CN114649453A - 一种高亮度正极性黄绿光led外延片及其制备方法 - Google Patents

一种高亮度正极性黄绿光led外延片及其制备方法 Download PDF

Info

Publication number
CN114649453A
CN114649453A CN202210545996.9A CN202210545996A CN114649453A CN 114649453 A CN114649453 A CN 114649453A CN 202210545996 A CN202210545996 A CN 202210545996A CN 114649453 A CN114649453 A CN 114649453A
Authority
CN
China
Prior art keywords
layer
thickness
preparation
transition
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210545996.9A
Other languages
English (en)
Inventor
王苏杰
董耀尽
杨祺
林晓珊
熊欢
宁如光
潘彬
王向武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Kaixun Photoelectric Co ltd
Original Assignee
Nanchang Kaixun Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Kaixun Photoelectric Co ltd filed Critical Nanchang Kaixun Photoelectric Co ltd
Priority to CN202210545996.9A priority Critical patent/CN114649453A/zh
Publication of CN114649453A publication Critical patent/CN114649453A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/305Materials of the light emitting region containing only elements of group III and group V of the periodic system characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及LED技术领域,具体涉及一种高亮度正极性黄绿光LED外延片及其制备方法,该LED外延片从GaAs衬底开始由下往上依次生长GaAs缓冲层、DBR、N型限制层、N面空间层、多量子阱有源层、P面空间层、P型限制层、过渡层、窗口层、微粗化接触层;在DBR和N型限制层之间插入超晶格反射层;过渡层包括第一过渡层和第二过渡层;在P型限制层和第一过渡层之间依次插入第一准备层、第二准备层和第三准备层。本发明制备的高亮度正极性黄绿光LED外延片通过引入超晶格反射层、渐变式过渡区、微粗化接触层,能有效降低外延材料的全反射损耗,提升出光效率,可用于制备高亮度黄绿光LED器件。

Description

一种高亮度正极性黄绿光LED外延片及其制备方法
技术领域
本发明涉及LED技术领域,具体涉及一种高亮度正极性黄绿光LED外延片及其制备方法。
背景技术
四元系AlGaInP材料制备的LED波长可以覆盖红、橙、黄和黄绿波段(550nm~660nm),特别在580nm~660 nm波长范围内的产品性能优于其他材料体系。然而,受材料本身特性的制约,发光波长越短的LED,其对应材料中的Al含量越多,从半导体物理中带隙理论出发,Al的组分越高越接近间接带隙,发光的辐射复合效率会迅速下降,从而影响了LED的发光亮度。因此,对于AlGaInP体系的LED而言,在波长较短的黄绿光波段(550nm~580nm)很难做出高亮度的LED器件。
目前,业界常规正极性黄绿光LED外延结构示意图如图1所示,自下而上依次包括GaAs衬底1、GaAs缓冲层2、DBR(分布式布拉格反射层)3、N型限制层4、N面空间层5、多量子阱有源层6、P面空间层7、P型限制层8、过渡层9、窗口层10、P型欧姆接触层11。
而该业界常规的正极性黄绿光LED外延结构中,存在以下缺点:(1)由于DBR一般选用AlAs/AlGaAs 交替生长的周期性结构。为了提升亮度,需要不断增加DBR的对数,可达到15~20对,但是DBR对数过多,会导致光在反射的过程中,产生更多的内部全反射,不仅垂直于LED(法向)的发光强度没有显著增加,而LED侧面多角度的光强相应减弱;(2)由于窗口层的材料GaP与衬底GaAs是晶格失配的,为了生长出晶体质量较好的窗口层,必须提前生长一层过渡层,而过渡层与窗口层较大的折射率差异会导致内部全反射概率增加,影响了亮度的提升;(3)窗口层和表面P型欧姆接触层基本采用GaP材料,GaP表面是较为光滑的镜面,出射光也非常容易在接触层的表面产生全反射。这些使得业界常规正极性黄绿光LED外延结构内部全反射损耗严重,较难做出高效率的发光器件。因此,如何研制出具备高亮度的正极性黄绿光LED外延结构,是当前困扰业内技术人员的难点。
发明内容
针对现有技术的不足,本发明提供了一种高亮度正极性黄绿光LED外延片及其制备方法,本发明的高亮度正极性黄绿光LED外延片通过在传统DBR结构末尾引入Al0.5In0.5P/(Alx1Ga1-x1)0.5In0.5P 超晶格反射层、在P型限制层后引入渐变式过渡区、将P型欧姆接触层改为微粗化接触层,能有效降低外延材料全反射损耗,提升了出光效率,可制备得到高亮度黄绿光LED器件。
本发明的第一个目的是提供一种高亮度正极性黄绿光LED外延片,所述LED外延片从GaAs衬底开始生长外延层,由下往上依次生长GaAs缓冲层、DBR、N型限制层、N面空间层、多量子阱有源层、P面空间层、P型限制层、过渡层、窗口层、微粗化接触层;
在所述DBR和所述N型限制层之间插入超晶格反射层;
所述过渡层包括第一过渡层和第二过渡层;
在所述P型限制层和所述第一过渡层之间依次插入第一准备层、第二准备层和第三准备层。
本发明在DBR后引入超晶格反射层,有助于在发光区向衬底方向反射回来的过程中,降低由于折射率差异产生的全反射损耗,可将更多角度的光出射到空气中;在P型限制层引入第一准备层、第二准备层和第三准备层以及第一过渡层和第二过渡层,这些结构组成渐变式过渡区,可有效避免折射率突变产生的出光损失;将P型欧姆接触层用表面微粗化接触层代替,能够降低在出光面处的全反射损耗,三种结构相结合,可显著提升出光效率,形成高亮度正极性黄绿光LED的外延结构。
进一步的,上述技术方案中,所述超晶格反射层的材料为Al0.5In0.5P/(Alx1Ga1-x1)0.5In0.5P周期性结构,循环对数为6~8对;在每个周期超晶格反射层中,Al0.5In0.5P的厚度为45nm~50nm,(Alx1Ga1-x1)0.5In0.5P的厚度为40nm~45nm,其中x1的取值范围为0.45~0.55。
本发明在常规的AlAs/AlGaAs DBR和N型限制层之间,插入6~8对的Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P周期性超晶格反射层结构,相当于引入了磷化物的DBR,有助于将更大角度的光向出光面反射出来,可减小内部全反射损耗,提高出光效率。
进一步的,上述技术方案中,所述DBR的材料为AlAs/Aly1Ga1-y1As交替生长的周期性结构,循环对数为5~10对;每对周期性结构中,AlAs的厚度为40nm~50nm,掺杂材料为Si,掺杂浓度为2×1018cm-3~5×1018cm-3,Aly1Ga1-y1As的厚度为35nm~45nm,y1的取值范围为0.4~0.6,掺杂材料为Si,掺杂浓度为2×1018cm-3~3×1018cm-3
进一步的,上述技术方案中,所述第一准备层的材料为(Al0.8Ga0.2)0.5In0.5P,厚度为8nm~12nm;所述第二准备层的材料为(Al0.65Ga0.35)0.5In0.5P,厚度为10nm~15nm;所述第三准备层的材料为(Al0.4Ga0.6)0.5In0.5P,厚度为15nm~20nm;所述第一过渡层的材料为(Al0.15Ga0.85)0.5In0.5P,厚度为25nm~35nm;所述第二过渡层的材料为Ga0.5In0.5P,厚度为40nm~45nm;所述第一准备层、第二准备层、第三准备层、第一过渡层、第二过渡层组成渐变式过渡区。本发明通过引入渐变式过渡区结构,可有效避免由于Al组分的变化造成折射率的突变而产生的出光损失。
进一步的,上述技术方案中,所述微粗化接触层的材料为GaAsP,厚度为100nm~150nm。
本发明将P型欧姆接触层用微粗化接触层替代,使用GaAsP材料,当GaAsP材料在掺杂剂为CCl4环境中生长时,表面形貌会呈现起伏的山峦状,类似于对表面进行微粗化,有助于减少发射光在出光层的全反射。
进一步的,上述技术方案中,所述N型限制层和P型限制层的材料均为Al0.5In0.5P;其中所述N型限制层的厚度为350nm~450nm,掺杂材料为Si,掺杂浓度为1×1018cm-3~2×1018cm-3;所述P型限制层的厚度为600nm~800nm,掺杂材料为Mg,掺杂浓度为0.5×1018cm-3~1.5×1018cm-3
进一步的,上述技术方案中,所述N面空间层和P面空间层的材料均为(Alx2Ga1-x2)0.5In0.5P,厚度均为80nm~170nm,其中x2的取值范围为0.7~0.9,均为非掺杂材料。
进一步的,上述技术方案中,所述多量子阱有源层的材料为80~100对的量子阱/垒结构,量子阱/垒的材料均为AlGaInP;其中,量子阱层的材料为(Alx3Ga1-x3)0.5In0.5P,厚度为2nm~4nm,x3取值范围为0.25~0.30;量子垒层的材料为(Alx4Ga1-x4)0.5In0.5P,厚度是5nm~8nm,x4的取值范围为0.6~0.8,均为非掺杂材料。
本发明的第二个目的是提供一种高亮度正极性黄绿光LED外延片的制备方法,利用MOCVD技术及其设备,在GaAs衬底上,依次生长GaAs缓冲层、DBR、超晶格反射层、N型限制层、N面空间层、多量子阱有源层、P面空间层、P型限制层、第一准备层、第二准备层、第三准备层、第一过渡层、第二过渡层、窗口层、微粗化接触层;
所述超晶格反射层生长步骤为:设定反应室温度为680℃~750℃,在所述DBR上,通入TMAl、TMIn、PH3,生长厚度为45nm~50nm的Al0.5In0.5P材料,生长速率为0.4nm/s~0.5nm/s,并采用SiH4作为N型掺杂剂,掺杂浓度为1×1018cm-3~2×1018cm-3;然后通入TMGa,生长厚度为40nm~45nm的(Alx1Ga1-x1)0.5In0.5P材料,生长速率为0.4nm/s~0.5nm/s,通过调整TMAl和TMGa通入反应室的流量,使得x1的取值范围为0.45~0.55,掺杂剂为SiH4,掺杂浓度为1×1018cm-3~2×1018cm-3,完成Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P生长组合后形成第一对超晶格反射层,然后接着重复循环生长5~7对。
进一步的,上述技术方案中,所述第一准备层的生长通过设定反应室温度为700℃~780℃,在所述P型限制层上,通入TMAl、TMGa、TMIn、PH3,生长厚度为8nm~12nm的(Al0.8Ga0.2)0.5In0.5P材料;然后调整TMAl、TMGa的流量,继续依次生长第二准备层(Al0.65Ga0.35)0.5In0.5P、第三准备层(Al0.4Ga0.6)0.5In0.5P、第一过渡层(Al0.15Ga0.85)0.5In0.5P和第二过渡层Ga0.5In0.5P,形成渐变式过渡区,各层P型掺杂剂均为CP2Mg,掺杂浓度均为1.5×1018cm-3~3×1018cm-3
所述微粗化接触层的生长步骤为:设定反应室温度为620℃~670℃,在所述窗口层上,通入TMGa、PH3、AsH3,生长厚度为100nm~150nm的GaAsP材料,掺杂剂为CCl4,掺杂浓度为2×1019cm-3~5×1019cm-3
本发明与现有技术相比,其有益效果有:
1.本发明通过在正极性黄绿光LED外延片内部引入材料为Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P的周期性超晶格反射层结构,有助于降低由于折射率差异产生的全反射损耗,将更多大角度的光向出光面反射出来,提升出光效率。
2.本发明通过引入第一准备层、第二准备层、第三准备层、第一过渡层、第二过渡层形成渐变式过渡区生长结构,可有效避免由于Al组分的变化造成折射率突变产生的出光损失,进一步提升出光效率。
3.本发明通过生长的表面微粗化接触层GaAsP材料代替普通P型欧姆接触层GaP材料,能有效降低在出光面处的全反射损耗,提高出光效率。
4.本发明制备方法不仅可以改善现有技术的缺点,将超晶格反射层、渐变式过渡区和微粗化接触层相结合,可显著提升出光效率,还能制成高亮度正极性黄绿光LED器件。
附图说明
图1为业界常规正极性黄绿光LED外延片结构示意图;
图2为本发明高亮度正极性黄绿光LED外延片结构示意图;
图3为正极性黄绿光LED芯片波长测试图,其中,a为业界常规正极性黄绿光LED芯片,b为本发明高亮度正极性黄绿光LED芯片;
图4为正极性黄绿光LED芯片亮度测试图,其中,a为业界常规正极性黄绿光LED芯片,b为本发明高亮度正极性黄绿光LED芯片。
示意图中标号说明:
1.GaAs衬底;2.GaAs缓冲层;3.DBR;4.N型限制层;5.N面空间层;6.多量子阱有源层;7.P面空间层;8.P型限制层;9.过渡层;901.第一过渡层;902.第二过渡层;10.窗口层;11.P型欧姆接触层;12.超晶格反射层;13.第一准备层;14.第二准备层;15.第三准备层;16.微粗化接触层。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
请参阅图1至图4,需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
本发明的一实施例中提供一种高亮度正极性黄绿光LED外延片,其结构示意图如图2所示,依照外延生长顺序,从下往上依次包括GaAs衬底1、GaAs缓冲层2、DBR 3、超晶格反射层12、N型限制层4、N面空间层5、多量子阱有源层6、P面空间层7、P型限制层8、第一准备层13、第二准备层14、第三准备层15、第一过渡层901、第二过渡层902、窗口层10、微粗化接触层16。
在有些实施例中,具体地,DBR(分布式布拉格反射层)是AlAs/Aly1Ga1-y1As交替生长的周期性结构,循环的对数为5~10对,其中每对结构中AlAs的厚度为40nm~50nm,掺杂材料为Si,掺杂浓度为2×1018cm-3~5×1018cm-3;每对结构中Aly1Ga1-y1As的厚度为35nm~45nm,y1的取值范围为0.4~0.6,掺杂材料为Si,掺杂浓度为2×1018cm-3~3×1018cm-3
具体地,超晶格反射层为Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P的周期性叠层结构,循环对数为6~8对。其中,每对超晶格反射层中Al0.5In0.5P的厚度为45nm~50nm,掺杂材料为Si,掺杂浓度为1×1018cm-3~2×1018cm-3;每对超晶格反射层中(Alx1Ga1-x1)0.5In0.5P的厚度为40nm~45nm,其中x1的取值范围为0.45~0.55,掺杂材料为Si,掺杂浓度为1×1018cm-3~2×1018cm-3
具体地,N型限制层和P型限制层均为Al0.5In0.5P材料。N型限制层的厚度为350nm~450nm,掺杂材料为Si,掺杂浓度为1×1018cm-3~2×1018cm-3;P型限制层的厚度为600nm~800nm,掺杂材料为Mg,掺杂浓度为0.5×1018cm-3~1.5×1018cm-3
具体地,N面空间层和P面空间层材料均为(Alx2Ga1-x2)0.5In0.5P,厚度均为80nm~170nm,其中x2的取值范围为0.7~0.9,均为非掺杂材料;
具体地,多量子阱有源层材料为80~100对的量子阱/垒结构,量子阱层/垒的材料均为AlGaInP;
其中,量子阱层的材料为(Alx3Ga1-x3)0.5In0.5P,厚度为2nm~4nm,x3取值范围为0.25~0.30;
量子垒层的材料为(Alx4Ga1-x4)0.5In0.5P,厚度是5nm~8nm,x4的取值范围为0.6~0.8;
具体地,准备层和过渡层形成渐变式过渡区,准备区包括第一准备区、第二准备区和第三准备区,过渡区包括第一过渡区和第二过渡区;
其中,第一准备层的材料为(Al0.8Ga0.2)0.5In0.5P,厚度为8nm~12nm;
第二准备层材料为(Al0.65Ga0.35)0.5In0.5P,厚度为10nm~15nm;
第三准备层材料为(Al0.4Ga0.6)0.5In0.5P,厚度为15nm~20nm;
第一过渡层材料为(Al0.15Ga0.85)0.5In0.5P,厚度为25nm~35nm;
第二过渡层材料为Ga0.5In0.5P,厚度为40nm~45nm;
上述渐变式过渡区各层的掺杂材料均为Mg,掺杂浓度均为1.5×1018cm-3~3×1018cm-3
具体地,窗口层材料为GaP,厚度为3500nm~5000nm,掺杂材料为Mg,掺杂浓度为2×1018cm-3~5×1018cm-3
具体地,微粗化接触层材料为GaAsP,厚度为100nm~150nm,掺杂材料为C,掺杂浓度为2×1019cm-3~5×1019cm-3
本发明的又一实施例中提供一种高亮度正极性黄绿光LED外延片的制备方法,具体包括以下步骤:
(1)将MOCVD的反应室在纯H2气氛中,抽低压至50mbar,反应室设定温度为400℃,利用机械手将GaAs衬底通过中转仓传入反应室中,然后快速升温至680℃~750℃,当温度达到680℃后,通入AsH3作为保护气体,热处理5~10min;
(2)生长GaAs缓冲层:将反应室温度设定为650℃~700℃,通入TMGa、AsH3,生长厚度为200nm~500nm的GaAs材料,采用SiH4作为N型掺杂剂,掺杂浓度为1×1018cm-3~3×1018cm-3
(3)生长DBR:将反应室温度设定为680℃~750℃,通入TMAl和AsH3生长厚度为40nm~50nm 的AlAs材料。然后继续通入TMGa,生长厚度为35nm~45nm的Aly1Ga1-y1As材料,y1的取值范围为0.4~0.6。上述AlAs/Aly1Ga1-y1As为第一周期,共需要重复生长该组合5~10对,DBR材料均采用SiH4作为N型掺杂剂,AlAs的掺杂浓度为2×1018cm-3~5×1018cm-3,Aly1Ga1-y1As的掺杂浓度为2×1018cm-3~3×1018cm-3
(4)生长超晶格反射层:将反应室温度设定为680℃~750℃,通入TMAl、TMIn、PH3,生长厚度为45nm~50nm的Al0.5In0.5P材料,然后继续通入TMGa,生长厚度为40nm~45nm的(Alx1Ga1-x1)0.5In0.5P材料,其中x1的取值范围为0.45~0.55;上述生长完成的Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P为第一对超晶格周期,然后继续周期性生长,共需重复生长该组合6~8对,超晶格反射层材料均采用SiH4作为N型掺杂剂,且掺杂浓度均为1×1018cm-3~2×1018cm-3
(5)生长N型限制层:将反应室温度设定为720℃~760℃,通入TMAl、TMIn、PH3,生长厚度为350nm~450nm的Al0.5In0.5P材料,采用SiH4作为N型掺杂剂,掺杂浓度为1×1018cm-3~2×1018cm-3
(6)生长N面空间层:将反应室温度设为680℃~720℃,通入TMAl、TMGa、TMIn、PH3,生长厚度为80nm~170nm的(Alx2Ga1-x2)0.5In0.5P材料,其中x2的取值范围为0.7~0.9,该层为非掺杂层;
(7)生长多量子阱有源层:将反应室温度设为680℃~720℃,通入TMAl、TMGa、TMIn、PH3,生长(Alx3Ga1-x3)0.5In0.5P/(Alx4Ga1-x4)0.5In0.5P对称式的多量子阱有源层;其中,(Alx3Ga1-x3)0.5In0.5P为量子阱层,厚度为2nm~4nm,x3取值范围为0.25~0.30;(Alx4Ga1-x4)0.5In0.5P为量子垒层,厚度是5nm~8nm,x4的取值范围为0.6~0.8,量子阱/垒的周期是80~100对,均为非掺杂层;
(8)生长P面空间层:将反应室温度设为720℃~760℃,通入TMAl、TMGa、TMIn、PH3,生长厚度为80nm~170nm的(Alx2Ga1-x2)0.5In0.5P材料,其中x2的取值范围为0.7~0.9,该层为非掺杂层;
(9)生长P型限制层:将反应室温度设定为720℃~760℃,通入TMAl、TMIn、PH3,生长厚度为600nm~800nm的Al0.5In0.5P材料,采用CP2Mg作为P型掺杂剂,掺杂浓度为0.5×1018cm-3~1.5×1018cm-3
(10)生长渐变式过渡区:将反应室温度设定为700℃~780℃,通入TMAl、TMGa、TMIn、PH3,依次生长厚度为8nm~12nm的第一准备层(Al0.8Ga0.2)0.5In0.5P、厚度为10nm~15nm的第二准备层(Al0.65Ga0.35)0.5In0.5P、厚度为15nm~20nm的第三准备层(Al0.4Ga0.6)0.5In0.5P、厚度25nm~35nm的第一过渡层(Al0.15Ga0.85)0.5In0.5P,厚度40nm~45nm的第二过渡层Ga0.5In0.5P,其中,渐变式过渡区均采用CP2Mg作为P型掺杂剂,掺杂浓度均为1.5×1018cm-3~3×1018cm-3
(11)生长窗口层:将反应室温度设定为750℃~850℃,通入TMGa、PH3,生长厚度为3500nm~5000nm的GaP材料,采用CP2Mg作为P型掺杂剂,掺杂浓度为2×1018cm-3~5×1018cm-3
(12)生长微粗化接触层:将反应室温度设定为620℃~670℃,通入TMGa、AsH3、PH3,生长厚度为100nm~150nm的GaAsP材料,掺杂剂为CCl4,掺杂浓度为2×1019cm-3~5×1019cm-3
(13)取片:生长结束后将MOCVD反应室温度降低至100℃~110℃,然后压力调整至990mbar~1010mbar,打开反应室,取出外延片。
试验例
将业界常规正极性黄绿光LED芯片和本发明所制备的高亮度正极性黄绿光LED芯片分别放入LED晶圆片点测机内进行波长、亮度的测试。其中,所测试芯片尺寸均为170μm×170μm,测试电流均为20mA。
测试结果如图3和图4所示。
其中,图3为正极性黄绿光LED芯片波长测试图,a为业界常规正极性黄绿光LED芯片,b为本发明高亮度正极性黄绿光LED芯片。从图3的测试结果可以看出,业界常规正极性黄绿光LED和本发明所制备的高亮度正极性黄绿光LED的波长均值分布都在572nm~573nm之间,属于波长较短的黄绿光波段。
图4为正极性黄绿光LED芯片亮度测试图,其中,a为业界常规正极性黄绿光LED芯片,b为本发明高亮度正极性黄绿光LED芯片。从图4的测试结果可以看出,业界常规正极性黄绿光LED的亮度主要分布100mcd~110mcd,本发明所制备的高亮度正极性黄绿光LED的亮度主要分布120mcd~135mcd。可见,在相同测试条件下,本发明的高亮度正极性黄绿光LED相比业界常规正极性黄绿光LED的亮度有明显提升,亮度提升达到20%左右。
综上所述,本发明制备方法得到的高亮度正极性黄绿光LED外延片通过在传统DBR结构末尾引入Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P 超晶格反射层、在P型限制层后引入渐变式过渡区、将P型欧姆接触层改为微粗化接触层,三种结构相结合能有效降低外延材料的全反射损耗,显著提升出光效率,可用于制备高亮度黄绿光LED器件。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种高亮度正极性黄绿光LED外延片,其特征在于,所述LED外延片从GaAs衬底开始生长外延层,由下往上依次生长GaAs缓冲层、DBR、N型限制层、N面空间层、多量子阱有源层、P面空间层、P型限制层、过渡层、窗口层、微粗化接触层;
在所述DBR和所述N型限制层之间插入超晶格反射层;
所述过渡层包括第一过渡层和第二过渡层;
在所述P型限制层和所述第一过渡层之间依次插入第一准备层、第二准备层和第三准备层。
2.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述超晶格反射层的材料为Al0.5In0.5P/(Alx1Ga1-x1)0.5In0.5P周期性结构,循环对数为6~8对;在每个周期超晶格反射层中,Al0.5In0.5P的厚度为45nm~50nm,(Alx1Ga1-x1)0.5In0.5P的厚度为40nm~45nm,其中x1的取值范围为0.45~0.55。
3.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述DBR的材料为AlAs/Aly1Ga1-y1As交替生长的周期性结构,循环对数为5~10对;每对周期性结构中,AlAs的厚度为40nm~50nm,掺杂材料为Si,掺杂浓度为2×1018cm-3~5×1018cm-3,Aly1Ga1- y1As的厚度为35nm~45nm,y1的取值范围为0.4~0.6,掺杂材料为Si,掺杂浓度为2×1018cm-3~3×1018cm-3
4.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述第一准备层的材料为(Al0.8Ga0.2)0.5In0.5P,厚度为8nm~12nm;所述第二准备层的材料为(Al0.65Ga0.35)0.5In0.5P,厚度为10nm~15nm;所述第三准备层的材料为(Al0.4Ga0.6)0.5In0.5P,厚度为15nm~20nm;所述第一过渡层的材料为(Al0.15Ga0.85)0.5In0.5P,厚度为25nm~35nm;所述第二过渡层的材料为Ga0.5In0.5P,厚度为40nm~45nm;所述第一准备层、第二准备层、第三准备层、第一过渡层、第二过渡层组成渐变式过渡区。
5.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述微粗化接触层的材料为GaAsP,厚度为100nm~150nm。
6.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述N型限制层和P型限制层的材料均为Al0.5In0.5P;其中所述N型限制层的厚度为350nm~450nm,掺杂材料为Si,掺杂浓度为1×1018cm-3~2×1018cm-3;所述P型限制层的厚度为600nm~800nm,掺杂材料为Mg,掺杂浓度为0.5×1018cm-3~1.5×1018cm-3
7.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述N面空间层和P面空间层的材料均为(Alx2Ga1-x2)0.5In0.5P,厚度均为80nm~170nm,其中x2的取值范围为0.7~0.9,均为非掺杂材料。
8.根据权利要求1所述的一种高亮度正极性黄绿光LED外延片,其特征在于,所述多量子阱有源层的材料为80~100对的量子阱/垒结构,量子阱/垒的材料均为AlGaInP;其中,量子阱层的材料为(Alx3Ga1-x3)0.5In0.5P,厚度为2nm~4nm,x3取值范围为0.25~0.30;量子垒层的材料为(Alx4Ga1-x4)0.5In0.5P,厚度是5nm~8nm,x4的取值范围为0.6~0.8,均为非掺杂材料。
9.根据权利要求1-8任一项所述的一种高亮度正极性黄绿光LED外延片的制备方法,其特征在于,利用MOCVD技术及其设备,在GaAs衬底上,依次生长GaAs缓冲层、DBR、超晶格反射层、N型限制层、N面空间层、多量子阱有源层、P面空间层、P型限制层、第一准备层、第二准备层、第三准备层、第一过渡层、第二过渡层、窗口层、微粗化接触层;
所述超晶格反射层生长步骤为:设定反应室温度为680℃~750℃,在所述DBR上,通入TMAl、TMIn、PH3,生长厚度为45nm~50nm的Al0.5In0.5P材料,生长速率为0.4nm/s~0.5nm/s,并采用SiH4作为N型掺杂剂,掺杂浓度为1×1018cm-3~2×1018cm-3;然后通入TMGa,生长厚度为40nm~45nm的(Alx1Ga1-x1)0.5In0.5P材料,生长速率为0.4nm/s~0.5nm/s,通过调整TMAl和TMGa通入反应室的流量,使得x1的取值范围为0.45~0.55,掺杂剂为SiH4,掺杂浓度为1×1018cm-3~2×1018cm-3,完成Al0.5In0.5P /(Alx1Ga1-x1)0.5In0.5P生长组合后形成第一对超晶格反射层,然后接着重复循环生长5~7对。
10.根据权利要求9所述的制备方法,其特征在于,所述第一准备层的生长通过设定反应室温度为700℃~780℃,在所述P型限制层上,通入TMAl、TMGa、TMIn、PH3,生长厚度为8nm~12nm的(Al0.8Ga0.2)0.5In0.5P材料;然后调整TMAl、TMGa的流量,继续依次生长第二准备层(Al0.65Ga0.35)0.5In0.5P、第三准备层(Al0.4Ga0.6)0.5In0.5P、第一过渡层(Al0.15Ga0.85)0.5In0.5P和第二过渡层Ga0.5In0.5P,形成渐变式过渡区,各层P型掺杂剂均为CP2Mg,掺杂浓度均为1.5×1018cm-3~3×1018cm-3
所述微粗化接触层的生长步骤为:设定反应室温度为620℃~670℃,在所述窗口层上,通入TMGa、PH3、AsH3,生长厚度为100nm~150nm的GaAsP材料,掺杂剂为CCl4,掺杂浓度为2×1019cm-3~5×1019cm-3
CN202210545996.9A 2022-05-20 2022-05-20 一种高亮度正极性黄绿光led外延片及其制备方法 Pending CN114649453A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210545996.9A CN114649453A (zh) 2022-05-20 2022-05-20 一种高亮度正极性黄绿光led外延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210545996.9A CN114649453A (zh) 2022-05-20 2022-05-20 一种高亮度正极性黄绿光led外延片及其制备方法

Publications (1)

Publication Number Publication Date
CN114649453A true CN114649453A (zh) 2022-06-21

Family

ID=81997038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210545996.9A Pending CN114649453A (zh) 2022-05-20 2022-05-20 一种高亮度正极性黄绿光led外延片及其制备方法

Country Status (1)

Country Link
CN (1) CN114649453A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602769A (zh) * 2022-12-16 2023-01-13 南昌凯捷半导体科技有限公司(Cn) 具有滤光结构的反极性红外led外延片及其制备方法
CN116435418A (zh) * 2023-06-13 2023-07-14 南昌凯捷半导体科技有限公司 一种590nm反极性LED外延片及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050590A1 (en) * 2000-09-04 2002-05-02 Tetsurou Murakami Light emitting diode
TWM265766U (en) * 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
CN2738399Y (zh) * 2004-09-27 2005-11-02 炬鑫科技股份有限公司 具有高光萃取效率的氮化镓系发光二极管的结构
TWI244770B (en) * 2002-01-16 2005-12-01 Epitech Corp Ltd Light emitting diode
CN101483211A (zh) * 2008-01-11 2009-07-15 晶元光电股份有限公司 发光元件
CN105742433A (zh) * 2016-04-29 2016-07-06 厦门市三安光电科技有限公司 一种AlGaInP发光二极管
CN108767075A (zh) * 2018-06-26 2018-11-06 山东浪潮华光光电子股份有限公司 一种带优化反射层的黄绿光led外延结构及其制备方法
CN208986010U (zh) * 2018-10-23 2019-06-14 南昌大学 一种用于N面出光AlGaInP LED薄膜芯片的外延材料
CN113193088A (zh) * 2021-03-09 2021-07-30 华灿光电(苏州)有限公司 红外发光二极管外延片及其制备方法
CN113380931A (zh) * 2021-04-22 2021-09-10 华灿光电(苏州)有限公司 提高发光效率的红光发光二极管芯片及其制备方法
CN114447164A (zh) * 2022-04-08 2022-05-06 南昌凯迅光电股份有限公司 一种具有渐变结构的正极性led及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050590A1 (en) * 2000-09-04 2002-05-02 Tetsurou Murakami Light emitting diode
TWI244770B (en) * 2002-01-16 2005-12-01 Epitech Corp Ltd Light emitting diode
TWM265766U (en) * 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
US20060054907A1 (en) * 2004-09-16 2006-03-16 Mu-Jen Lai Light-emitting device of gallium nitride-based III-V group compound semiconductor
CN2738399Y (zh) * 2004-09-27 2005-11-02 炬鑫科技股份有限公司 具有高光萃取效率的氮化镓系发光二极管的结构
CN101483211A (zh) * 2008-01-11 2009-07-15 晶元光电股份有限公司 发光元件
CN105742433A (zh) * 2016-04-29 2016-07-06 厦门市三安光电科技有限公司 一种AlGaInP发光二极管
CN108767075A (zh) * 2018-06-26 2018-11-06 山东浪潮华光光电子股份有限公司 一种带优化反射层的黄绿光led外延结构及其制备方法
CN208986010U (zh) * 2018-10-23 2019-06-14 南昌大学 一种用于N面出光AlGaInP LED薄膜芯片的外延材料
CN113193088A (zh) * 2021-03-09 2021-07-30 华灿光电(苏州)有限公司 红外发光二极管外延片及其制备方法
CN113380931A (zh) * 2021-04-22 2021-09-10 华灿光电(苏州)有限公司 提高发光效率的红光发光二极管芯片及其制备方法
CN114447164A (zh) * 2022-04-08 2022-05-06 南昌凯迅光电股份有限公司 一种具有渐变结构的正极性led及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602769A (zh) * 2022-12-16 2023-01-13 南昌凯捷半导体科技有限公司(Cn) 具有滤光结构的反极性红外led外延片及其制备方法
CN115602769B (zh) * 2022-12-16 2023-03-24 南昌凯捷半导体科技有限公司 具有滤光结构的反极性红外led外延片及其制备方法
CN116435418A (zh) * 2023-06-13 2023-07-14 南昌凯捷半导体科技有限公司 一种590nm反极性LED外延片及其制备方法
CN116435418B (zh) * 2023-06-13 2023-08-25 南昌凯捷半导体科技有限公司 一种590nm反极性LED外延片及其制备方法

Similar Documents

Publication Publication Date Title
CN110462851B (zh) Iii族氮化物半导体发光元件及其制造方法
CN114649453A (zh) 一种高亮度正极性黄绿光led外延片及其制备方法
JP4320653B2 (ja) 半導体発光素子
JP4367393B2 (ja) 透明導電膜を備えた半導体発光素子
US7368759B2 (en) Semiconductor light-emitting device
CN103500781B (zh) 一种高效率的AlGaInP发光二极管外延片及其制备方法
JP2007042751A (ja) 半導体発光素子
CN114447164B (zh) 一种具有渐变结构的正极性led及其制备方法
CN116093223B (zh) 发光二极管外延片及其制备方法、发光二极管
CN114335276B (zh) 一种940nm反极性红外LED外延片及其制备方法
JP4310708B2 (ja) 半導体発光素子
US20060220032A1 (en) Semiconductor light emitting device
CN109360880B (zh) 一种用于N面出光AlGaInP LED薄膜芯片的外延材料及其制备方法
JP4320654B2 (ja) 半導体発光素子
JP2006040998A (ja) 半導体発光素子、半導体発光素子用エピタキシャルウェハ
TWI437729B (zh) 發光二極體
JP2007096162A (ja) 半導体発光素子
JP2007096157A (ja) 半導体発光素子
CN115602769B (zh) 具有滤光结构的反极性红外led外延片及其制备方法
JP3763303B2 (ja) 半導体発光素子
CN108598235B (zh) GaN基LED结构及其制备方法
JP2011222950A (ja) 発光ダイオード
CN116525733B (zh) 一种反极性发光二极管外延片、制备方法及led
JP4023477B2 (ja) 半導体発光素子の製造方法
JP2004140300A (ja) 半導体発光素子用エピタキシャルウェハ及び半導体発光素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220621