CN114641103A - 一种制备网格状复合透明发热体的方法 - Google Patents

一种制备网格状复合透明发热体的方法 Download PDF

Info

Publication number
CN114641103A
CN114641103A CN202011469719.1A CN202011469719A CN114641103A CN 114641103 A CN114641103 A CN 114641103A CN 202011469719 A CN202011469719 A CN 202011469719A CN 114641103 A CN114641103 A CN 114641103A
Authority
CN
China
Prior art keywords
metal
nickel
film
preparing
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011469719.1A
Other languages
English (en)
Other versions
CN114641103B (zh
Inventor
谭化兵
潘卓成
潘智军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Aerospace and PMA Health Technology Co Ltd
Original Assignee
Anhui Aerospace and PMA Health Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Aerospace and PMA Health Technology Co Ltd filed Critical Anhui Aerospace and PMA Health Technology Co Ltd
Priority to CN202011469719.1A priority Critical patent/CN114641103B/zh
Publication of CN114641103A publication Critical patent/CN114641103A/zh
Application granted granted Critical
Publication of CN114641103B publication Critical patent/CN114641103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Surface Heating Bodies (AREA)

Abstract

本发明提供一种制备网格状复合透明发热体的方法,包括:1)采用金属沉积‑刻蚀法在耐高温透明基底上制备网格状镍基金属透明导电材料;2)在步骤1)获得的镍基金属透明导电材料基础上,通过涂布引入碳纳米管薄膜,碳纳米管薄膜填充金属网格开口区,形成金属‑纳米碳导电膜;3)在步骤2)完成的基础上,通过低压高温固态碳源化学气相沉积法,在镍基金属透明导电材料之上制备石墨烯薄膜,得到金属‑石墨烯/碳纳米管复合透明导电薄膜;4)在步骤3)获得的金属‑石墨烯/碳纳米管复合透明导电薄膜基础上,采用封装工艺,得到网格状复合透明发热体。

Description

一种制备网格状复合透明发热体的方法
技术领域
本发明涉及一种透明耐高温电热器件的制备方法,属于透明导电薄膜技术领域。
背景技术
近年来,随着我国北方开始实行“煤改电”政策,各类电代煤取暖设备开始走入寻常百姓家,为我国北方清洁能源应用和大气污染治理起到了重要的推动作用,其中各类电热墙暖画和电热地暖更是在安装施工、使用便利性和舒适性上具有较为明显的优势。此外,随着南方供暖的逐渐展开,南方家庭冬季取暖采用电采暖产品也越来越成为流行趋势,各类电采暖产品的市场潜力巨大。
石墨烯是新世纪发展起来的战略性新兴材料,其具备诸多独特的性能,如极强的导电、导热能力。在远红外电热应用领域,石墨烯电热膜能够辐射人体所需的远红外线,具有医疗级应用的潜力,因此其发热应用需求旺盛。近年来,石墨烯电发热膜器件研发与制造产业发展较快,已经逐步在取代传统电热膜发热材料,成为远红外电热膜发展的产业趋势。
背景技术部分的内容仅仅是发明人所知晓的技术,并不当然代表本领域的现有技术。
发明内容
本发明目的是针对现有技术存在问题中的一个或多个,提供了一种制备网格状复合透明发热体的方法,包括:
1)采用金属沉积-刻蚀法在耐高温透明基底上制备网格状镍基金属透明导电材料;
2)在步骤1)获得的镍基金属透明导电材料基础上,通过涂布引入碳纳米管薄膜,碳纳米管薄膜填充金属网格开口区,形成金属-纳米碳导电膜;
3)在步骤2)完成的基础上,通过低压高温固态碳源化学气相沉积法,在镍基金属透明导电材料之上制备石墨烯薄膜,得到金属-石墨烯/碳纳米管复合透明导电薄膜;
4)在步骤3)获得的金属-石墨烯/碳纳米管复合透明导电薄膜基础上,采用封装工艺,得到网格状复合透明发热体。
根据本发明的一个方面,所述步骤1)中,所述金属沉积-刻蚀法在耐高温透明基底上制备镍合金金属基透明导电材料的具体方法为:
1-1)采用物理气相沉积(PVD)、化学气相沉积(CVD)或电化学沉积的方法在耐高温透明基底上沉积一层或多层金属材料,且确保顶层金属为纯镍或含镍合金;
1-2)采用黄光工艺(涂光刻胶-曝光-显影-刻蚀-清洗工艺)对1)获得的金属薄膜进行图案化处理。
图案化处理过程中,在透明导电薄膜两侧预留电热器件用载流电极。
根据本发明的一个方面,所述镍合金的其它成分可为铬(Cr)、铁(Fe)、铜(Cu)、铝(Al)、钼(Mo)、钨(W)、硅(Si)中的一种或几种组合。
根据本发明的一个方面,图案化处理获得特征线宽低于10微米的网格状金属透明膜。
根据本发明的一个方面,所述步骤2)中,采用在镍基金属透明导电材料上涂布碳纳米管溶液来实现,具体方法为:
2-1)配置碳纳米管溶液,碳纳米管的质量浓度为0.1-5wt%;
2-2)采用喷涂、旋涂、刮涂或狭缝式涂布的方法,在镍基金属导电薄膜上涂布碳纳米管溶液;
2-3)涂布后进行烘烤干燥,形成一层连续干燥的碳纳米管薄膜,即可。
根据本发明的一个方面,所述步骤2-1)中,所述碳纳米管溶液的溶剂为水。
根据本发明的一个方面,所述步骤2-1)中,碳纳米管的质量浓度为0.1-0.5wt%,优选0.2wt%。本发明采用低浓度的碳纳米管,可以形成良好的分散,同时保持一定质量浓度,如0.1-5wt%,可以确保涂布的厚度,即在非规则形金属表面形成良好的连续薄膜,同时确保具备较好的透过率。碳纳米管的质量浓度为0.2wt%时,涂布更加方便,成膜后成品率最高。
根据本发明的一个方面,所述步骤2-2)中,涂布厚度为1-5微米。碳纳米管水溶液涂布后湿膜的厚度为1-5微米,烘干后形成的薄膜厚度为100-500纳米。
根据本发明的一个方面,所述步骤2-2)中,烘烤条件为:100-150℃,时间为10-60min;优选地,烘烤条件为:150℃,时间为30min。
根据本发明的一个方面,所述步骤3)的具体方法为:
3-1)首先在耐高温透明基底上的金属-纳米碳导电膜表面涂布固态碳源,随后加热固化为薄膜;
3-2)将涂布了固态碳源的透明导电膜放入真空腔室,并在600-1000℃进行反应,可在镍或镍合金表面生成石墨烯薄膜,并使得石墨烯与碳纳米管紧密连接。
根据本发明的一个方面,所述耐高温透明基底采用耐温大于350℃的耐温玻璃,如石英耐高温透明基底可为耐350℃及以上温度的玻璃,如石英、微晶玻璃等;、微晶玻璃等;和/或,
所述固态碳源气体采用苯、PMMA等有机溶液。
根据本发明的一个方面,所述步骤4)中,所述封装工艺为:
取与耐高温透明衬底相同的封装材料,并在封装材料上预先开孔,使封装后暴露出器件的接线端子;
在完成沉积石墨烯的镍基透明导电薄膜基础上,用粘合剂粘合封装材料,形成三明治结构,即玻璃-复合透明导电薄膜-玻璃的结构。
根据本发明的一个方面,所述粘合剂为硅酮密封胶、无机硅酸钠耐高温密封胶或无机烧结型玻璃粉浆料;
优选地,封装材料采用厚度为0.05-20mm的玻璃,所述玻璃基底光学透过率为>40%。这样保证本方法所得器件产品总体光学透过率>30%。选择高光学透过率玻璃,电热器件的光学透过率可以达到90%以上。
优选地,所述封装工艺全程在真空条件下进行。这样可以更好的保证完整排除气体。
本发明提出基于碳纳米管和石墨烯材料与耐高温金属复合材料来制备透明发热体,一方面能够解决发热体耐高温使用问题,同时可以保持较佳的远红外特性。本发明首先制备了基于镍(Ni)合金的透明导电薄膜,为了增强远红外辐射特性,在镍合金导电膜表面,先通过涂布引入碳纳米管薄膜,填充金属网格开口区,随后再通过化学气相沉积法(CVD)制备了石墨烯材料,从而获得了金属-石墨烯/碳管复合透明导电薄膜,并在此基础上,制备了完备的耐高温透明发热体。
本发明提供的方法实现了金属-石墨烯-碳纳米管复合透明导电薄膜作为发热材料,一方面保证了导电材料的导电特性,可满足不同电热器件驱动电压需求;另一方面,碳基材料的引入,保证了高效远红外线辐射,这有利于烹饪、烘烤类厨房电器设计。同时,本方法可以根据需求,实现不同透过率的电热器件设计,解决了传统高温电热器件只能采用非透明材料的问题,极大地拓展了电热器件的应用方向。
本发明提供的方法所得产品,发热温度可达250-600℃。具体性能如下:
1、电热器件的光学透明性:由于整体导电膜为基于传统镍基或镍合金电热发热体的微米金属网格结构,因此具有较高的透过率,最高光学透过率可超过90%,达到了显示面板级光学透过率;
2、导电性能、远红外性能更优:由于采用金属网格结构,根据网格开口率(透光比例)和金属材料成分,可大幅度调控金属网格的导电性,从而可以适应不同应用场合的需求(不同电压驱动);此外,引入碳纳米管和石墨烯薄膜,可以有效将电能转换为远红外辐射,极大地改善了传统金属基电热器件远红外效果差,难以适应于烘培类家用电器的问题。表1列出了本发明实施例1-3和对比例1在电-热辐射转换效率上对比。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语"第一"、"第二"仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有"第一"、"第二"的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
实施例1:
一种制备网格状复合透明发热体的方法,具体为:
1)选用5mm厚微晶玻璃,在表面通过真空磁控溅射法,沉积一层厚10纳米的Cr(铬)缓冲层,以及一层Ni-Cr(镍铬)合金薄膜,合金薄膜厚度为800纳米,镍铬合金质量比为:80%(镍):20%(铬);
2)通过标准黄光工艺,对1)获得的镍铬合金薄膜进行图案化,获得特征线宽为8微米,且在两侧形成载流电极,透过率大于80%的镍铬合金金属网格;
3)采用质量浓度为0.1wt%的碳纳米管油墨,通过喷涂的方法,在2)形成的镍铬合金金属网格上,形成一层碳纳米管薄膜溶液,经150℃,60min烘烤,除去溶剂,获得一层碳纳米管薄膜;
4)将3)形成的镍铬合金-碳纳米管复合导电薄膜表面涂布固态碳源,具体为,在导电膜表面涂布PMMA有机溶液,随后加热固化为薄膜,薄膜厚度为10微米。再将涂布了PMMA固态碳源的透明导电膜放入真空腔室(背景真空达1.5Pa),通入20sccm氢气,并在600℃进行反应10min,可在镍铜合金表面生成石墨烯薄膜,并使得石墨烯与碳纳米管紧密连接;
5)在4)形成的微晶玻璃-NiCr合金-碳纳米管-CVD石墨烯复合结构基础上,在导电薄膜一侧涂布美国斯顿(850°F)透明密封胶;
6)在真空条件下(真空度为1000Pa),采用预留接线端子孔的微晶玻璃(厚3mm),将其与5)形成的结构:微晶玻璃-NiCr合金-碳纳米管-CVD石墨烯-密封胶复合结构进行贴合;
7)待密封胶自然晾干,即可获得耐高温透明电热器件(耐温达500℃),透过率超过70%。
实施例2:
一种制备网格状复合透明发热体的方法,具体为:
1)选用5mm厚高透过率石英,在表面通过真空磁控溅射法,沉积一层厚10纳米的Cr(铬)缓冲层,以及一层Ni-Cr(镍铬)合金薄膜,合金薄膜厚度为1微米,镍铬合金质量比为:90%(镍):10%(铬);
2)通过标准黄光工艺,对1)获得的镍铬合金薄膜进行图案化,获得特征线宽为4微米,且在两侧形成载流电极,透过率大于88%的镍铬合金金属网格;
3)采用质量浓度为0.2wt%的碳纳米管油墨,通过喷涂的方法,在2)形成的镍铬合金金属网格上,形成一层碳纳米管薄膜溶液,经150℃,30min烘烤,除去溶剂,获得一层碳纳米管薄膜;
4)将3)形成的镍铬合金-碳纳米管复合导电薄膜表面涂布固态碳源,具体为,在导电膜表面涂布PMMA有机溶液,随后加热固化为薄膜,薄膜厚度为10微米。再将涂布了PMMA固态碳源的透明导电膜放入真空腔室(背景真空达1.5Pa),通入20sccm氢气,并在700℃进行反应10min,可在镍铜合金表面生成石墨烯薄膜,并使得石墨烯与碳纳米管紧密连接;
5)在4)形成的石英玻璃-NiCr合金-碳纳米管-CVD石墨烯复合结构基础上,在导电薄膜一侧涂布美国斯顿(850°F)透明密封胶;
6)在真空条件下(真空度为1000Pa),采用预留接线端子孔的石英玻璃(厚3mm),将其与5)形成的结构:石英玻璃-NiCr合金-碳纳米管-CVD石墨烯-密封胶复合结构进行贴合;
7)待密封胶自然晾干,即可获得耐高温透明电热器件(耐温达500℃),透过率超过85%。
实施例3:
一种制备网格状复合透明发热体的方法,具体为:
1)选用5mm厚高透过率石英,通过真空蒸镀法,在石英表面沉积一层Cr(铬)薄膜,厚度为10nm,作为缓冲层。随后,在Cr缓冲层表面沉积一层Ni-Cr(镍铬)合金薄膜,合金薄膜厚度为800nm,镍铬合金质量比为:70%(镍):30%(铬);
2)通过标准黄光工艺,对1)获得的镍铬合金薄膜进行图案化,获得特征线宽为3微米,且在两侧形成载流电极,透过率大于90%的镍铬合金金属网格;
3)采用质量浓度为0.1wt%的碳纳米管油墨,通过喷涂的方法,在2)形成的镍铬合金金属网格上,形成一层碳纳米管薄膜溶液,经150℃,30min烘烤,除去溶剂,获得一层碳纳米管薄膜;
4)将3)形成的镍铬合金-碳纳米管复合导电薄膜表面涂布固态碳源,具体为,在导电膜表面涂布PMMA有机溶液,随后加热固化为薄膜,薄膜厚度为10微米。再将涂布了PMMA固态碳源的透明导电膜放入真空腔室(背景真空达1.5Pa),通入20sccm氢气,并在600℃进行反应10min,可在镍铜合金表面生成石墨烯薄膜,并使得石墨烯与碳纳米管紧密连接;
5)在4)形成的石英玻璃-NiCr合金-碳纳米管-CVD石墨烯复合结构基础上,在导电薄膜一侧涂布美国斯顿(850°F)透明密封胶;
6)在真空条件下(真空度为1000Pa),采用预留接线端子孔的石英玻璃(厚3mm),将其与5)形成的结构:石英玻璃-NiCr合金-碳纳米管-CVD石墨烯-密封胶复合结构进行贴合;
7)待密封胶自然晾干,即可获得耐高温透明电热器件(耐温达500℃),透过率超过88%。
对比例1:
一种复合透明导电材料及高温电热器件的制备方法,具体为:
1)选用5mm厚高透明石英,通过标准黄光工艺,在玻璃表面获得图案化的网格状光刻胶图案(牺牲层);
2)在光刻胶图案表面通过真空磁控溅射法,分别沉积Cr(铬)薄膜,厚度为10nm,作为缓冲层,以及一层Ni-Cu(镍铜)合金薄膜,合金薄膜厚度为800纳米,镍铜合金质量比为:80%(镍):20%(铜);
3)分别采用丙酮、乙醇和去离子水溶液反复清洗掉2)中多余的牺牲层光刻胶及其上的金属薄膜,即获得图案化的镍铜合金金属网格,特征线宽为5微米,且在两侧形成载流电极,透过率大于90%;
4)在3)形成的石英玻璃-镍铜合金复合结构基础上,在导电薄膜一侧涂布美国斯顿(850°F)透明密封胶;
5)在真空条件下(真空度为1000Pa),采用预留接线端子孔的石英玻璃(厚3mm),将其与4)形成的结构:石英玻璃-镍铜合金-密封胶复合结构进行贴合;
6)待密封胶自然晾干,即可获得耐高温透明电热器件(耐温达400℃),透过率超过89%。
表1:实施例1-3与对比例1的性能对比结果
序号 样品 电-热辐射转换效率
1 实施例1 75%
2 实施例2 77%
3 实施例3 73%
4 对比例1 57%
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种制备网格状复合透明发热体的方法,其特征在于,包括:
1)采用金属沉积-刻蚀法在耐高温透明基底上制备网格状镍基金属透明导电材料;
2)在步骤1)获得的镍基金属透明导电材料基础上,通过涂布引入碳纳米管薄膜,碳纳米管薄膜填充金属网格开口区,形成金属-纳米碳导电膜;
3)在步骤2)完成的基础上,通过低压高温固态碳源化学气相沉积法,在镍基金属透明导电材料之上制备石墨烯薄膜,得到金属-石墨烯/碳纳米管复合透明导电薄膜;
4)在步骤3)获得的金属-石墨烯/碳纳米管复合透明导电薄膜基础上,采用封装工艺,得到网格状复合透明发热体。
2.根据权利要求1所述的制备网格状复合透明发热体的方法,其特征在于,所述步骤1)中,所述金属沉积-刻蚀法在耐高温透明基底上制备镍合金金属基透明导电材料的具体方法为:
1-1)采用物理气相沉积(PVD)、化学气相沉积(CVD)或电化学沉积的方法在耐高温透明基底上沉积一层或多层金属材料,且确保顶层金属为纯镍或含镍合金;
1-2)采用黄光工艺对1)获得的金属薄膜进行图案化处理。
3.根据权利要求2所述的制备网格状复合透明发热体的方法,其特征在于,所述镍合金的其它成分可为铬(Cr)、铁(Fe)、铜(Cu)、铝(Al)、钼(Mo)、钨(W)、硅(Si)中的一种或几种组合。
4.根据权利要求2所述的制备网格状复合透明发热体的方法,其特征在于,图案化处理获得特征线宽低于10微米的网格状金属透明膜。
5.根据权利要求1所述的制备网格状复合透明发热体的方法,其特征在于,所述步骤2)中,采用在镍基金属透明导电材料上涂布碳纳米管溶液来实现,具体方法为:
2-1)配置碳纳米管溶液,碳纳米管的质量浓度为0.1-5wt%;
2-2)采用喷涂、旋涂、刮涂或狭缝式涂布的方法,在镍基金属导电薄膜上涂布碳纳米管溶液;
2-3)涂布后进行烘烤干燥,形成一层连续干燥的碳纳米管薄膜,即可。
6.根据权利要求5所述的制备网格状复合透明发热体的方法,其特征在于,
所述步骤2-1)中,所述碳纳米管溶液的溶剂为水;
所述步骤2-1)中,碳纳米管的质量浓度为0.1-0.5wt%,优选0.2wt%;和/或,
所述步骤2-2)中,涂布厚度为1-5微米;和/或,
所述步骤2-2)中,烘烤条件为:100-150℃,时间为10-60min;优选地,烘烤条件为:150℃,时间为30min。
7.根据权利要求1所述的制备网格状复合透明发热体的方法,其特征在于,所述步骤3)的具体方法为:
3-1)首先在耐高温透明基底上的金属-纳米碳导电膜表面涂布固态碳源,随后加热固化为薄膜;
3-2)将涂布了固态碳源的透明导电膜放入真空腔室,并在600-1000℃进行反应,可在镍或镍合金表面生成石墨烯薄膜,并使得石墨烯与碳纳米管紧密连接。
8.根据权利要求7的所述的制备网格状复合透明发热体的方法,其特征在于,所述耐高温透明基底采用耐温大于350℃的耐温玻璃;和/或,
所述固态碳源气体采用苯、PMMA等有机溶液。
9.根据权利要求1所述的制备网格状复合透明发热体的方法,其特征在于,所述步骤4)中,所述封装工艺为:
取与耐高温透明衬底相同的封装材料,并在封装材料上预先开孔,使封装后暴露出器件的接线端子;
在完成沉积石墨烯的镍基透明导电薄膜基础上,用粘合剂粘合封装材料,形成三明治结构,即玻璃-复合透明导电薄膜-玻璃的结构。
10.根据权利要求9所述的制备网格状复合透明发热体的方法,其特征在于,所述粘合剂为硅酮密封胶、无机硅酸钠耐高温密封胶或无机烧结型玻璃粉浆料;
优选地,封装材料采用厚度为0.05-20mm的玻璃,所述玻璃基底光学透过率为>40%;
优选地,所述封装工艺全程在真空条件下进行。
CN202011469719.1A 2020-12-15 2020-12-15 一种制备网格状复合透明发热体的方法 Active CN114641103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011469719.1A CN114641103B (zh) 2020-12-15 2020-12-15 一种制备网格状复合透明发热体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011469719.1A CN114641103B (zh) 2020-12-15 2020-12-15 一种制备网格状复合透明发热体的方法

Publications (2)

Publication Number Publication Date
CN114641103A true CN114641103A (zh) 2022-06-17
CN114641103B CN114641103B (zh) 2022-12-13

Family

ID=81945176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011469719.1A Active CN114641103B (zh) 2020-12-15 2020-12-15 一种制备网格状复合透明发热体的方法

Country Status (1)

Country Link
CN (1) CN114641103B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231029A (ja) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc 透明導電性フィルムの製造方法及び透明導電性フィルム
CN104869676A (zh) * 2015-04-24 2015-08-26 冯冠平 一种低电压透明电热膜及其制备工艺
CN106448923A (zh) * 2016-10-20 2017-02-22 华南师范大学 采用原位生长石墨烯包覆金属膜的复合透明电极制备方法
CN106611627A (zh) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
CN107360639A (zh) * 2017-08-10 2017-11-17 江苏同创节能科技有限公司 一种耐高温石墨烯远红外电热膜及其制备工艺
CN110933786A (zh) * 2019-12-20 2020-03-27 烯旺新材料科技股份有限公司 透明石墨烯电热板
CN111073395A (zh) * 2019-12-27 2020-04-28 新奥石墨烯技术有限公司 一种透明电热油墨及其制备方法、电热膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231029A (ja) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc 透明導電性フィルムの製造方法及び透明導電性フィルム
CN104869676A (zh) * 2015-04-24 2015-08-26 冯冠平 一种低电压透明电热膜及其制备工艺
CN106611627A (zh) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
CN106448923A (zh) * 2016-10-20 2017-02-22 华南师范大学 采用原位生长石墨烯包覆金属膜的复合透明电极制备方法
CN107360639A (zh) * 2017-08-10 2017-11-17 江苏同创节能科技有限公司 一种耐高温石墨烯远红外电热膜及其制备工艺
CN110933786A (zh) * 2019-12-20 2020-03-27 烯旺新材料科技股份有限公司 透明石墨烯电热板
CN111073395A (zh) * 2019-12-27 2020-04-28 新奥石墨烯技术有限公司 一种透明电热油墨及其制备方法、电热膜

Also Published As

Publication number Publication date
CN114641103B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances in micro-supercapacitors
Yan et al. Noble metal-based materials in high-performance supercapacitors
Kulkarni et al. Towards low cost materials and methods for transparent electrodes
Cao et al. Three-dimensional graphene materials: preparation, structures and application in supercapacitors
Celle et al. Highly flexible transparent film heaters based on random networks of silver nanowires
Kim et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells
JP3943272B2 (ja) カーボンナノチューブのフイルム化方法
CN103413594B (zh) 拓扑绝缘体柔性透明导电材料及其制备方法与应用
CN102417176A (zh) 基于三维网络形貌的石墨烯-碳纳米管复合薄膜的制备方法
CN107910383B (zh) 一种金属网状导电膜的制备方法
CN105491695A (zh) 一种二维纳米碳发热体、柔性电加热模组及其制备方法
Aitola et al. Comparison of dye solar cell counter electrodes based on different carbon nanostructures
Kirubasankar et al. Recent Progress in Graphene‐Based Microsupercapacitors
Kim et al. Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film
Shiraz et al. Carbonaceous materials as substitutes for conventional dye-sensitized solar cell counter electrodes
KR20130120627A (ko) 그래핀을 이용한 발열유리 및 그 제조방법
Ding et al. An overview of the preparation and application of counter electrodes for DSSCs
Kim et al. Transparent supercapacitors: from optical theories to optoelectronics applications
CN114641103B (zh) 一种制备网格状复合透明发热体的方法
Wang et al. Large-scale ultra-adhesive and mechanically flexible silver grids transparent electrodes by solution process
CN114639508B (zh) 基于透明导电膜制备耐高温电热器件的方法
CN114641102A (zh) 一种石墨烯复合发热体的制备方法
CN114635106B (zh) 采用金属-纳米碳导电膜制备透明电热器件的方法
CN114641100B (zh) 基于自组装模板-金属沉积法及气态碳源沉积法制备透明耐高温电热器件的方法
CN114641101B (zh) 一种电热器件的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant