5h~10h,自然冷却至室温,得到氮掺杂的二维材料。二维材料的尺度为0.1µm×0.1µm~2µm×2µm。
采用上述化学合成方式可以制备碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料等二维材料;二维材料具有优异的电子传输特性。
过渡金属硫化合物包括:MoS2、WS2、MoSe2中的一种;
二维金属有机框架材料包括:MAMS-1、UiO-67、NTU-9、Fe(Py2th)(铁负载2-噻吩基吡啶)中的一种;
二维共价有机框架材料包括:COF-1、PolyTB-COF、COF-43中的一种。
实施例2
采用化学合成方式制备二维材料N-Mo2C:
取5g MoO3置于瓷舟内,并转移至管式炉内,在Ar/H2(Ar占H2体积的15%)的混合气氛下加热至900℃,保温1h,然后自然降温至室温,得到二维材料MoO2;然后将100mg的二维材料MoO2与1g的二聚二胺混合置于瓷舟内并转移至管式炉内,在Ar/H2(Ar占H2体积的15%)的混合气氛下加热至700℃,保温2h,然后自然冷却至室温,得到氮掺杂的二维材料N-Mo2C,其尺度为100μm~500μm。
实施例3
采用液相剥离方式制备二维材料:
将制备二维材料原料放入烧杯中(烧杯中所放分散剂可为DMF(N,N-二甲基甲酰胺)、乙醇、正己烷、NMP(N-甲基吡咯烷酮)等有机溶剂),同时在烧杯中放入冰袋,以防止温度过高,并在50W~1500W的超声功率下,超声0.5h~100h,之后所得超声产物在2000rpm~30000rpm的转速下,离心处理3min~500min,取上清液,得到二维薄膜材料。
采用上述液相剥离方式可以制备碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料等二维材料。
实施例4
采用液相剥离方式制备二维材料MoS2
将制备MoS2的粉末放入装有DMF溶液的烧杯中,同时在烧杯中放入冰袋,以防止温度过高,并在500W的超声功率下,超声10h,之后所得超声产物在10000rpm的转速下,离心处理120min,取上清液,得到MoS2二维薄膜,其尺度为50μm~500μm。
实施例5
采用化学气相沉积方式制备二维材料:
将制备二维材料的原料放至管式炉中,在Ar或者N2气氛下,加热至100℃~2500℃,保温0.5h~15h,控制其气流量100~500sccm让其成核生长,之后自然冷却至室温,得到二维材料。
采用上述化学气相沉积方式可以制备过渡金属硫化合物等二维材料。
实施例6
采用化学气相沉积方式制备二维材料WS2
将硫粉放置在管式炉前端,WO3放至管式炉后端,在Ar气气氛下,加热至500℃,保温5h,气流量为100sccm,让其成核生长,之后自然冷却至室温,得到二维材料WS2,其尺度为50μm~500μm。
实施例7
制备金属纳米粒子溶胶:
以冰水为溶剂,向冰水中添加还原剂,制备浓度为0.01M~5M的还原液,还原剂包括NaBH4、抗坏血酸、葡萄糖、氯化亚锡或亚硫酸钠;
将上述还原液以1: 10~500的体积比加入至含有金属化合物和稳定剂的溶液中,搅拌5min,然后在室温下避光老化24h,得到浓度为0.01mM-10mM的金属纳米粒子溶胶;
含有金属化合物和稳定剂的溶液中,金属化合物的浓度为0.01M~15M,稳定剂的浓度为0.001M~15M;金属化合物包括:Au、Ag、Cu或Al的化合物;稳定剂包括柠檬酸钠、PVP或十二烷基硫酸钠。
实施例8
制备Ag纳米粒子溶胶:
量取冰水制备6mL的浓度为0.1M的NaBH4溶液,加入到200mL的浓度为0.25mM的AgNO3和0.12mM的柠檬酸钠溶液中,迅速搅拌5分钟,然后在室温下避光老化24h,得黄色Ag纳米粒子溶胶,溶胶中Ag纳米粒子为颗粒状,其粒度为5nm~50nm。
Ag纳米粒子的等离子体共振特征吸收峰位于380nm-500nm。
实施例9
制备Ag纳米粒子溶胶:
除AgNO3溶液的浓度为0.0103mM,其余均与实施例8相同。
实施例10
制备Au纳米棒溶胶:
量取冰水制备15mL的浓度为0.4M的NaBH4溶液,加入到120mL的浓度为0.25mM的氯金酸(HAuCl4)和0.05M的十六烷基三甲基溴化铵溶液(CTAB)中,迅速搅拌5分钟,然后在室温下避光老化24h,得棕色Au纳米粒子溶胶,溶胶中Au纳米粒子的其形貌为金纳米棒,其粒度为50nm~500nm,如图1所示。
Au纳米粒子的等离子体共振特征吸收峰位于400nm-800nm。
实施例11
制备Au纳米棒溶胶:
除氯金酸(HAuCl4)溶液的浓度为11.25mM,其余均与实施例10相同。
实施例12
制备Cu纳米粒子溶胶:
量取冰水制备10mL的浓度为0.25M的NaBH4溶液,加入到150mL的浓度为0.25mM的Cu(NO3)2和0.05M的十六烷基三甲基溴化铵溶液(CTAB)中,迅速搅拌5分钟,然后在室温下避光老化24h,得暗绿色Cu纳米粒子溶胶,溶胶中Cu纳米粒子的其形貌为铜纳米颗粒,其粒度为10nm~500nm。
Cu纳米粒子的等离子体共振特征吸收峰位于550nm-800nm。
实施例13
制备Al纳米粒子溶胶:
量取4mL的四氢呋喃和75μL的20mM二硫代苯甲酸酯聚苯乙烯溶液(CDTB-PS),加入到500μL的浓度为0.50M的H3Al甲苯溶液和60μL的100mM的Ti[OCH(CH3)2]4甲苯溶液中,迅速搅拌2分钟,然后在60℃下老化3h,得银色Al纳米粒子溶胶,溶胶中Al纳米粒子的其形貌如图2所示,为纳米球,其粒度为10nm~500nm。Al纳米粒子的等离子体共振特征吸收峰位于350nm~800nm。
上述金属纳米粒子具有等离子体共振特征吸收峰,具有等离子体共振效应:金属纳米粒子受共振光子诱发,其表面形成价电子的集体共振,其非辐射衰变过程中把光能转换成高能热电子,可以降低电催化析氢反应的能垒,促进电催化析氢反应。
实施例14
制备用于光辅助电催化分解水产氢的等离子体催化剂:
将制得的二维材料以1mg:(1mL~50mL)的质量体积比分散于金属纳米粒子溶胶中,在室温下搅拌反应 10h~72h,金属纳米粒子通过静电作用自组装到二维材料上,通过离心、冷冻干燥处理,得到金属纳米粒子负载量为1wt%~20wt%的等离子体催化剂,于真空条件下保存,以防止氧化失效。
本发明采用导电性能良好的二维材料,以增加电子的传输速率,负载具有等离子体共振效应的金属纳米粒子,用光激发金属纳米粒子的等离子体共振效应,产生参与催化反应的共振电子,其作为活性位点大大提高了催化效率,应用于电解水产氢、电解水产氧、CO2还原、N2还原等方面,本发明等离子体效应的利用,显著提高了电催化产氢效果,降低了能耗。
实施例15
制备用于光辅助电催化分解水产氢的等离子体催化剂:
取10mg实施例2制备的N-Mo2C分散在40mL实施例8制备的Ag纳米粒子溶胶中,在室温下搅拌反应24h,使银纳米粒子通过静电相互作用自组装负载到N-Mo2C上,经离心、冷冻干燥处理,得到负载量为10wt%的等离子体催化剂,记为Ag/N-Mo2C。
图3为Ag纳米粒子、N-Mo2C、Ag/N-Mo2C的紫外-可见吸收光谱图,N-Mo2C对紫外线没有吸收波,Ag纳米粒子对紫外线有较强的吸收波,Ag/N-Mo2C对紫外线有一定的吸收波,说明Ag/N-Mo2C成功负载了Ag纳米粒子。
图4为Ag/N-Mo2C的透射电镜图,由图4可以看出,银纳米粒子成功地负载在N-Mo2C上,且分散性良好。
室温下,将Ag/N-Mo2C涂覆在碳纸电极上作为工作电极,使用标准三电极系统在氮气饱和的0.5M磷酸缓冲溶液中进行电催化分解水产氢反应,测试加光与不加光条件下体系的电催化性能:
图5为Ag/N-Mo2C的电催化水分解制氢(HER)曲线图,根据图5的测试结果显示,加光条件下,引发等离子体催化剂中金属纳米粒子发生等离子体共振效应,明显提高了电解水制氢的催化效果。
图6为Ag/N-Mo2C的电催化水分解制氢过电位对比柱状图,根据图6的测试结果显示,在电流密度为10mA/cm2时,Ag纳米粒子、N-Mo2C和Ag/N-Mo2C在不加光和加光的过电位差依次为27mV、66mV、104mV,说明催化剂中引入具有等离子体共振效应的金属纳米粒子明显提高了电催化分解水产氢的效率,减少了能耗。
图7为Ag/N-Mo2C的光电流响应曲线图,根据图7的测试结果显示,采用Ag/N-Mo2C为催化剂的体系的光电流是采用N-Mo2C为催化剂的体系的7倍左右,仅采用Ag纳米粒子作为催化剂的体系几乎不产生光电流,产生这一现象的原因是由于Ag纳米颗粒没有很好的成膜,电荷传输受阻,而基底N-Mo2C可以提供一个很好的电子传输通道。这说明Ag/N-Mo2C具有明显的光响应效果。
实施例16
制备用于光辅助电催化分解水产氢的等离子体催化剂:
除10mg实施例2制备的N-Mo2C分散在4mL实施例8制备的Ag纳米粒子溶胶中,其余均与实施例15相同。
实施例17
制备用于光辅助电催化分解水产氢的等离子体催化剂:
取10mg实施例4制备的MoS2分散在10mL实施例10制备的Au纳米棒溶胶中,在室温下搅拌反应10h,经离心、冷冻干燥处理,得到负载量为5wt%的等离子体催化剂。
本实施例电催化水分解制氢(HER)电流-时间曲线数据如图8所示,在加光(on)和不加光(off)的条件下电催化水分解制氢过电位差为1mA cm-2,光电流为14mA cm-2,说明本实施例制得的等离子体催化剂具有明显的光响应效果。
实施例18
制备用于光辅助电催化分解水产氢的等离子体催化剂:
取10mg实施例6制备的WS2分散在500mL实施例13制备的Al纳米粒子溶胶中,在室温下搅拌反应72h,经离心、冷冻干燥处理,得到负载量为10wt%的等离子体催化剂。
本实施例电催化水分解制氢(HER)电流-时间曲线数据如图9所示,在加光(on)和不加光(off)的条件下电催化水分解制氢过电位差为0.55mA cm-2,光电流为11.5mA cm-2,说明本实施例制得的等离子体催化剂具有明显的光响应效果。
实施例19
制备用于光辅助电催化分解水产氢的等离子体催化剂:
除取10mg实施例6制备的WS2分散在1000mL实施例13制备的Al纳米粒子溶胶中,其余均与实施例18相同。
实施例20
制备用于光辅助电催化分解水产氢的等离子体催化剂:
取10mg实施例4制备的MoS2分散在500mL实施例12制备的Cu纳米粒子溶胶中,在室温下搅拌反应48h,经离心、冷冻干燥处理,得到负载量为5wt%的等离子体催化剂。
本实施例电催化水分解制氢(HER)电流-时间曲线数据如图10所示,在加光和不加光的条件下电催化水分解制氢过电位差为0.03mA cm-2,光电流为0.25mA cm-2,说明本实施例制得的等离子体催化剂具有明显的光响应效果。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (9)

1.用于光辅助电催化分解水产氢的等离子体催化剂,其特征在于,包括:
二维材料;
金属纳米粒子,所述金属纳米粒子负载在所述二维材料上;
其中,所述金属纳米粒子具有等离子体共振效应,包括Au、Ag、Cu、Al纳米粒子中的一种或多种。
2.根据权利要求1所述的用于光辅助电催化分解水产氢的等离子体催化剂,其特征在于,所述二维材料包括:碳化钼、氧化钼、过渡金属硫化合物、二维金属有机框架材料、二维共价有机框架材料中的一种或几种。
3.根据权利要求2所述的用于光辅助电催化分解水产氢的等离子体催化剂,其特征在于,所述过渡金属硫化合物包括:MoS2、WS2、MoSe2中的一种;所述二维金属有机框架材料包括:MAMS-1、UiO-67、NTU-9、Fe(Py2th) 中的一种;所述二维共价有机框架材料包括:COF-1、PolyTB-COF、COF-43中的一种。
4.根据权利要求1所述的用于光辅助电催化分解水产氢的等离子体催化剂,其特征在于,所述金属纳米粒子的微观形态包括纳米棒状、纳米块状、纳米突刺状、纳米球状中的一种。
5.根据权利要求1~4中任一项所述的用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,其特征在于,包括:
将二维材料分散于金属纳米粒子溶胶中;
经搅拌处理,所得产物经离心、干燥处理,得到金属纳米粒子负载在二维材料上的等离子体催化剂。
6.根据权利要求5所述的用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,其特征在于,所述金属纳米粒子溶胶的制备过程,包括以下步骤:
以冰水为溶剂,向冰水中添加NaBH4、抗坏血酸、葡萄糖、氯化亚锡、亚硫酸钠中的一种作为还原剂,配制浓度为0.01M~5M的还原液;
将所述还原液以1: 10~500的体积比加入至含有金属化合物和稳定剂的溶液中,经搅拌以及室温下避光老化,得到浓度为0.01mM-10mM的金属纳米粒子溶胶。
7.根据权利要求6所述的用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,其特征在于,所述含有金属化合物和稳定剂的溶液中:所述金属化合物包括Au、Ag、Cu或Al化合物中的一种,其浓度为0.01M~15M;所述稳定剂包括柠檬酸钠、PVP、十二烷基硫酸钠中的一种,其浓度为0.001M~15M。
8.根据权利要求5所述的用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,其特征在于,所述二维材料与金属纳米粒子溶胶的质量体积比为1mg:(1mL~50mL)。
9.根据权利要求5所述的用于光辅助电催化分解水产氢的等离子体催化剂的制备方法,其特征在于,所述金属纳米粒子的负载量为1wt%~20wt%。
CN202210444623.2A 2022-04-26 2022-04-26 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法 Pending CN114703497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210444623.2A CN114703497A (zh) 2022-04-26 2022-04-26 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210444623.2A CN114703497A (zh) 2022-04-26 2022-04-26 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN114703497A true CN114703497A (zh) 2022-07-05

Family

ID=82174898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210444623.2A Pending CN114703497A (zh) 2022-04-26 2022-04-26 用于光辅助电催化分解水产氢的等离子体催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN114703497A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437549A (zh) * 2014-11-20 2015-03-25 北京理工大学 表面等离子体增强的一种新型高效光解水复合催化剂
CN108855173A (zh) * 2017-05-12 2018-11-23 中国科学院福建物质结构研究所 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN110586137A (zh) * 2019-09-24 2019-12-20 河南师范大学 一种含有Mn0.5Cd0.5S和Au负载型光催化剂的制备方法
CN112844421A (zh) * 2021-01-18 2021-05-28 厦门大学 一种利用等离子体增强MoS2电催化和/或光电催化性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437549A (zh) * 2014-11-20 2015-03-25 北京理工大学 表面等离子体增强的一种新型高效光解水复合催化剂
CN108855173A (zh) * 2017-05-12 2018-11-23 中国科学院福建物质结构研究所 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN110586137A (zh) * 2019-09-24 2019-12-20 河南师范大学 一种含有Mn0.5Cd0.5S和Au负载型光催化剂的制备方法
CN112844421A (zh) * 2021-01-18 2021-05-28 厦门大学 一种利用等离子体增强MoS2电催化和/或光电催化性能的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, MENG等: ""Influence of Transition Metal on the Hydrogen Evolution Reaction over Nano-Molybdenum-Carbide Catalyst"", 《CATALYSTS》, vol. 8, no. 7, pages 3 *
LI, XIUMIN等: ""Silver-doped molybdenum carbide catalyst with high activity for electrochemical water splitting"", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》, vol. 18, no. 48, pages 32780 - 32785 *
王明腾 等: ""磁控溅射制备Cu-Al合金薄膜及光吸收性能研究"", 《盐城工学院学报(自然科学版)》, 20 March 2019 (2019-03-20), pages 6 - 11 *
葛金龙: "《金属有机骨架材料制备及其应用》", 30 September 2019, 合肥:中国科学技术大学出版社, pages: 69 *
马守宝 等: ""铝纳米颗粒表面等离子体共振峰可控性研究"", 《光学学报》, 19 May 2017 (2017-05-19), pages 364 - 369 *

Similar Documents

Publication Publication Date Title
Xu et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation
Wang et al. Controlled synthesis of dendritic Au@ Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst
Huang et al. Highly dispersed Pt clusters encapsulated in MIL-125-NH 2 via in situ auto-reduction method for photocatalytic H 2 production under visible light
CN110813363B (zh) 一种氮硫掺杂多孔碳改性碳纳米管担载Pt-Ni合金催化剂及其制备方法
Sun et al. Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution
Wang et al. Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells
CN111346677B (zh) 一种用于催化甲酸自分解制取氢气的钯/富氨基多孔聚合物催化剂的制备方法
CN108855173B (zh) 一种光电催化分解水产氢的方法及其中使用的等离子体催化剂和制法
Wang et al. CuS-modified ZnO rod/reduced graphene oxide/CdS heterostructure for efficient visible-light photocatalytic hydrogen generation
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
Zeng et al. Pd nanoparticles supported on copper phthalocyanine functionalized carbon nanotubes for enhanced formic acid electrooxidation
Tian et al. Enhanced photocatalytic performance of the MoS2/g-C3N4 heterojunction composite prepared by vacuum freeze drying method
Gao et al. Two-dimensional nickel nanosheets coupled with Zn0. 5Cd0. 5S nanocrystals for highly improved visible-light photocatalytic H2 production
Xu et al. Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance
Sun et al. Synthesis of Au@ nitrogen-doped carbon quantum dots@ Pt core-shell structure nanoparticles for enhanced methanol electrooxidation
Lüsi et al. Electrochemical reduction of oxygen in alkaline solution on Pd/C catalysts prepared by electrodeposition on various carbon nanomaterials
Tie et al. In-situ construction of graphene oxide in microsphere ZnS photocatalyst for high-performance photochemical hydrogen generation
CN111359613B (zh) 一种双功能氧化石墨烯负载核-壳结构钴纳米粒子复合材料
Jin et al. Modification of Ag nanoparticles/reduced graphene oxide nanocomposites with a small amount of Au for glycerol oxidation
Reyes-Cruzaley et al. Synthesis of novel Pd NP-PTH-CNTs hybrid material as catalyst for H2O2 generation
Jin et al. A new allotrope of carbon-graphdiyne, synthesis and application in photocatalytic hydrogen evolution with surface plasmon resonance enhancement
Ma et al. ReS2 with unique trion behavior as a co-catalyst for enhanced sunlight hydrogen production
Bharath et al. Plasmonic Au nanoparticles anchored 2D WS2@ RGO for high-performance photoelectrochemical nitrogen reduction to ammonia
Qian et al. Ultrathin Pd metallenes as novel co-catalysts for efficient photocatalytic hydrogen production
Song et al. Nickel coating on carbon nanotubes and PProDOT-2CH2SH supported Pt nanoparticles as the electrocatalyst for methanol oxidation reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination