CN114657542A - 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术 - Google Patents

航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术 Download PDF

Info

Publication number
CN114657542A
CN114657542A CN202210348132.8A CN202210348132A CN114657542A CN 114657542 A CN114657542 A CN 114657542A CN 202210348132 A CN202210348132 A CN 202210348132A CN 114657542 A CN114657542 A CN 114657542A
Authority
CN
China
Prior art keywords
reaction
coking
coating
vapor deposition
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210348132.8A
Other languages
English (en)
Inventor
师嘉都
胡平安
周伟星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202210348132.8A priority Critical patent/CN114657542A/zh
Publication of CN114657542A publication Critical patent/CN114657542A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

航空发动机在运行状态下,航空燃油流经热部件,温度升高,容易在发动机喷嘴表面金属催化下氧化结焦形成积碳,影响航空发动机使用寿命,严重时甚至会造成航空事故,此外,结焦产生后的除焦过程也面临时间人力成本高昂的问题,本发明为一种应用于航空发动机喷嘴领域金属材料结焦防护涂层技术,具体为一种氮化硼抗结焦涂层及其化学气相沉积制备方法,通过氮化硼涂层可以降低合金材料中金属元素起到的催化结焦作用,实现结焦抑制的目的,同时本工艺具有工艺简单、结焦抑制明显、易于结焦物理清除等优点。

Description

航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术
技术领域
本发明属于航空发动机碳氢燃料结焦抑制领域,涉及一种发动机喷嘴金属表面等离子体辅助化学气相沉积制备BN抗结焦涂层的工艺方法。
背景技术
在航空发动机工作环境下,航空燃油从油箱输送至燃烧室内进行组织燃烧的过程中,会流经多个热部件,如油泵、换热器、滑油冷却器等,燃油在输送过程中将会吸收大量热量导致温度升高,研究表明当燃油被加热到一定温度时,氧和金属的催化作用下经过经过氧化、热解、裂化、脱氢、焦化和聚合等一系列反应所生成结焦积碳最终沉积在部件的壁面上,结焦积碳的产生会增加喷嘴部件的热阻、流阻,降低喷嘴雾化质量,减少喷嘴及下游部件使用寿命,更严重时会直接导致航空事故的产生,对飞行器的飞行安全构成严重的威胁。
目前解决手段分为物理清焦和化学除焦。其中,物理清焦包括返厂维修、气液吹扫等,此类工艺运行成本高且易对发动机动力和封闭性能造成影响,甚至引发空中停车事故。化学除焦包括燃油添加剂和表面改性两种手段,燃油添加剂往往带来燃油组分不稳定进而干扰发动机稳定运行的问题,表面改性则是通过在金属表面加工惰性涂层,屏蔽金属催化结焦作用并减少焦炭清除难度。目前上述的一些手段已在航空发动机喷嘴表面防护中应用,但燃烧室壁面结焦和喷嘴结焦堵塞现象仍有发生,因此业界仍在寻找一种工艺,成功的减少或消除结焦并改善现有技术的不足。
BN涂层具有优异的抗氧化性、抗热震性、化学稳定性以及可机械加工的性能,目前已经广泛应用于火箭发动机燃烧室、喷管、航空发动机矢量喷管调节片、液体火箭燃气舵、导弹头锥、端头帽等部件的陶瓷基复合材料制备当中。同时,通过化学气相沉积法(CVD)制备的BN涂层具有很强的致密性,可以对基底实现很好的保护,因此可采用PECVD制备BN涂层并应用到航空发动机喷嘴防结焦领域。
发明内容
鉴于目前在航空发动机燃油喷嘴结焦抑制领域存在的问题,本发明专利利用等离子体辅助化学气相沉积法直接在需进行结焦防护的基底表面生长BN抗结焦涂层。该发明对于提升航空发动机热部件结焦抑制能力,提升发动机喷嘴等热部件的使用稳定性和使用寿命具有重要意义。
为实现上述目标,本发明采用的工艺方案为:一种直接在航空发动机燃油喷嘴金属表面通过等离子体化学气相沉积法生长BN抗结焦涂层的工艺,工艺设备主要包括反应沉积区加热装置,气氛压力调节装置,反应前驱物供给装置和等离子体辅助装置。
所述的直接在耐高温金属表面生长BN抗结焦涂层的工艺,其特征在于,制备BN抗结焦涂层的具体过程为:(1)将需制备涂层的样件进行除油、除锈预处理(2)处理后样件放入反应沉积装置内,通过真空系统使反应腔室内空气尽量排除,通过进气口通入一定流量的载气(3)利用载气流量控制反应腔室内压力在实验需要的值(4)打开加热装置,设定沉积反应所需要的温度和保持时间,反应沉积区升温(5)反应沉积区升温至设定的温度,加热蒸发前驱物开始化学气相沉积过程,并打开等离子体发生器,设定合适的等离子体功率辅助反应(6)反应至设定时间后结束反应,按设定降温速率降温至室温。
所述的化学气相沉积过程是指将BN涂层所需元素的一种或几种气相化合物或单质作为原料,在样件表面上进行化学反应生成薄膜的方法,等离子体辅助是借助微波或射频等使含有薄膜成分原子的气体电离,提升等离子体的化学活性,降低反应所需温度,减少能耗,若不采用等离子体辅助,也可通过常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、金属有机化合物化学气相沉积技术(MOCVD)等方法,也在本专利申请保护范围之内。
所述的反应前驱物是为BN涂层制备提供所需的B、N元素的物质,具体可以为固态的硼烷氨络合物,也可以为气态的硼吖嗪,也可以采用硼烷、氨气、氮气、乙硼烷、三氯化硼等一种或几种气体的混合。
所述的载气的种类包括氩气、氮气、氦气、氢气一种或几种气体的混合;反应腔室内压力根据需要可以选为不同范围进行常压化学气相沉积(APCVD)或低压化学气相沉积(LPCVD)。
所述的前驱物加热温度需结合前驱物自身物理化学性质,目的是保障样件表面的化学气相沉积过程发生,亦可用加热外其他方式,也可直接采用气态前驱物直接化学气相沉积薄膜。
所述的反应基底为BN抗结焦涂层防护的样品,可以为航空发动机喷嘴等航空发动机热部件中,也可以为其他需进行抗结焦防护的金属样品表面。
与现有技术相比,本发明的优势在于:
BN涂层在1000℃下依然体现出优异的抗氧化性、化学稳定性,同时本发明制备的厚度为4.2nm BN抗结焦涂层展现出了良好的抗氧化结焦能力,相较于其他方法制备的复合材料陶瓷涂层厚度更低,对原部件机械结构及导热性能的影响更小。
现有的复合材料抗结焦涂层或者表面强氧化处理方法,难以实现对复杂结构部件表面的均匀覆盖,本发明通过化学气相沉积方法可以在精细结构表面进行反应,在复杂结构样件表面制备致密的抗结焦涂层。
现有的复合材料抗结焦涂层制备工艺步骤往往需要多步反应,工艺复杂,设备要求较高,本发明采用等离子体辅助化学气相沉积法,降低了涂层制备温度,通过一步化学气相沉积反应制备BN抗结焦涂层,工艺更为简单。
附图说明
图1显示了BN涂层结焦抑制机理及应用场景。
图2显示了BN涂层制备前后的光学图、SEM图,展示涂层致密的表面结构。
图3显示了BN涂层Raman光谱,表明BN涂层为hBN结构。XPS测试结果,表明BN涂层中B、N结合方式为sp2杂化方式,B、N元素比接近1.05:1。
图4显示了BN涂层AFM厚度测试及TEM测试,涂层厚度随沉积时间延长而增加。
图5显示了抗结焦测试平台示意图。
图6展示了氧化结焦6h样品氮气吹扫前后结焦去除效果对比图。
具体实施方式
以GH4049(15×10×0.5mm)板材作为待防护件,在表面制备BN抗结焦涂层为例,说明一种金属基底表面直接制备BN抗结焦涂层的具体实施方式GH4049为镍基高温合金,以质量百分比计:Cr 9.5-11%,Co 14.0-16.0%,Mo 4.5-5.5%,Ti 1.4-1.9%,余量为Ni,微量元素0.01-0.2%,微量元素包括C、Al、Mn、P、Fe、B等中的一种或几种。
以硼烷氨络合物(Sigma Aldrich,97%)为前驱体,在待防护件面生长BN抗结焦涂层。
所述的硼烷氨络合物为商业化产品,使用前未进行纯化或其它处理,单次用量为50~500mg,所述的基底可以是航空发动机喷嘴、燃油冷却器等热部件,也可以是需防护的金属或合金。
所述的金属样件表面往往存在加工或存储过程中留下的氧化层或油脂层,经过碱洗、酸洗和中和处理表面进行除油、除锈处理。
经过预处理的金属样品放置入管式炉内,真空泵抽真空去除管内空气,通入氩气/氢气(Ar:H2=2:1)混合气作为实验气氛,将体系压力控制在5~30Pa,打开加热装置升温反应沉积区温度至700~1000℃,此时加热固态的硼烷氨前驱体,加热温度为90~120℃,热解气化后的硼吖嗪反应分子经过等离子体发生区进行完全分解,到达金属表面经过碰撞脱氢得到BN涂层,沉积时间设定为20~80min,实验完成后降低温度,关闭真空泵,继续通入混合气,待气压恢复常压,温度降至室温取出样品。
所述5中生长BN涂层前后光学照片、扫描电子显微镜测试图像如图2所示,从图像中可清楚看到生长的BN涂层有着致密的表面,图3为BN涂层的拉曼光谱和XPS,其Raman峰位置在1368cm-1附近,表明BN涂层为hBN结构,BN涂层XPS测试结果,表明BN涂层中B、N结合方式为sp2杂化方式,B、N元素比接近1.05:1,接近于1:1的元素比例,证明所生长BN涂层为hBN结构,此外通过图4的原子力图像,根据抛面线高度,可以发现随着时间的延长,BN涂层的厚度不断增加,通过图4透射电镜的表征可以看到BN涂层厚度约为10层。
抗结焦测试在自主设计搭建的抗结焦性能测试平台上完成,平台示意图及设备图如图5,具体组成包括:燃油供给装置、燃油混气预热段、结焦测试管式炉、尾气处理段、以及Labview分析平台。
所述的抗结焦性能测试平台参照航空发动机运行工况,可将氧化结焦测试条件范围设置在400-500℃,RP-3燃油供给速率40μl/min,燃油预热温度270℃,氮气供给速率150ml/min,实验时间设定为6h。
性能测试平台的具体步骤为:将待测试样品放置入结焦测试管式炉炉温中心,调节气体流量计控制载气流量至150ml/min,通入20min氮气后开始升温,升温至结焦温度450℃,打开直流电源为预热段加热,预热段材料材质选为钛管,电流设置在3A左右,将预热段加热到270℃,此时通过燃油微流控的注射器向预热段注入RP-3燃油,速率为40μl/min,燃油在管内升温气化,这一过程中可通过观察燃油预热段出口气化情况调节预热段温度获得最佳气化效果,气化后的燃油在氮气输运下到达炉温中心在样品表面进行氧化结焦,实验时间根据需求设定为6h,实验结束后进行后续观察,SEM测试结果如图6所示,未防护表面出现大面积丝状结焦区域和部分结焦,BN涂层防护的表面无明显结焦。
对所述9中样品进行结焦去除测试,用10MPa的氮气对样品表面进行吹扫5min,可以看到BN防护下样品结焦吹扫去除效果更为明显,无防护的样品仅去除部分块状焦炭。

Claims (6)

1.一种通过等离子体辅助化学气相沉积法在航空发动机喷嘴金属材料表面生长氮化硼(BN)抗结焦涂层的工艺,其工艺特征在于:(1)将需制备涂层的样件进行除油、除锈预处理(2)处理后样件放入反应沉积装置内,通过真空系统使反应腔室内空气尽量排除,通过进气口通入一定流量的载气(3)利用载气流量控制反应腔室内压力在实验需要的值(4)打开加热装置,设定沉积反应所需要的温度和保持时间,反应沉积区升温(5)反应沉积区升温至设定的温度,加热蒸发前驱物开始化学气相沉积过程,并打开等离子体发生器,设定合适的等离子体功率辅助反应(6)反应至设定时间后。结束反应,按设定降温速率降温至室温。
2.如权利1所述,化学气相沉积过程是指将BN涂层所需元素的一种或几种气相化合物或单质作为原料,在样件表面上进行化学反应生成薄膜的方法,等离子体辅助是借助微波或射频等使含有薄膜成分原子的气体电离,提升等离子体的化学活性,降低反应所需温度,减少能耗,若不采用等离子体辅助,也可通过常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、金属有机化合物化学气相沉积技术(MOCVD)等方法,也在本专利申请保护范围之内。
3.如权利1所述,反应前驱物是为BN涂层制备提供所需的B、N元素的物质,具体可以为固态的硼烷氨络合物,也可以为气态的硼吖嗪,也可以采用硼烷、氨气、氮气、乙硼烷、三氯化硼等一种或几种气体的混合。
4.如权利1所述,载气的种类包括氩气、氮气、氦气、氢气一种或几种气体的混合;反应腔室内压力根据需要可以选为不同范围进行常压化学气相沉积(APCVD)或低压化学气相沉积(LPCVD)。
5.如权利1所述,前驱物加热温度需结合前驱物自身物理化学性质,目的是保障样件表面的化学气相沉积过程发生,亦可用加热外其他方式,也可直接采用气态前驱物直接化学气相沉积薄膜。
6.如权利1所述,反应基底为BN抗结焦涂层防护的样品,可以为航空发动机喷嘴等航空发动机热部件中,也可以为其他需进行抗结焦防护的金属样品表面。
CN202210348132.8A 2022-03-30 2022-03-30 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术 Pending CN114657542A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210348132.8A CN114657542A (zh) 2022-03-30 2022-03-30 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210348132.8A CN114657542A (zh) 2022-03-30 2022-03-30 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术

Publications (1)

Publication Number Publication Date
CN114657542A true CN114657542A (zh) 2022-06-24

Family

ID=82033198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210348132.8A Pending CN114657542A (zh) 2022-03-30 2022-03-30 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术

Country Status (1)

Country Link
CN (1) CN114657542A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572503C1 (ru) * 2014-10-27 2016-01-10 Открытое акционерное общество "Оптрон" Способ осаждения монокристаллической пленки кубического нитрида бора на полупроводниковую кремниевую подложку
US20210363630A1 (en) * 2020-05-21 2021-11-25 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572503C1 (ru) * 2014-10-27 2016-01-10 Открытое акционерное общество "Оптрон" Способ осаждения монокристаллической пленки кубического нитрида бора на полупроводниковую кремниевую подложку
US20210363630A1 (en) * 2020-05-21 2021-11-25 Applied Materials, Inc. Nitride protective coatings on aerospace components and methods for making the same

Similar Documents

Publication Publication Date Title
US5805973A (en) Coated articles and method for the prevention of fuel thermal degradation deposits
US9611391B2 (en) Coating methods and coated articles
EP0608081B1 (en) Coated articles and method for the prevention of fuel thermal degradation deposits
KR100338361B1 (ko) 탄화수소 열분해 반응기 튜브 내벽에 코크의 저감을 위한온라인 코팅 방법
CN106367732B (zh) 一种中温金属有机化学气相沉积TiO2-Al2O3复合涂层装置及涂覆方法
Tang et al. Comparison of the anti-coking performance of CVD TiN, TiO2 and TiC coatings for hydrocarbon fuel pyrolysis
CN107177815B (zh) 一种高温合金表面复合陶瓷涂层及其制备方法
CN115786876A (zh) 一种利用cvd制备碳化钽涂层的方法及其制品
Wang et al. Oxide film prepared by selective oxidation of stainless steel and anti-coking behavior during n-hexane thermal cracking
CN114657542A (zh) 航空发动机燃油喷嘴表面抗结焦氮化硼涂层技术
Zhang et al. The effect of methanol additive on n-decane cracking and coking over TiN coating
JP2928063B2 (ja) 燃料の熱減成付着物を防止するための被覆物品および方法
KR100300891B1 (ko) 연료의열분해침적물의방지방법및고온탄화수소유체용코팅제품
CN102251225B (zh) 一种减少烃类裂解炉炉管结焦的处理方法及涂层预处理液
Kang Microstructures of high volume SiC reinforced tungsten composites produced by plasma spray
Wilden et al. Synthesis of Si–C–N coatings by thermal Plasmajet chemical vapour deposition applying liquid precursors
JPH07179862A (ja) 炭化水素流動体の熱分解生成物の沈着を防止する方法および金属表面が被覆された製品
CN106591796B (zh) 一种在线在裂解炉管内表面制备锰铬尖晶石涂层的方法
CN1106470A (zh) 人造金刚石薄膜快速生长的方法
CN116497349A (zh) 一种抗结焦合金裂解炉管改进材料表面涂层的制备方法
Shahien et al. Durability of Dense Alumina Coating Deposited by Hybrid Aerosol Deposition under High-Speed Steam-Jet at Elevated Temperatures
CN113584440B (zh) 耐高温抗结焦铬铝氮/二氧化钛复合镀层及其制备方法
CN117926229A (zh) 一种可采用多源前驱体的等离子体铬基涂层制备装置及方法
Strohm et al. Effect of hydrogen donor on the morphology of carbon formed during pyrolytic stressing of JP-8 jet fuel
CN117187777A (zh) 一种碳化铪涂层的安全高效制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination