CN1146408C - 聚(丙二酸亚甲基酯)微球体、其制备方法及其药物组合物 - Google Patents

聚(丙二酸亚甲基酯)微球体、其制备方法及其药物组合物 Download PDF

Info

Publication number
CN1146408C
CN1146408C CNB99806677XA CN99806677A CN1146408C CN 1146408 C CN1146408 C CN 1146408C CN B99806677X A CNB99806677X A CN B99806677XA CN 99806677 A CN99806677 A CN 99806677A CN 1146408 C CN1146408 C CN 1146408C
Authority
CN
China
Prior art keywords
microsphere
emulsion
preparation
solution
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB99806677XA
Other languages
English (en)
Other versions
CN1303274A (zh
Inventor
N����³-������
N·布鲁-玛格尼兹
C·里维萨基
ض�
E·法特尔
P·库沃里尔
P·布莱顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harry Pharmaceuticals
Original Assignee
Virsol SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Virsol SNC filed Critical Virsol SNC
Publication of CN1303274A publication Critical patent/CN1303274A/zh
Application granted granted Critical
Publication of CN1146408C publication Critical patent/CN1146408C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1635Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers

Abstract

本发明涉及在药物中特别用作用于输送生物活性物质,特别是亲水性物质的颗粒载体的口服给药新微球体,按照本发明,所述微球体由载体材料连续网状结构组成,其中分散着物质,所述载体材料含有至少70%重量由相当于通式(I)所示重复单元组成的均聚物,其中R1代表含有1-6个碳原子的烷基或其中m为1-5的整数并且R3为具有1-6个碳原子的烷基的-(CH2)m-COOR3基团;R2代表具有1-6个碳原子的烷基;n为1-5的整数。本发明用于药物。

Description

聚(丙二酸亚甲基酯)微球体、其制 备方法及其药物组合物
技术领域
本发明涉及尤其是在药物领域中用于输送口服给药的生物活性物质、尤其是亲水性物质(肽或蛋白质)的颗粒载体的新型微球体。
本发明还涉及制备这些微球体的方法以及含有它们的药物组合物。
在本申请中,术语“微球体”应该被理解为:基本上为球形的颗粒,平均直径为1-100μm、优选5-100μm,由载体材料的密度或大或小的连续网络形成。
这些微球体不同于由包围空腔的壁组成的微胶囊。然而,应该注意:在多乳液中制备的微球体可能含有小球的集合体,所述小球分散在组成它们的连续网状结构中。
对于上述后一种情况,这些小球的总体积通常为微球体总体积的1/20-1/2。
背景技术
近年来,许多研究表明:基于聚合物的颗粒系统能够用于改变有治疗活性的物质的释放特性。
因此,已经通过各种技术制备出基于合成聚合物例如聚(乳酸)、乳酸-羟基乙酸共聚物、聚苯乙烯、聚(ε-己内酯)、聚(甲基丙烯酸甲酯)或者基于甲基纤维素或乙基纤维素的微球体。
然而,这样得到的微球体通常是非生物降解性的,并且,即使它们是生物降解性的,也呈现随着时间推移明显地延迟降解的特征。
因此,例如,对于基于聚(乳酸)的微球体来说,降解是非渐进性的,并且需要在明显长的时间间隔后才发生。
而且,乳酸聚合物通过释放强酸性产物降解,这样不仅导致聚合物降解的自催化作用,并且将导致其同被包封的物质不相容。
对于其它所用的聚合物来说,微球体的降解速度非常低,甚至没有降解。
所述颗粒在机体中的保留时间可能限制人们的再次使用。
最后,对于已知的微球体来说,多数具有明显的疏水性,这样促进了其与被包封物质之间的强相互作用并常常导致其与被包封物质之间的变性作用,特别是当后者为蛋白质或肽时,情况更是如此。
发明内容
现已发现:有可能制备新的微球体,其能够克服现有技术中微球体的缺陷。这也是本发明的基础。
因此,根据本发明的第一个方面,本申请涉及由其中任选地分散某种物质的载体材料的连续网状结构组成的微球体,其特征是所述载体材料含有至少70%重量由下列通式(I)所示重复单元组成的均聚物:
其中:
-R1代表含有1-6个碳原子的烷基或其中m为1-5的整数并且R3为具有1-6个碳原子的烷基的-(CH2)m-COOR3基团;
-R2代表含有1-6个碳原子的烷基;和
-n为1-5的整数。
已经证明:由于组成微球体基质的聚合物的化学性质,这些新的微球体:
---具有渐进性和调整的降解动力学;
---能够高效地包封亲水性物质,特别是生物来源的物质;
而且,已经非常令人惊奇地和令人意外地观察到,这些微球体能够:
---当其与抗原结合时能够诱导刺激免疫反应;
---在某些情况下,当口服给药时能够抑制过敏性病理学反应(诱导耐受性)。
因此,形成微球体基质的聚合物材料特性组成本发明的独创性。
所述聚合物材料基本上由含有通式(I)所示重复单元的均聚物组成。
这样的聚合物具有显著的生物兼容和生物浸蚀特性,即其能通过裂解外侧取代基进行化学或生物化学降解。
根据本发明,微球体的浸蚀速度取决于载体材料的分子量。因此,仅仅通过应用具有适合于所需浸蚀速度的分子量的载体材料就可以调节浸蚀速度。
因此,本发明微球体具有渐进性和可调节的生物浸蚀性,这样可以例如把分散在载体材料中的生物活性物质输送至其最有效地发挥作用的机体部位。
微球体的生物浸蚀性还防止其在机体中的聚集,因此其应用不再受到限制。
根据其具体特性,上面提到的均聚物由通式(I)所示重复单元组成,其中:
R1代表含有1-6个碳原子的烷基;
R2代表含有1-6个碳原子的烷基;和
n为1;
优选地,R1和R2代表CH2-CH3基团。
这些不同种类的聚(丙二酸亚甲基基酯)类聚合物特别适合用于包封亲水性物质,特别是生物来源的物质和任选生物活性的物质。
“生物活性分子”以非限制性方式表示任何在体内或体外具有预防或治疗生物学作用的分子,尤其是抗感染剂,特别是抗菌剂、抗生素、抗病毒剂、抗寄生虫剂或抗细胞分裂剂,特别是抗肿瘤剂。
可以应用的抗生素或抗菌剂可以是例如利福平和粘菌素。
二脱氧肌苷、利巴韦林、齐多夫定、阿昔洛韦、更昔洛韦、膦甲酸、阿糖腺苷和扎西他宾可以作为抗病毒剂的非限制性例子。
例如,顺铂和紫杉酚可以用作抗肿瘤剂。
根据本发明优选实施方案,微球体的载体材料含有:
90%-99.5%重量如上定义的均聚物;和
0.5%-10%重量含有至少一种亲水特性序列和至少一种疏水特性序列的共聚物,其中所述疏水特性序列优选含有至少一个通式(I)所示重复单元。
有利地,上面提到的共聚物的亲水特性序列选自聚(氧乙烯)、聚(乙烯醇)、聚(乙烯吡咯烷酮)、聚(N-2-羟丙基甲基丙烯酰胺)、聚(甲基丙烯酸羟乙基酯)、亲水性聚(氨基酸)例如聚赖氨酸、多糖,优选聚(氧乙烯)。
所述共聚物可以具有嵌段结构、优选二嵌段或三嵌段结构或者具有接枝结构。
把这样的共聚物加入到载体材料中可以使各个微球体中被包封的物质均匀地分散。
这样把共聚物加入到载体材料中还可以调节微球体表面的亲水/疏水性比例,并防止或限制其与被包封物质之间发生强大的并经常变性的相互作用。
而且,对于这些共聚物来说,其疏水性序列的化学特性等同于构成微球体主要部分的均聚物的化学特性,这些共聚物特别有利于实施目前优选的微球体制备方法,所述方法在下面将更详细地得到解释。
通常来说,本发明的微球体可以通过实施包括下列步骤的方法得到:
--制备具有三相的多重乳液,其中间相由聚合物溶液组成,所述聚合物组成挥发性有机溶剂中的载体材料;和
--蒸发所述有机溶剂,其条件是能够引起组成内相的小滴周围的聚合物沉淀。
所述多重乳液可以通过经典方式得到:将油包水型的第一乳液分散于含有稳定剂的第二水相中。
该多重乳液也可以通过“逆向”方法得到,该方法包括:把水溶液倾入油包水型第一乳液中。非常令人意外地,该“逆向”方法得到非常显著的效果,有时甚至比上述经典技术得到的效果更好。
因此,根据第二方面,本发明涉及上述获得微球体的方法,该方法包括:
a)在任选含有表面活性剂的挥发性有机溶剂中制备上述组成载体材料的聚合物的第一种溶液,
b)制备第二种同a)中所得溶液不相混溶的第二种溶液,任选地含有待分散的所述物质和任选的表面活性剂,
c)通过把第二种溶液分散于第一种溶液中制备第一种乳液,该连续相由聚合物溶液组成,
d)按下列任意一种方式制备第二种乳液:
--或者在搅拌作用下把c)中得到的第一乳液分散于同所述第一乳液不相混溶的分散介质中,所述分散介质任选地含有稳定剂;
--或者在搅拌作用下把由同第一种乳液不混溶的任选地含有稳定剂的介质组成的溶液倾入所述第一种乳液中,
e)在搅拌下蒸发所述有机溶剂。
根据本发明的具体特性,上述方法还包括:
f)离心分离微球体
g)对所述微球体进行一次或多次连续洗涤
h)对所述微球体进行冷冻干燥。
因此,本发明微球体的制备方法的第一步骤包括:优选在合适表面活性剂存在下制备一种油包水型乳液,其中油相或有机相含有用于组成所述微球体载体材料的聚合物。
首先,任选地在表面活性剂存在下,通过合适的挥发性有机溶剂制备构成载体材料的聚合物的溶液。
有利地,只要所述基本上组成微球体载体材料的均聚物能够在得到良好摩尔质量和质量分散特性的条件下得到,就可以在此步骤中应用预先制备的聚合物。
例如通过EP 283346(相应于US 4,931,584和US 5,142,098)记载的方法(上述专利在此引入作为参考),可以从单体制备通式(I)所示重复单元组成的均聚物,所述单体通常在桨式泵的真空作用下脱气直至重量恒定为止,以便除去聚合反应抑制剂(SO2)。
然而,有利地,这些均聚物将在质子惰性溶剂中以阴离子方式制备,例如把单体分散在丙酮中,然后在搅拌下加入氢氧化钠,再蒸发丙酮,干燥如此获得的聚合物。
其他质子惰性有机溶剂例如乙腈、二噁烷和四氢呋喃可以用来代替丙酮。
能够通过实施该方法获得的均聚物分子量可以通过合理地选择操作条件完美地进行控制,其中所述的操作条件特别地包括有机相中单体的浓度、pH值和聚合反应引发剂(氢氧化钠)的体积摩尔浓度。
通常地,平均分子量为1,000-100,000、优选5,000-80,000的均聚物可以用于本发明。
通常选择挥发性有机溶剂来制备含有用于组成载体材料的聚合物的第一种溶液,使其沸点比水低。因此,有可能在最后的蒸发步骤中通过使聚合物沉淀以便容易地除去该溶剂。
乙酸乙酯属于特别适合此目的的挥发性有机溶剂。
可以用于稳定第一种乳液的表面活性剂可以具有不同的特性,并将被加入含有聚合物的有机相(第一种溶液)和/或组成分散相的水相(第二种溶液)中。
可以举出的例子如泊咯沙姆如商品名为PluronicF68的市售产品、或者聚乙烯醇如商品名为Mowiol40-88的市售产品、或者聚山梨醇酯、或者其中疏水性序列化学特性与由通式(I)所示重复单元组成的均聚物相同的表面活性剂共聚物。
已经表明:这样的表面活性剂共聚物、特别是聚(丙二酸亚甲基酯)和聚氧乙烯共聚物是特别有利的,因为它们一方面能够得到非常稳定的第一乳液,另一方面在蒸发溶剂后能够在基质中获得良好的表面活性剂粘固效果。
可以通过本领域技术人员熟知的经典聚合技术制备上述表面活性剂共聚物。
在这些技术中,优先选用阴离子聚合反应、自由基聚合反应或者共聚物前体序列偶联技术。这些序列预先在链末端进行充分的官能化反应。
阴离子聚合反应更特别地适合于制备嵌段共聚物。
阴离子聚合反应包括单体接续加成反应,并获得完全定义结构的共聚物,引发剂和单体的用量能够控制各个序列的聚合度。
还可以通过下列方式得到嵌段共聚物:
--通过第一种单体的阴离子聚合反应和第二种单体的链增长反应;
--或者通过活化充当第二种单体的聚合反应引发剂的前体聚合物。
可以用于阴离子聚合反应的引发剂通常为:
--一方面,有机金属衍生物,例如丁基锂,特别是二苯基己基锂;
--另一方面,可以通过借助异丙苯基钾、二苯基甲基钾、萘基钾活化羟基产生的烷氧化物,特别是大分子烷氧化物例如POE烷氧化物。
通常在能够与共聚物各个嵌段兼容的溶剂中进行阴离子聚合反应。
如果具有亲水性特性的序列由聚(氧乙烯)组成,并且疏水性序列由聚(丙二酸亚甲基酯)组成,这样所述嵌段共聚物优选这样制备:通过环氧乙烷和丙二酸亚甲基酯依次进行阴离子聚合反应或者通过对市售单羟基化聚氧乙烯化前体进行活化,然后接着进行聚(丙二酸亚甲基酯)序列的阴离子聚合反应。
通常地,优选应用四氢呋喃作为聚合反应的溶剂,该物质能够使反应在均相介质中进行,并且能够有利地影响聚合反应动力学。
制备亲水序列所用的单体通常为市售产品。
偶联技术也更特别适合制备嵌段共聚物。
在偶联剂存在下,并任选地在活化剂存在下,通常在合适的溶剂中由预先合成的官能化的均聚物进行该反应。
在其中亲水序列由聚氧乙烯组成和疏水序列由聚(丙二酸亚甲基酯)组成的本发明优选共聚物的制备过程中,优选应用被α-羧基-官能化的聚(氧乙烯)均聚物和α-羟基-官能化的聚(丙二酸亚甲基酯)均聚物。
例如,可以通过用琥珀酸酐转化市售α-羟基官能化聚(氧乙烯)得到α-羧基-官能化聚(氧乙烯)均聚物。
可以直接通过在水介质中进行阴离子合成或者通过使用氢氧化钠水溶液作为聚合引发剂在溶剂中进行阴离子合成来得到α-羟基官能化的聚(丙二酸亚甲基酯)均聚物。
二环己基碳二亚胺(DCCI)将有利地用作特别适合该聚合反应的偶联剂。
该偶联反应可以任选地通过碱催化反应活化,并且通常在与均聚物相容的溶剂中发生,所述溶剂在本发明优选共聚物的特定情况下具体地为例如二氯甲烷。
自由基聚合反应更特别适合制备接枝共聚物。
通常由大分子单体也就是其末端之一带有能够进行游离基聚合反应并且能够同单体反应生成具有接枝结构的共聚物的烯基的低聚物进行聚合反应。
通常在合适的溶剂中在引发剂存在下进行所述聚合反应。
有可能应用各种官能化的大分子单体来制备其中亲水序列由聚(氧乙烯)组成的共聚物。
更特别优选地,应用甲基丙烯酰基官能化的聚(氧乙烯)大分子单体。
这样的产品可以是市售的(Aldrich),并可以由例如分子量为308-440g/mol的聚(氧乙烯)链组成,或者由市售聚(乙二醇)单甲基醚通过在二氯甲烷中同甲基丙烯酸偶联形成甲氧基末端官能团来制备。
这样的大分子单体甚至可以通过活化聚(氧乙烯)然后使其同甲基丙烯酰氯反应来制备。
还可以通过预合成的聚(丙二酸亚甲基酯)外侧酯链与聚(氧乙烯)单甲醚进行酯基转移反应来制备具有接枝结构的共聚物。
所述酯基转移反应通常在升温和催化剂存在下用醇进行。
其中疏水性序列分子总量为1,000-80,000g/mol、优选1,000-50,000g/mol的共聚物特别适合于本发明。
通常地,有可能通过应用例如Ultraturrax型(13,500rpm-5分钟)剪切匀化器获得用于制备本发明微球体的第一种乳液。
通常把被包封的物质加入到第一种乳液的分散水相中。
本发明微球体制备方法的第二个步骤包括制备第二种乳液:
--在搅拌下,把第一个步骤得到的第一种乳液分散于同所述第一种乳液不相混溶的分散介质中,所述分散介质任选含有稳定剂;
--或者,在搅拌下把由同所述第一种乳液不相混溶的介质组成的溶液倾入到所述第一种乳液中,所述介质任选含有稳定剂。
通常地,同第一种乳液不相混溶的分散介质为水相,其中把第一种乳液优选滴加到该水相中,同样通过例如Ultraturrax型均化器(8,000rpm;5分钟)制备所述乳液。
聚(乙烯醇)组成特别适合制备第二种乳液的稳定剂。
任选地,可以在第二个步骤之后接着进行替换有机溶剂的补充步骤。
本发明微球体制备方法的第三个必要步骤包括蒸发用于制备所述聚合物溶液的挥发性有机溶剂。
在具体的例子中,所述溶剂为乙酸乙酯,该蒸发步骤在室温下和电磁搅拌下(1,400rpm)进行约12小时。
本领域技术人员将以合适的方式根据目的微球体的理化特性和形态学性质选择在本发明方法的这前三个必要步骤的各种实施条件。
通常地,为了用作制药领域的载体,这些微球体的平均直径为1-100μm、优选5-50μm。
通常地,在第三个步骤末获得的微球体将通过离心分离、洗涤和任选冷冻干燥。
根据第三个方面,本发明还涉及含有上述微球体的药物组合物。这些组合物通常适合口服给药,其剂型为例如片剂、明胶胶囊、粉剂或粒剂。
具体实施方式
现在将通过下面非限制性实施例来说明本发明:
实施例中将使用下列缩写:
EO:环氧乙烷
POE:聚(氧乙烯)
MM2.1.2:下式所示丙二酸亚甲基酯:
也被称作:1-乙氧基羰基-1-乙氧基羰基亚甲基氧羰基乙烯
PMM2.1.2:含有下式所示重复单元的聚合物:
另外,在这些实施例中:
--微球体大小由Coulter计数器技术进行测定,通过扫描电子显微镜进行形态学检测,检测或测定对象为粗制备的微球体,或者为经冷冻破裂(cryofracture)后的微球体;
--聚合物的分子量通过凝胶渗透色谱法(GPC)进行测定。
实施例1
在电磁搅拌下,把100mg丙二酸亚甲基酯2.1.2溶解于10ml丙酮中。在电磁搅拌下,渐渐地加入100微升0.1N氢氧化钠。始终在电磁搅拌下维持聚合反应5分钟,加入100微升0.1N盐酸。真空蒸除全部丙酮。然后用约100ml蒸馏水洗涤得到的聚合物,再真空干燥。聚合物的分子量为30,000。
将280mg聚(丙二酸亚甲基酯)溶解于10ml乙酸乙酯中。用Utraturrax以13,500rpm的速度搅拌5分钟使1ml含有60mg卵清蛋白的水相在有机相中乳化。然后将该乳液加入100ml 2%聚(乙烯醇)水溶液中,应用Ultraturrax以8,000rpm的速度搅拌5分钟。在以1,400rpm的速度机械(旋转叶片)搅拌下,室温蒸发乙酸乙酯过夜。以4,000rpm的速度离心10分钟收集微球体,然后用蒸馏水洗涤6次,每次洗涤都重新进行一次离心操作。最后一次离心后,把微球体再悬浮于3ml蒸馏水中,然后冷冻干燥。
这样获得的微球体平均直径为6微米,制剂中所用的14.2%卵清白蛋白被PMM2.1.2微球体所包封,其数量相当于2.5%(w/w)的包封。
连续5天,将该制剂以100微克被包封蛋白/天/鼠的剂量经口服给药至C3H小鼠。在最后一次口服进行7天后,在第0-第14天经皮下注射游离卵清蛋白(100微克/鼠)使动物对卵清蛋白敏感化。90%的小鼠能够在第二次注射卵清蛋白后存活;但用不含卵清蛋白的微球体或者用同样剂量但未被包封的卵清蛋白给药时,小鼠存活率小于30%。
实施例2
按照实施例1的方法进行,但把Pluronic F68以2%的浓度加入到含有卵清蛋白的水相中。
实施例3
按照实施例1的方法进行,但把20mg POE-PMM共聚物加入到含有聚合物的水相中。
在该实施例中,应用POE-PMM2.1.2嵌段共聚物。该共聚物制备方法为:从制备POE嵌段开始,进行两个单体的连续聚合反应,按照下列方案进行:
把进行聚合反应的反应器(250ml)连接到真空管,其中反应器能够在高度真空下工作,并且能够除去质子杂质。
将除去所有微量水分的溶剂(THF,150ml)在-70℃的反应器中低温蒸馏。
然后用注射器通过隔膜加入引发剂(叔丁醇钾(0.1N/THF);10ml)。
然后通过低温蒸馏引入环氧乙烷(5g)。
室温下进行聚合反应48小时。此时,通过凝胶渗透色谱检验样品第一序列的分子量(4,000g/mol)和多分子性指数(1.13)。
把MM2.1.2(0.5ml)在真空下新鲜脱气除去用作聚合反应抑制剂的SO2,然后在室温下迅速全部加入。
经5小时后,通过加入甲醇使共聚物失活,然后让共聚物在乙醚中沉淀。
由MM2.1.2得到的5个单元被固定在POE上,其相当于1.150g/molPMM2.1.2的分子量。
共聚物的热分析显示玻璃化转变温度为-16℃,熔点峰为45℃(ΔH=117J/g)。
实施例4
按照实施例1的方法进行,但应用2mg V3 28肽(由HIV的gp120的V3 BRU环得到,序列为:NNTRKSIHIGPGRAFYATGDIIGDIRQA)代替卵清蛋白(60mg)。得到的微球体平均大小为5.8微米,所用的70%V3 28肽被包封在微球体中,相当于包封0.48%w/w。在扫描电子显微镜所作的研究显示光滑的球形颗粒。
实施例5
按照实施例4的方法进行,但把Pluronic F 68以2%的浓度加入到含有肽的水相中。得到的微球体大小为7.0微米,所用的70%V3 28肽被包封在微球体中。
实施例6
按照实施例4进行,但把20mg POE-PMM共聚物加入含肽水相中。
实施例7
按照实施例4进行,但把20mg POE-PMM共聚物加入含有聚合物的有机相中。
实施例8
按照实施例1进行,但内部水相由1毫升0.5M含有3mg II型胶原的乙酸组成。这样得到的微球体的平均直径为6微米,制备过程中所用的66.6%胶原被包封在PMM2.1.2微球体中,其相当于包封0.7%(w/w)。
实施例9
按照实施例1进行,但内部水相由1ml蒸馏水组成。这样得到的微球体不含有生物活性物质。其平均直径为7.0微米。
实施例10
按照实施例1记载的方法进行,但应用质粒pCDNA3(5mg)代替卵清蛋白(60mg)。
所得微球体的平均大小为7μm,9.8%所用质粒被包封在微球体中,想当于被包封0.17%(w/w)。
扫描电子显微镜进行的研究显示光滑的球形颗粒。
实施例11
按照实施例10进行,但把Pluronic以2%的浓度加入到含有质粒的水相中。
得到的微球体平均直径为7.0微米,12%所用质粒被包封在微球体中,相当于被包封0.22%(w/w)。
实施例12
按照实施例1记载的方法进行,但应用低聚核苷酸(pdT16)(2mg)代替卵清蛋白(60mg)。
所得微球体的平均大小为4.8μm,20.6%所用低聚核苷酸被包封在微球体中,相当于被包封0.19%(w/w)。
实施例13
按照实施例12进行,但把Pluronic以2%的浓度加入到含有低聚核苷酸的水相中。
得到的微球体平均直径为5.7微米,23%所用低聚核苷酸被包封在微球体中,相当于被包封0.21%(w/w)。

Claims (35)

1、由载体材料的连续网状结构构成的、平均直径为1-100μm的微球体,其中所述网状结构选自致密网状结构和包含分散水相的网状结构,所述载体材料含有至少70%重量由下述通式(I)所示重复单元组成的均聚物:
Figure C9980667700021
其中:
-R1代表含有1-6个碳原子的烷基,或-(CH2)m-COOR3基团,其中m为1-5的整数,R3为含有1-6个碳原子的烷基;
-R2代表含有1-6个碳原子的烷基;和
-n为1-5的整数;
所述均聚物的分子量为1000-100000。
2、由分散有某种物质的载体材料的连续网状结构构成的、平均直径为1-100μm的微球体,其中所述网状结构选自致密网状结构和包含分散水相的网状结构,所述载体材料含有至少70%重量由下述通式(I)所示重复单元组成的均聚物:
其中:
-R1代表含有1-6个碳原子的烷基,或-(CH2)m-COOR3基团,其中m为1-5的整数,R3为含有1-6个碳原子的烷基;
-R2代表具有1-6个碳原子的烷基;和
-n为1-5的整数;
所述均聚物的分子量为1000-100000。
3、权利要求1的微球体,其中,上述均聚物由通式(I)所示重复单元组成,其中:
-R1代表含有1-6个碳原子的烷基;
-R2代表含有1-6个碳原子的烷基;和
-n等于1。
4、权利要求2的微球体,其中,上述均聚物由通式(I)所示重复单元组成,其中:
-R1代表含有1-6个碳原子的烷基;
-R2代表含有1-6个碳原子的烷基;和
-n等于1。
5、权利要求3的微球体,其中,上述均聚物由通式(I)所示重复单元组成,其中R1和R2代表CH2-CH3基团。
6、权利要求4的微球体,其中,上述均聚物由通式(I)所示重复单元组成,其中R1和R2代表CH2-CH3基团。
7、权利要求1或3的微球体,其中,所述载体材料含有:
-90-99.5%重量的权利要求1中所述的均聚物;和
-0.5-10%重量的含有至少一个亲水性序列和至少一个疏水性序列的共聚物,其中所述疏水性序列含有至少一个通式(I)所示重复单元。
8、权利要求2或4的微球体,其中,所述载体材料含有:
-90-99.5%重量的权利要求2中所述的均聚物;和
-0.5-10%重量的含有至少一个亲水性序列和至少一个疏水性序列的共聚物,其中所述疏水性序列含有至少一个通式(I)所示重复单元。
9、权利要求7的微球体,其中,上述共聚物的亲水性序列选自:聚氧乙烯、聚乙烯醇、聚乙烯吡咯烷酮、聚N-2-羟丙基甲基丙烯酰胺、聚甲基丙烯酸羟乙基酯、亲水性聚氨基酸和多糖。
10、权利要求8的微球体,其中,上述共聚物的亲水性序列选自:聚氧乙烯、聚乙烯醇、聚乙烯吡咯烷酮、聚N-2-羟丙基甲基丙烯酰胺、聚甲基丙烯酸羟乙基酯、亲水性聚氨基酸和多糖。
11、权利要求7的微球体,其中,所述共聚物具有选自嵌段结构和接枝结构的结构。
12、权利要求8的微球体,其中,所述共聚物具有选自嵌段结构和接枝结构的结构。
13、权利要求2的微球体,其中,所述物质是生物活性物质。
14、权利要求13的微球体,其中,所述分散物质为肽。
15、权利要求13的微球体,其中,所述分散物质为蛋白质。
16、权利要求1的微球体,其中,所述均聚物的分子量为5000-80000。
17、权利要求2的微球体,其中,所述均聚物的分子量为5000-80000。
18、权利要求5的微球体,其中,所述均聚物的分子量为5000-80000。
19、权利要求6的微球体,其中,所述均聚物的分子量为5000-80000。
20、权利要求1的微球体的制备方法,包括:
a)在挥发性有机溶剂中制备上述组成载体材料的第一聚合物溶液,
b)制备与a)中所得溶液不相混溶的第二溶液,
c)通过将第二溶液分散于第一溶液中制备第一乳液,连续相由聚合物溶液组成,
d)制备第二乳液:
--或者在搅拌作用下将c)中得到的第一乳液分散于同所述第一乳液不相混溶的分散介质中,
--或者在搅拌作用下将由与所述第一乳液不混溶的介质组成的溶液倾入到所述第一乳液中,
e)在搅拌下蒸发所述有机溶剂。
21、权利要求2的微球体的制备方法,包括:
a)在挥发性有机溶剂中制备上述组成载体材料的第一聚合物溶液,
b)制备与a)中所得溶液不相混溶的、含有待分散的所述物质的第二溶液,
c)通过将第二溶液分散于第一溶液中制备第一乳液,连续相由聚合物溶液组成,
d)制备第二乳液:
--或者在搅拌作用下将c)中得到的第一乳液分散于同所述第一乳液不相混溶的分散介质中,
--或者在搅拌作用下将由与所述第一乳液不混溶的介质组成的溶液倾入到所述第一乳液中,
e)在搅拌下蒸发所述有机溶剂。
22、权利要求1的微球体的制备方法,包括:
a)在含表面活性剂的挥发性有机溶剂中制备上述组成载体材料的第一聚合物溶液,
b)制备与a)中所得溶液不相混溶的、含表面活性剂的第二溶液,
c)通过将第二溶液分散于第一溶液中制备第一乳液,连续相由聚合物溶液组成,
d)制备第二乳液:
--或者在搅拌作用下将c)中得到的第一乳液分散于同所述第一乳液不相混溶的分散介质中,所述分散介质含有稳定剂,
--或者在搅拌作用下将由与所述第一乳液不混溶的介质组成的溶液倾入到所述第一乳液中,所述介质含有稳定剂,
e)在搅拌下蒸发所述有机溶剂。
23、权利要求2的微球体的制备方法,包括:
a)在含表面活性剂的挥发性有机溶剂中制备上述组成载体材料的第一聚合物溶液,
b)制备与a)中所得溶液不相混溶的、含有待分散的所述物质和表面活性剂的第二溶液,
c)通过将第二溶液分散于第一溶液中制备第一乳液,连续相由聚合物溶液组成,
d)制备第二乳液:
--或者在搅拌作用下将c)中得到的第一乳液分散于同所述第一乳液不相混溶的分散介质中,所述分散介质含有稳定剂,
--或者在搅拌作用下将由与所述第一乳液不混溶的介质组成的溶液倾入到所述第一乳液中,所述介质含有稳定剂,
e)在搅拌下蒸发所述有机溶剂。
24、权利要求20的方法,其还包括置换所述有机溶剂的步骤e′),所述步骤e′)在步骤d)和步骤e)之间进行。
25、权利要求21的方法,其还包括置换所述有机溶剂的步骤e′),所述步骤e′)在步骤d)和步骤e)之间进行。
26、权利要求20的方法,其还包括:
f)离心分离微球体
g)对所述微球体进行一次或多次连续洗涤
h)对所述微球体进行冷冻干燥。
27、权利要求21的方法,其还包括:
f)离心分离微球体
g)对所述微球体进行一次或多次连续洗涤
h)对所述微球体进行冷冻干燥。
28、权利要求22的方法,其还包括:
f)离心分离微球体
g)对所述微球体进行一次或多次连续洗涤
h)对所述微球体进行冷冻干燥。
29、权利要求23的方法,其还包括:
f)离心分离微球体
g)对所述微球体进行一次或多次连续洗涤
h)对所述微球体进行冷冻干燥。
30、权利要求22的方法,其中,用于制备第一乳液的表面活性剂选自:泊咯沙姆、聚山梨醇酯、聚乙烯醇和含至少一个亲水性序列和至少一个疏水性序列的共聚物,所述疏水性序列包含至少一个通式(I)的重复单元:
Figure C9980667700061
其中:
-R1代表含有1-6个碳原子的烷基,或-(CH2)m-COOR3基团,其中m为1-5的整数,R3为含有1-6个碳原子的烷基;
-R2代表具有1-6个碳原子的烷基;和
-n为1-5的整数;
所述共聚物的亲水性序列选自:聚氧乙烯、聚乙烯醇、聚乙烯吡咯烷酮、聚N-2-羟丙基甲基丙烯酰胺、聚甲基丙烯酸羟乙基酯、亲水性聚氨基酸和多糖。
31、权利要求23的方法,其中,用于制备第一乳液的表面活性剂选自:泊咯沙姆、聚山梨醇酯、聚乙烯醇和含至少一个亲水性序列和至少一个疏水性序列的共聚物,所述疏水性序列包含至少一个通式(I)的重复单元:
Figure C9980667700071
其中:
-R1代表含有1-6个碳原子的烷基,或-(CH2)m-COOR3基团,其中m为1-5的整数,R3为含有1-6个碳原子的烷基;
-R2代表具有1-6个碳原子的烷基;和
-n为1-5的整数;
所述共聚物的亲水性序列选自:聚氧乙烯、聚乙烯醇、聚乙烯吡咯烷酮、聚N-2-羟丙基甲基丙烯酰胺、聚甲基丙烯酸羟乙基酯、亲水性聚氨基酸和多糖。
32、权利要求22的方法,其中用于制备第二乳液的所述稳定剂为聚乙烯醇。
33、权利要求23的方法,其中用于制备第二乳液的所述稳定剂为聚乙烯醇。
34、用于口服给药的药物组合物,其含有权利要求1所定义的微球体。
35、用于口服给药的药物组合物,其含有权利要求2所定义的微球体。
CNB99806677XA 1998-04-29 1999-04-28 聚(丙二酸亚甲基酯)微球体、其制备方法及其药物组合物 Expired - Fee Related CN1146408C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/05424 1998-04-29
FR9805424A FR2778100B1 (fr) 1998-04-29 1998-04-29 Nouvelles microspheres a base de poly(methylidene malonate), leur procede de preparation et compositions pharmaceutiques les contenant

Publications (2)

Publication Number Publication Date
CN1303274A CN1303274A (zh) 2001-07-11
CN1146408C true CN1146408C (zh) 2004-04-21

Family

ID=9525849

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB99806677XA Expired - Fee Related CN1146408C (zh) 1998-04-29 1999-04-28 聚(丙二酸亚甲基酯)微球体、其制备方法及其药物组合物

Country Status (15)

Country Link
US (1) US6440461B1 (zh)
EP (1) EP1082104A1 (zh)
JP (1) JP2002513042A (zh)
KR (1) KR20010043060A (zh)
CN (1) CN1146408C (zh)
AR (1) AR019114A1 (zh)
AU (1) AU752644B2 (zh)
BR (1) BR9910016A (zh)
CA (1) CA2330481A1 (zh)
FR (1) FR2778100B1 (zh)
HU (1) HUP0101649A3 (zh)
PL (1) PL343687A1 (zh)
RU (1) RU2227018C2 (zh)
SK (1) SK16312000A3 (zh)
WO (1) WO1999055309A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611561B2 (ja) * 2000-04-12 2011-01-12 Dic株式会社 新規なビニル系樹脂およびその製造方法
FR2812551B1 (fr) * 2000-08-07 2003-03-28 Virsol Forme pharmaceutique comprenant un materiau support a base de methylidene malonate et un facteur de regulation cellulaire
AU2002211602A1 (en) * 2000-10-11 2002-04-22 Johns Hopkins University Polymer controlled delivery of a therapeutic agent
US8598092B2 (en) * 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
JP5339673B2 (ja) * 2006-08-31 2013-11-13 キヤノン株式会社 微粒子の製造方法
US8993795B2 (en) * 2009-05-07 2015-03-31 Optmed Inc Methylidene malonate process
US8106234B2 (en) * 2009-05-07 2012-01-31 OptMed, Inc Methylidene malonate process
US8715685B2 (en) * 2009-07-14 2014-05-06 Lucia Irene Gonzalez Stereoisomer peptides and their polymer conjugates for HIV disease
CA2779290A1 (en) * 2009-10-29 2011-05-19 Lucia Irene Gonzalez Ligand-targeted multi-stereoisomer peptide polymer conjugates and uses thereof
US10414839B2 (en) 2010-10-20 2019-09-17 Sirrus, Inc. Polymers including a methylene beta-ketoester and products formed therefrom
JP2014503474A (ja) 2010-10-20 2014-02-13 バイオフオーミツクス・インコーポレイテツド エネルギー移動手段の存在下での急速回収を用いたメチレンマロナートの合成
US9249265B1 (en) 2014-09-08 2016-02-02 Sirrus, Inc. Emulsion polymers including one or more 1,1-disubstituted alkene compounds, emulsion methods, and polymer compositions
US9279022B1 (en) 2014-09-08 2016-03-08 Sirrus, Inc. Solution polymers including one or more 1,1-disubstituted alkene compounds, solution polymerization methods, and polymer compositions
US9828324B2 (en) 2010-10-20 2017-11-28 Sirrus, Inc. Methylene beta-diketone monomers, methods for making methylene beta-diketone monomers, polymerizable compositions and products formed therefrom
CA2853079A1 (en) 2011-10-19 2013-05-10 Bioformix Inc. Methylene beta-ketoester monomers, methods for making methylene beta-ketoester monomers, polymerizable compositions and products formed therefrom
JP6188252B2 (ja) 2012-03-30 2017-08-30 シラス・インコーポレイテッド 重合性組成物の活性化方法、重合系およびこれにより形成される製品
CA2869112A1 (en) 2012-03-30 2013-10-03 Bioformix Inc. Composite and laminate articles and polymerizable systems for producing the same
WO2013149173A1 (en) 2012-03-30 2013-10-03 Bioformix Inc. Ink and coating formulations and polymerizable systems for producing the same
US10047192B2 (en) 2012-06-01 2018-08-14 Sirrus, Inc. Optical material and articles formed therefrom
WO2014078689A1 (en) 2012-11-16 2014-05-22 Bioformix Inc. Plastics bonding systems and methods
JP6549038B2 (ja) 2012-11-30 2019-07-24 シラス・インコーポレイテッド エレクトロニクス適用のための複合組成物
WO2014110388A1 (en) 2013-01-11 2014-07-17 Bioformix Inc. Method to obtain methylene malonate via bis(hydroxymethyl) malonate pathway
US9416091B1 (en) 2015-02-04 2016-08-16 Sirrus, Inc. Catalytic transesterification of ester compounds with groups reactive under transesterification conditions
US9315597B2 (en) 2014-09-08 2016-04-19 Sirrus, Inc. Compositions containing 1,1-disubstituted alkene compounds for preparing polymers having enhanced glass transition temperatures
US10501400B2 (en) 2015-02-04 2019-12-10 Sirrus, Inc. Heterogeneous catalytic transesterification of ester compounds with groups reactive under transesterification conditions
US9334430B1 (en) 2015-05-29 2016-05-10 Sirrus, Inc. Encapsulated polymerization initiators, polymerization systems and methods using the same
US9217098B1 (en) 2015-06-01 2015-12-22 Sirrus, Inc. Electroinitiated polymerization of compositions having a 1,1-disubstituted alkene compound
US9518001B1 (en) 2016-05-13 2016-12-13 Sirrus, Inc. High purity 1,1-dicarbonyl substituted-1-alkenes and methods for their preparation
US10428177B2 (en) 2016-06-03 2019-10-01 Sirrus, Inc. Water absorbing or water soluble polymers, intermediate compounds, and methods thereof
US9567475B1 (en) 2016-06-03 2017-02-14 Sirrus, Inc. Coatings containing polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
US10196481B2 (en) 2016-06-03 2019-02-05 Sirrus, Inc. Polymer and other compounds functionalized with terminal 1,1-disubstituted alkene monomer(s) and methods thereof
US9617377B1 (en) 2016-06-03 2017-04-11 Sirrus, Inc. Polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
CN110709436B (zh) 2017-06-02 2022-06-28 阿科玛法国公司 可固化组合物及其用途
CN112055580B (zh) * 2018-07-25 2024-01-09 弗门尼舍有限公司 制备微胶囊的方法
WO2020123579A1 (en) * 2018-12-11 2020-06-18 Sirrus, Inc. Polymerization of 1,1-dicarbonyl 1-alkenes
CN114127220B (zh) 2019-07-19 2024-01-19 阿科玛法国公司 可用于获得非致敏性的固化产品的可固化组合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940003548U (ko) * 1992-08-14 1994-02-21 김형술 세탁물 건조기
DE19508049C2 (de) 1995-02-23 1997-02-06 Schering Ag Verwendung von Methylenmalondiesterderivaten zur Herstellung von gasenthaltenden Mikropartikeln
FR2755136B1 (fr) * 1996-10-25 1999-01-22 Virsol Procede de preparation de nanoparticules de methylidene malonate, nanoparticules contenant eventuellement une ou plusieurs molecules biologiquement actives et compositions pharmaceutiques les contenant

Also Published As

Publication number Publication date
CA2330481A1 (en) 1999-11-04
US6440461B1 (en) 2002-08-27
CN1303274A (zh) 2001-07-11
WO1999055309A1 (fr) 1999-11-04
FR2778100A1 (fr) 1999-11-05
SK16312000A3 (sk) 2001-04-09
EP1082104A1 (fr) 2001-03-14
HUP0101649A3 (en) 2002-10-28
RU2227018C2 (ru) 2004-04-20
FR2778100B1 (fr) 2001-05-04
KR20010043060A (ko) 2001-05-25
AR019114A1 (es) 2001-12-26
AU752644B2 (en) 2002-09-26
AU3428899A (en) 1999-11-16
PL343687A1 (en) 2001-08-27
JP2002513042A (ja) 2002-05-08
BR9910016A (pt) 2001-01-09
HUP0101649A2 (hu) 2002-03-28

Similar Documents

Publication Publication Date Title
CN1146408C (zh) 聚(丙二酸亚甲基酯)微球体、其制备方法及其药物组合物
CN1080559C (zh) 制备持续释放制剂的方法
CN1114633C (zh) 基于1,1-亚甲基丙二酸酯的新型表面活性剂共聚物
CN1163260C (zh) 可生物降解聚酯和生物活性多肽的离子性分子轭合物
CN1506116A (zh) 可降解的聚合物的制备方法和含所说聚合物的药物组合物及其用途
CN1190454C (zh) 用于制备微球的方法
CN1106653A (zh) 制备缓释制剂的方法
CN1038940C (zh) 含有可生物降解断裂的亲油侧基的聚合物
CN1245425A (zh) 聚(二烯丙基胺)基胆汁酸多价螯合体
CN1284801C (zh) 生物分解性透明质酸衍生物及其聚合微胶粒组合物和药学组合物
CN1852687A (zh) 控释组合物的制备方法
CN1268153A (zh) 球状线性的含多糖的微粒
CN1344287A (zh) 生物可降解聚酯和生物活性多肽的离子型分子共轭物
CN1237903A (zh) 亚甲基丙二酸酯毫微细粒的制备方法及任选含有一种或多种生物活性分子的毫微细粒
CN1646171A (zh) 新型生物材料、其制备和用途
CN1856295A (zh) 控释组合物
CN87102772A (zh) 可水合的含分散聚合物颗粒的水凝胶干料其制备方法及其在生物学中的应用
CN1468093A (zh) 用于可控释放给药的,含分子量降低的支链淀粉基纯化淀粉的可生物降解微粒
CN1879876A (zh) 神经营养因子缓释微球及其制备方法
CN1780609A (zh) 将水溶性或亲水物质分散在超临界压力下的流体中的方法
CN1620285A (zh) 新微球和其生产方法
CN1016421B (zh) 悬浮乳液聚合制备聚合物的方法
CN1059343A (zh) 抗冲击聚丙烯酸酯/氯乙烯接枝共聚物的制备方法
CN1057468A (zh) 多孔低表皮颗粒状聚氯乙烯树脂的生产方法
CN1282245A (zh) 具有提高生物利用度的分子分散体组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HALISUOLA MEDICINE CO.,LTD.

Free format text: FORMER OWNER: VIHERSOLA CO.,LTD.

Effective date: 20090724

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090724

Address after: France

Patentee after: Harry pharmaceuticals

Address before: France

Patentee before: Virsol Co.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040421

Termination date: 20170428