CN114636556A - 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质 - Google Patents

基于ceemdan分解判断轴承故障的方法、电子设备及存储介质 Download PDF

Info

Publication number
CN114636556A
CN114636556A CN202210253830.XA CN202210253830A CN114636556A CN 114636556 A CN114636556 A CN 114636556A CN 202210253830 A CN202210253830 A CN 202210253830A CN 114636556 A CN114636556 A CN 114636556A
Authority
CN
China
Prior art keywords
bearing
signal
component
characteristic frequency
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210253830.XA
Other languages
English (en)
Inventor
徐徐
钱进
杨世飞
孙磊
邹小勇
刘宗斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Chaos Data Technology Co ltd
Original Assignee
Nanjing Chaos Data Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Chaos Data Technology Co ltd filed Critical Nanjing Chaos Data Technology Co ltd
Priority to CN202210253830.XA priority Critical patent/CN114636556A/zh
Publication of CN114636556A publication Critical patent/CN114636556A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于CEEMDAN分解判断轴承故障的方法、电子设备及存储介质,通过对轴承的原始加速度信号进行CEEMDAN分解,获取本征模态函数分量;计算出每层本征模态函数分量的峭度K,将峭度K大于设定值的各层本征模态函数分量对应值相加,得到重构的加速度信号;对重构的加速度信号进行包络解调,得到包络谱;根据轴承信号和转速计算出轴承特征频率;查看包络谱中轴承特征频率幅值大小,如果某个特征频率的幅值超出包络阈值,则这个特征频率所对应的轴承部件出现了故障。本发明能能够有效提高信号的分辨率,减弱噪声和其他振动信号的干扰,避免故障信号的丢失和模态重叠。显著改进微弱故障特征信号的检测能力,能够有效识别轴承的故障部位。

Description

基于CEEMDAN分解判断轴承故障的方法、电子设备及存储介质
技术领域
本发明属于轴承故障诊断技术领域,具体涉及一种基于CEEMDAN分解判断轴承故障的方法、电子设备及存储介质。
背景技术
滚动轴承工作条件往往是在腐蚀、高压等恶劣环境下,所以其发生故障的概率远远高于其他部件。传统的故障检测方法是人工直接检测,主要取决于检测人员主观的经验。滚动轴承在不同状况下运行时会发出不同的振动信号,故可研究其振动信号来代替直接检测,此方法可以不用依赖于经验丰富的检测员来进行操作,实现非接触式检测。但滚动轴承的缺陷信息可能被复杂噪声所干扰,导致其缺陷信息难以分辨。
振动检测法是滚动轴承最常用的诊断方法,轴承的振动信号具有非线性、非平稳的特点,传统的时域、频域分析方法不能有效提取故障特征;短时傅里叶只适用于缓慢变化的信号;小波变换对信号的处理缺乏自适应性。经验模态分解(简称EMD)采用自适应基的时频局部化分析,克服了基函数无自适应性的问题,但存在端点效应和模态混叠的问题。自适应噪声完备集合经验模态分解(简称CEEMDAN)能有效解决EMD的模态混叠问题,减小重构误差并提高分解效率,在轴承特征提取方面有良好表现。
但是CEEMDAN在实际应用的过程中,加噪声方式及总体平均次数的取值多数情况下都需经验确定,往往分解效果都不太理想,无法达到CEEMDAN对微弱故障特征信号的检测能力,因而也无法准确确定轴承的具体故障位置。
发明内容
本发明要解决的技术问题是:提供一种基于CEEMDAN分解判断轴承故障的方法、电子设备及存储介质,显著改进噪声添加方式和对微弱故障特征信号的检测能力,能够有效识别轴承的故障部位以对轴承故障进行诊断。
同时,通过本发明可以实现类似检测方法中加入噪声大小及总体平均次数的自动获取,提高了信号的分辨率,减弱噪声和其他振动信号的干扰、提高了高频分辨率,避免故障信号的丢失和模态重叠。
为解决上述技术问题,本发明采用如下技术方案:
一种基于CEEMDAN分解判断轴承故障的方法,其特征在于,包括以下步骤:
S1、获取轴承的原始加速度信号;
S2、对所述加速度信号进行CEEMDAN分解,获取本征模态函数分量;
S3、计算出每层本征模态函数分量的峭度K;
S4、将峭度K大于设定值的各层本征模态函数分量对应值相加,得到重构的加速度信号;
S5、对重构的加速度信号进行包络解调,得到包络谱;
S6、根据轴承信号和转速计算出轴承特征频率;
S7、查看包络谱中轴承特征频率幅值大小,如果某个特征频率的幅值超出包络阈值,则这个特征频率所对应的轴承部件出现了故障。
上述技术方案中,步骤S2中的所述CEEMDAN分解包括:
步骤S21:通过EMD分解原始加速度信号得到高频分量参数;
步骤S22:计算第一层分量IMF1的幅值标准差;
步骤S23:计算第一层分量的幅值标准差与原始信号幅值标准差的比值ε;
步骤S24:设置期望的信号分解相对误差e;
步骤S25:白噪声幅值标准差的比值系数α的自适应提取:α=ε/β;其中,噪声强度大小调节参数β初始值为1,步长为1,取值区间为[1,10];
步骤S26:计算总体平均次数N=(α/e)2
步骤S27:用求得的第一组(α,N)进行CEEMDAN分解,得到该组所有层的IMF分量;
步骤S28:计算每一层IMF分量的协同信噪比CSNR,获取该组中协同信噪比最大值CSNR1max并保存;
步骤S29:在上限值10以内令β=β+1,重复步骤S25-S28而依次获得所有组的协同信噪比最大值,获取各组协同信噪比最大值中的最大值,进而得到该最大值对应的噪声强度大小调节参数β最优值,最终得到最优参数(α,N);
步骤S210:用最优参数(α,N),再次进行CEEMDAN分解,从而进行目标信号特征频率的自适应提取和有效检测。
上述技术方案中,步骤S26中总体平均次数N按四舍五入取整。
上述技术方案中,步骤S28中协同信噪比CSNR按照下式计算:
Figure BDA0003547720760000031
其中:SNR为分量IMF信噪比;C为分量IMF与原始信号的互相关系数;Nvar为分量IMF残余信号方差;z为分量IMF过零点比率;A为分量IMF最高谱峰与次高谱峰的幅值之差。
上述技术方案中,步骤S4中将峭度设定值为3。
上述技术方案中,步骤S6中轴承特征频率包括轴承的内圈、外圈、保持架、滚动体至少一个的特征频率。
作为本方法的可实现的载体,本发明还提供一种电子设备,包括:存储器、处理器及在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上任一项所述方法的步骤。
上述电子设备可以包括也可以不包括获取轴承的原始加速度信号的传感器件。
此外,作为本发明的可替代的实现方式,本发明还提供一种暂态或非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被执行时实现如上任一项所述方法的步骤。
由此,本发明的方法、电子设备和存储介质,通过CEEMDAN分解对原始信号进行定位分析,通过对重构信号进行包络解调,并获得解调谱,将轴承特征频率带入包络谱中寻找对应频率的幅值,寻找幅值比较突出的特征频率接近的轴承位置分类,即可初步判断轴承出现故障的具体位置。
本发明相比现有技术具有以下明显的有益效果:
1、噪声幅值标准差系数和总体平均次N通过算法自适应得出最优值,能够快速得到最优分解模型,提高了建立模型的效率;
2、运用峭度对信号进行重构,提高了信号的分辨率,减弱噪声和其他振动信号的干扰、提高了高频分辨率,避免故障信号的丢失和模态重叠;
3、本发明提出了CEEMDAN分解方法,以揭示噪声添加的定量机制,实现加入噪声大小及总体平均次数的自动获取,提高CEEMDAN对微弱故障特征信号的检测能力。
4、仅仅通过加速度信号即可获得轴承故障的具体位置,检测原理简单且易于实现,便于检测现场人工辅助或无人化操作。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明基于CEEMDAN分解判断轴承故障的方法流程图。
图2是本发明基于CEEMDAN分解判断轴承故障的方法中CEEMDAN分解算法流程图;
图3是本发明的原始信号图和重构信号图;
图4是本发明的信号包络谱图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,图1为本发明的分析方法流程图,基于CEEMDAN分解判断轴承故障的方法及计算设备,具体包括以下步骤:
S1、获取轴承的原始加速度信号;
S2、对加速度信号进行CEEMDAN分解,获取本征模态函数分量;
S3、计算出每层本征模态函数分量的峭度;
S4、根据峭度的大小确定有效信号分量;
S5、将CEEMDAN分解模型中峭度大于3各层本征模态函数分量对应值相加,得到重构的加速度信号;
S6、对重构加速度信号进行包络解调,得到包络谱;
S7、计算出轴承特征频率;
S8、查看包络谱中轴承特征频率幅值大小,如果某个特征频率的幅值超出包络阈值,则这个特征频率所对应的轴承部件出现了故障。
本发明选用的CEEMDAN分解算法流程如图2所示。
(1)信号前处理:首先用EMD方法处理原始振动信号,并计算第一层分量IMF1的幅值标准差,此分量为最高频分量,再计算该分量的幅值标准差与原始信号幅值标准差的比值ε,将其称为高频分量幅值标准差比值系数。
(2)设定参数:设置期望的信号分解相对误差e,一般设置为0.5%。
(3)白噪声幅值标准差的比值系数α的自适应提取:
白噪声幅值标准差的比值系数α定义为高频分量幅值标准差比值系数ε与调控参数β的比值,即α=ε/β,其中调控参数β为噪声强度大小调节参数,一般设置初始值为1,步长为1,取值区间为[1,10]。用网格搜索算法,以CSNR为目标函数,得到最优参数β。具体计算过程为:β的初始值设为1,通过计算得到对应的α,再利用式(1)计算总体平均次数N:
N=(α/e)2 (1)
其中:N为总体平均次数(按四舍五入取整);α为白噪声幅值标准差的比值系数;e为信号分解相对误差。
用求得的第一组(α,N)进行CEEMDAN分解,得到该组所有层的IMF分量。针对每一层IMF分量,按照公式(2)计算其协同信噪比CSNR:
Figure BDA0003547720760000061
其中:SNR为分量IMF信噪比;C为分量IMF与原始信号的互相关系数;Nvar为分量IMF残余信号方差;z为分量IMF过零点比率;A为分量IMF最高谱峰与次高谱峰的幅值之差。
取所有层的CSNR最大值并保存,记为CSNR1max
在上限值10以内令β=β+1,分别按上述方法计算,依次获得CSNR2max,CSNR3max,…,CSNR10max;获取CSNR1max,CSNR2max,…,CSNR10max中的最大值,进而得到其所对应的最优调控参数β,最终得到最优参数(α,N)。
(4)输出优化结果:用最优参数(α,N),再次进行CEEMDAN分解,从而实现了目标信号特征频率的自适应提取和有效检测。
在轴承试验台上的轴承外圈相互垂直的两个方向上安装振动加速度传感器,获取轴承的振动数据,经过图2流程计算得到最优参数α=0.0624,N=155(N四舍五入取整),然后进行CEEMDAN分解。
按照步骤S3计算出每层本征模态函数分量的峭度K,得到的数值如下表1所示。
表1每层本征模态函数分量的峭度K
所在层 峭度K
IMF1 3.4112
IMF2 3.8732
IMF3 3.3678
IMF4 3.4486
IMF5 3.2510
IMF6 2.6985
IMF7 3.1240
IMF8 3.0174
IMF9 2.8478
IMF10 2.7732
IMF11 2.1731
IMF12 2.0977
IMF13 3.8758
IMF14 2.7045
IMF15 1.6610
IMF16 2.4205
由表1可知,IMF1~IMF5、IMF7~IMF8、IMF13的峭度大于3,所以将这8个分量相加组成重构信号,如图3的原始信号和重构信号对比所示,经过分解重构后的信号,达到了去噪的效果。
轴承选型号6314深沟球轴承。轴承参数:滚动体个数Z=8,滚动体直径d=25.4mm,轴承中径D=110mm,接触角α=0。转速1800r/min时轴承故障频率如表2所示。
表2轴承特征频率(Hz)
结构 内圈 外圈 保持架 滚动体
特征频率 147.7 92.3 12 123
如图4所示,对重构信号进行包络解调,并获得解调谱,将轴承特征频率带入包络谱中寻找对应频率的幅值,根据经验发现147Hz的幅值比较突出,由此可以初步判断轴承内圈出现故障。
验证结果表明该方法能够有效识别轴承的故障部位,从而能够有效的对轴承故障进行诊断。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种基于CEEMDAN分解判断轴承故障的方法,其特征在于,包括以下步骤:
S1、获取轴承的原始加速度信号;
S2、对所述加速度信号进行CEEMDAN分解,获取本征模态函数分量;
S3、计算出每层本征模态函数分量的峭度K;
S4、将峭度K大于设定值的各层本征模态函数分量对应值相加,得到重构的加速度信号;
S5、对重构的加速度信号进行包络解调,得到包络谱;
S6、根据轴承信号和转速计算出轴承特征频率;
S7、查看包络谱中轴承特征频率幅值大小,如果某个特征频率的幅值超出包络阈值,则这个特征频率所对应的轴承部件出现了故障。
2.根据权利要求1所述的基于CEEMDAN分解判断轴承故障的方法,其特征在于步骤S2中的所述CEEMDAN分解包括:
步骤S21:通过EMD分解原始加速度信号得到高频分量参数;
步骤S22:计算第一层分量IMF1的幅值标准差;
步骤S23:计算第一层分量的幅值标准差与原始信号幅值标准差的比值ε;
步骤S24:设置期望的信号分解相对误差e;
步骤S25:白噪声幅值标准差的比值系数α的自适应提取:α=ε/β;其中,噪声强度大小调节参数β初始值为1,步长为1,取值区间为[1,10];
步骤S26:计算总体平均次数N=(α/e)2
步骤S27:用求得的第一组(α,N)进行CEEMDAN分解,得到该组所有层的IMF分量;
步骤S28:计算每一层IMF分量的协同信噪比CSNR,获取该组中协同信噪比最大值并保存;
步骤S29:在上限值10以内令β=β+1,重复步骤S25-S28而依次获得所有组的协同信噪比最大值,获取各组协同信噪比最大值中的最大值,进而得到该最大值对应的噪声强度大小调节参数β最优值,最终得到最优参数(α,N);
步骤S210:用最优参数(α,N),再次进行CEEMDAN分解,从而进行目标信号特征频率的自适应提取和有效检测。
3.根据权利要求2所述的基于CEEMDAN分解判断轴承故障的方法,其特征在于步骤S26中总体平均次数N按四舍五入取整。
4.根据权利要求2所述的基于CEEMDAN分解判断轴承故障的方法,其特征在于步骤S28中协同信噪比CSNR按照下式计算:
Figure FDA0003547720750000021
其中:SNR为分量IMF信噪比;C为分量IMF与原始信号的互相关系数;Nvar为分量IMF残余信号方差;z为分量IMF过零点比率;A为分量IMF最高谱峰与次高谱峰的幅值之差。
5.根据权利要求1所述的基于CEEMDAN分解判断轴承故障的方法,其特征在于步骤S4中峭度设定值为3。
6.根据权利要求1所述的基于CEEMDAN分解判断轴承故障的方法,其特征在于步骤S6中轴承特征频率包括轴承的内圈、外圈、保持架、滚动体至少一个的特征频率。
7.一种电子设备,包括:存储器、处理器及在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上权利要求1-6任一项所述方法的步骤。
8.根据权利要求7所述的电子设备,其特征在于包括或不包括获取轴承的原始加速度信号的传感器件。
9.一种暂态或非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被执行时实现如上权利要求1-6任一项所述方法的步骤。
CN202210253830.XA 2022-03-15 2022-03-15 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质 Withdrawn CN114636556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210253830.XA CN114636556A (zh) 2022-03-15 2022-03-15 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210253830.XA CN114636556A (zh) 2022-03-15 2022-03-15 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
CN114636556A true CN114636556A (zh) 2022-06-17

Family

ID=81946975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210253830.XA Withdrawn CN114636556A (zh) 2022-03-15 2022-03-15 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质

Country Status (1)

Country Link
CN (1) CN114636556A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486256A (zh) * 2021-08-22 2022-05-13 北京燃气绿源达清洁燃料有限公司 一种cng压缩机滚动轴承故障特征提取方法
CN115824647A (zh) * 2023-02-16 2023-03-21 南京凯奥思数据技术有限公司 基于均方差时域降采样的轴承故障诊断方法及诊断设备
CN116124456A (zh) * 2023-02-15 2023-05-16 广东海洋大学 一种自适应的滚动轴承故障特征提取诊断方法及装置
CN116242612A (zh) * 2023-01-09 2023-06-09 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN117150350A (zh) * 2023-10-31 2023-12-01 南京凯奥思数据技术有限公司 基于自适应iceemdan降噪的轴承故障诊断方法及系统
CN117193668A (zh) * 2023-11-02 2023-12-08 南京凯奥思数据技术有限公司 高频振动数据稀释方法、装置及电子设备
CN117686226A (zh) * 2024-02-04 2024-03-12 南京凯奥思数据技术有限公司 一种基于能量比和能量和的轴承自动故障诊断方法及系统
CN117970105A (zh) * 2024-03-28 2024-05-03 浙江大学 基于信号融合的电机轴承早期故障诊断方法及系统
CN118094477A (zh) * 2024-04-25 2024-05-28 山东大学 基于多传感器信息融合的信号处理方法及系统
CN118376410A (zh) * 2024-06-27 2024-07-23 南京凯奥思数据技术有限公司 基于数据稀释与svmd分解的轴承故障诊断方法与系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486256A (zh) * 2021-08-22 2022-05-13 北京燃气绿源达清洁燃料有限公司 一种cng压缩机滚动轴承故障特征提取方法
CN114486256B (zh) * 2021-08-22 2023-10-31 北京燃气绿源达清洁燃料有限公司 一种cng压缩机滚动轴承故障特征提取方法
CN116242612A (zh) * 2023-01-09 2023-06-09 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN116242612B (zh) * 2023-01-09 2023-11-21 广东海洋大学 一种故障诊断方法、装置、介质及设备
CN116124456A (zh) * 2023-02-15 2023-05-16 广东海洋大学 一种自适应的滚动轴承故障特征提取诊断方法及装置
CN115824647A (zh) * 2023-02-16 2023-03-21 南京凯奥思数据技术有限公司 基于均方差时域降采样的轴承故障诊断方法及诊断设备
CN117150350A (zh) * 2023-10-31 2023-12-01 南京凯奥思数据技术有限公司 基于自适应iceemdan降噪的轴承故障诊断方法及系统
CN117193668A (zh) * 2023-11-02 2023-12-08 南京凯奥思数据技术有限公司 高频振动数据稀释方法、装置及电子设备
CN117193668B (zh) * 2023-11-02 2024-01-30 南京凯奥思数据技术有限公司 高频振动数据稀释方法、装置及电子设备
CN117686226A (zh) * 2024-02-04 2024-03-12 南京凯奥思数据技术有限公司 一种基于能量比和能量和的轴承自动故障诊断方法及系统
CN117686226B (zh) * 2024-02-04 2024-04-16 南京凯奥思数据技术有限公司 一种基于能量比和能量和的轴承自动故障诊断方法及系统
CN117970105A (zh) * 2024-03-28 2024-05-03 浙江大学 基于信号融合的电机轴承早期故障诊断方法及系统
CN118094477A (zh) * 2024-04-25 2024-05-28 山东大学 基于多传感器信息融合的信号处理方法及系统
CN118376410A (zh) * 2024-06-27 2024-07-23 南京凯奥思数据技术有限公司 基于数据稀释与svmd分解的轴承故障诊断方法与系统

Similar Documents

Publication Publication Date Title
CN114636556A (zh) 基于ceemdan分解判断轴承故障的方法、电子设备及存储介质
WO2019061006A1 (en) METHOD AND DEVICE FOR DIAGNOSING BEARING FAULT, READABLE STORAGE MEDIUM, AND ELECTRONIC DEVICE
CN113375940A (zh) 基于svd和ceemdan的故障轴承诊断方法
CN109359506B (zh) 一种基于小波变换的心磁信号降噪方法
CN116865269B (zh) 一种风电机组高谐波补偿方法及系统
Yi et al. Mechanical compound faults extraction based on improved frequency domain blind deconvolution algorithm
CN111289796B (zh) 一种高比例可再生能源电力系统次同步振荡的检测方法
CN109029999B (zh) 基于增强调制双谱分析的滚动轴承故障诊断方法
CN117272210A (zh) 一种建筑施工异常隐患数据检测方法及系统
CN113607415A (zh) 一种变转速下基于短时随机共振的轴承故障诊断方法
CN113109289A (zh) 最优小波去噪组合的选取方法及THz光谱去噪方法
CN117949800A (zh) 一种场效晶体管智能测试方法及系统
CN117009870A (zh) 一种频域改进sdp图的泵空化状态识别方法
CN110807349A (zh) 基于emd分解和小波阈值的自适应降噪方法
CN115962941A (zh) 基于可调品质因子小波阈值降噪的滚动轴承故障诊断方法
Song et al. An improved structural health monitoring method utilizing sparse representation for acoustic emission signals in rails
CN116659860A (zh) 一种服役环境下航空发动机主轴承故障演化监测新方法
Kestel et al. Informed sparsity-based blind filtering in the presence of second-order cyclostationary noise
CN117349615A (zh) 强噪声条件下滚动轴承故障诊断的自适应增强包络谱方法
CN110174269B (zh) 变分模态分解和共振解调分析核电用泵冲击特征的方法
CN116667920A (zh) 结合主成分分析与希尔伯特-黄变换的瞬态信号检测方法
CN113758708B (zh) 一种基于l1范数与组范数约束的滚动轴承信号的频域故障诊断方法
CN112595515A (zh) 一种动力轴系轴承故障检测方法及系统
Chen et al. Analysis of the fault diagnosis method for wind turbine generator bearing based on improved wavelet packet-bp neural network
Shi et al. Wavelet de-noising method analysis of pipeline magnetic flux leakage in-line inspection based on coefficient of variation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220617

WW01 Invention patent application withdrawn after publication