WO2019061006A1 - Bearing failure diagnosis method and device, readable storage medium, and electronic device - Google Patents

Bearing failure diagnosis method and device, readable storage medium, and electronic device Download PDF

Info

Publication number
WO2019061006A1
WO2019061006A1 PCT/CN2017/103304 CN2017103304W WO2019061006A1 WO 2019061006 A1 WO2019061006 A1 WO 2019061006A1 CN 2017103304 W CN2017103304 W CN 2017103304W WO 2019061006 A1 WO2019061006 A1 WO 2019061006A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
feature
signals
acceleration signal
vibration acceleration
Prior art date
Application number
PCT/CN2017/103304
Other languages
French (fr)
Inventor
Zhi QIU
Hualiang Hu
Lai Wei
Zikui MA
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201780094590.0A priority Critical patent/CN111094927A/en
Priority to PCT/CN2017/103304 priority patent/WO2019061006A1/en
Publication of WO2019061006A1 publication Critical patent/WO2019061006A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Definitions

  • the present disclosure generally relates to bearing failure detection field, and more particularly, to bearing failure diagnosis method and device, a readable storage medium, and an electronic device.
  • Bearing as a basic part of mechanical devices has been widely used in various equipment, such as a train. A working status of the bearing plays a vital role in the safety of train running. Therefore, it is quite important to diagnose bearing failures.
  • Embodiments of the present disclosure may improve accuracy of bearing failure diagnosis.
  • a bearing failure diagnosis method including: acquiring a vibration acceleration signal of a bearing which is running; performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals; extracting feature parameters from the plurality of signals respectively and constructing feature vectors; constructing a feature matrix based on the feature vectors; feeding the feature matrix to a trained neural network model; and comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the failure diagnosis result of the bearing may include at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
  • acquiring a vibration acceleration signal of a bearing may include: acquiring a time domain vibration acceleration signal of the bearing.
  • extracting feature parameters from the plurality of signals respectively and constructing feature vectors may include: demodulating the time domain signals in the N frequency bands and performing time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and extracting feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and constructing feature vectors.
  • constructing a feature matrix based on the feature vectors may include: constructing a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
  • a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
  • the method may further include: denoising the vibration acceleration signal of the bearing.
  • denoising the vibration acceleration signal of the bearing may include: denoising the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
  • the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  • the method may further include: normalizing elements in the feature matrix.
  • the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
  • comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing may include: comparing the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determining that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  • a bearing failure diagnosis device including: an acquiring circuitry configured to acquire a vibration acceleration signal of a bearing which is running; a wavelet decomposing circuitry configured to perform wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals; a feature vector constructing circuitry configured to extract feature parameters from the plurality of signals respectively and construct feature vectors; a feature matrix constructing circuitry configured to construct a feature matrix based on the feature vectors; an inputting circuitry configured to feed the feature matrix to a trained neural network model; and a failure diagnosis result obtaining circuitry configured to compare an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the failure diagnosis result of the bearing may include at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
  • the acquiring circuitry may be configured to acquire a time domain vibration acceleration signal of the bearing.
  • the feature vector constructing circuitry may be configured to: demodulate the time domain signals in the N frequency bands and perform time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and extract feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and construct feature vectors.
  • the feature matrix constructing circuitry may be configured to: construct a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
  • a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
  • the bearing failure diagnosis device may further include a denoising circuitry configured to: denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
  • the denoising circuitry may be configured to: denoise the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
  • the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  • the bearing failure diagnosis device may further include a normalizing circuitry configured to: normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
  • the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
  • the failure diagnosis result obtaining circuitry may be configured to: compare the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determine that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  • a computer readable storage medium which has computer instructions stored therein is provided, wherein once the computer instructions are executed, any one of the above bearing failure diagnosis methods is performed.
  • an electronic device including a memory and a processor
  • the memory has computer instructions stored therein, and once executing the computer instructions, the processor performs any one of the above bearing failure diagnosis methods.
  • Wavelet decomposition is performed to the acquired vibration acceleration signal of the bearing to obtain a plurality of signals, feature parameters are extracted from the plurality of signals respectively and feature vectors are constructed, a feature matrix is constructed based on the feature vectors and fed to a trained neural network model which then processes the feature matrix to obtain an output result, and the output result is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the determination of the bearing failure does not depend on subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
  • the vibration acceleration signal prior to performing wavelet decomposition to the vibration acceleration signal of the bearing, the vibration acceleration signal is denoised, so as to reduce interference to the vibration acceleration signal caused by other signals, which may further improve accuracy of bearing failure diagnosis.
  • FIG. 1 is a flow chart of a bearing failure diagnosis method according to an embodiment
  • FIG. 2 is a diagram of wavelet decomposition according to an embodiment
  • FIG. 3 is a structural diagram of a bearing failure diagnosis device according to an embodiment.
  • wavelet decomposition is performed to the acquired vibration acceleration signal of the bearing to obtain a plurality of signals, feature parameters are extracted from the plurality of signals respectively and feature vectors are constructed, a feature matrix is constructed based on the feature vectors and fed to a trained neural network model which then processes the feature matrix to obtain an output result, and the output result is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the determination of the bearing failure does not depend on subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
  • a bearing failure diagnosis method is provided. Referring to Figure 1, the method is described in detail below with the detailed steps.
  • the vibration acceleration signal of the bearing is acquired from vibration signals of a mechanical system where the bearing is disposed.
  • the bearing is generally a component of a mechanical system.
  • a preset acceleration sensor may be employed to acquire the vibration signals of the mechanical system in real time.
  • the acceleration sensor may be disposed inside the mechanical system or independent from the mechanical system.
  • the vibration signals of the mechanical system acquired by the acceleration sensor include the vibration acceleration signal of the bearing, vibration acceleration signals of other components in the mechanical system, and some background noises. Therefore, in some embodiments, after the vibration signals of the mechanical system are acquired by the acceleration sensor, the vibration acceleration signal of the bearing is extracted.
  • the vibration acceleration signal of the bearing may be directly acquired by a sensor coupled with the bearing.
  • a sensor is preset to be coupled with the bearing. When the bearing is running, the sensor is employed to acquire the vibration acceleration signal of the bearing in real time.
  • the vibration acceleration signal of the bearing is extracted from the vibration signals of the mechanical system or directly acquired by the sensor coupled with the bearing, the obtained vibration acceleration signal of the bearing may include other noises. It could be understood that, the acquired vibration acceleration signal of the bearing in embodiments of the present disclosure is a signal acquired when the bearing is running.
  • the vibration acceleration signal of the bearing may be denoised, to reduce noises in the vibration acceleration signal of the bearing.
  • the vibration acceleration signal of the bearing may be denoised by using a wavelet shrinkage denoising method.
  • other denoising methods may be employed to denoise the vibration acceleration signal of the bearing, and are not described in detail here.
  • wavelet decomposition is performed to the vibration acceleration signal of the bearing.
  • the vibration acceleration signal of the bearing may be a time domain vibration acceleration signal of the bearing or a frequency domain vibration acceleration signal of the bearing. If the vibration acceleration signal of the bearing is a time domain vibration acceleration signal of the bearing, wavelet decomposition is performed to the time domain vibration acceleration signal of the bearing. If the vibration acceleration signal of the bearing is a frequency domain vibration acceleration signal of the bearing, wavelet decomposition is performed to the frequency domain vibration acceleration signal of the bearing.
  • wavelet decomposition is performed to the frequency domain vibration acceleration signal of the bearing, a mother wavelet function which has a waveform relevant to a waveform of the frequency domain vibration acceleration signal of the bearing may be selected, and wavelet decomposition is performed to the selected mother wavelet function. If wavelet decomposition is performed to the time domain vibration acceleration signal of the bearing, a mother wavelet function which has a waveform relevant to a waveform of the time domain vibration acceleration signal of the bearing may be selected, and wavelet decomposition is performed to the selected mother wavelet function.
  • wavelet decomposition performed to the time domain vibration acceleration signal of the bearing is described in detail.
  • the layers of wavelet decomposition may be determined based on practical requirements.
  • j 3. Accordingly, after wavelet decomposition is performed to the selected mother wavelet function, time domain signals in eight frequency bands with a same band width are obtained.
  • FIG. 2 is a diagram of wavelet decomposition according to an embodiment. Referring to Figure 2, the number j of layers of wavelet decomposition is three.
  • a signal S is decomposed to obtain signals S A1 and S D1 .
  • the signal S A1 is decomposed to obtain signals S AA2 and S DA2
  • the signal S D1 is decomposed to obtain signals S AD2 and S DD2 .
  • the signal S AA2 is decomposed to obtain signals S 30 and S 31
  • the signal S DA2 is decomposed to obtain signals S 32 and S 33
  • the signal S AD2 is decomposed to obtain signals S 34 and S 35
  • the signal S DD2 is decomposed to obtain signals S 36 and S 37 .
  • the signal S is subjected to three-layer wavelet decomposition and reconstruction to obtain third-layer signals which include time domain signals in eight frequency bands with the same band width, i.e., S 30 , S 31 , S 32 , S 33 , S 34 , S 35 , S 36 and S 37 .
  • a mother wavelet function which has a waveform relevant to a waveform of the vibration acceleration signal of the bearing may be selected.
  • Relevant waveform means that the waveform of the mother wavelet function is similar with the waveform of the vibration acceleration signal of the bearing, and the similarity reaches a predetermined threshold.
  • a mother wavelet function which has a waveform similar with a waveform of the time domain vibration acceleration signal of the bearing may be selected according to practical experiences.
  • the waveform of the selected mother wavelet function is relevant to the waveform of the time domain vibration acceleration signal of the bearing
  • signals relevant to the time domain vibration acceleration signal of the bearing, among the time domain signals in the N frequency bands with the same band width may be outlined, while signals irrelevant to the time domain vibration acceleration signal of the bearing may be weakened.
  • the time domain signals in the N frequency bands are demodulated. If the time domain vibration acceleration signal of the bearing includes an impact frequency component caused by a bearing failure, the impact frequency component may be extracted from a high-frequency carrier signal after the demodulation of the time domain signals in the N frequency bands, as characteristics of the time domain signals in each frequency band are more distinct after the demodulation.
  • time-frequency transformation is performed to the time domain signals to obtain frequency domain signals
  • characteristics of waveforms in the frequency domain may be more distinct than that of waveforms in the time domain. Therefore, after the demodulation of the time domain signals in the N frequency bands, time-frequency transformation is performed to the demodulated time domain signals in the N frequency bands, to transform the time domain signals in the N frequency bands into corresponding frequency domain signals in the N frequency bands.
  • the time-frequency transformation may employ a Fast Fourier Transformation (FFT) method, to transform the time domain signals in the N frequency bands into the corresponding frequency domain signals in the N frequency bands.
  • FFT Fast Fourier Transformation
  • the extracted feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  • same feature parameters may be extracted from the frequency domain signals in each of the N frequency bands to obtain the feature vectors, where the number of the feature vectors is the same as the number of the feature parameters extracted from the frequency domain signals in each frequency band, and the number of elements in each feature vector is N.
  • N 8. Accordingly, five feature parameters are extracted from the frequency domain signals in each frequency band, and N is 8. Accordingly, the number of the feature vectors is 5, and the number of elements in each feature vector is 8.
  • the feature parameters extracted from the frequency domain signals in the N frequency bands may include at least one selected from: energy of the frequency domain signals in each frequency band, a crest factor of the frequency domain signals in each frequency band, standard deviation of the frequency domain signals in each frequency band, a root mean square of the frequency domain signals in each frequency band, and 90 percentile of the frequency domain signals in each frequency band.
  • a feature matrix is constructed based on the feature vectors.
  • the feature matrix may be constructed after the feature vectors are obtained in S103.
  • a size of the constructed feature matrix is M by N, and M is the number of the feature vectors.
  • a size of the constructed feature matrix is 5 by 8, that is, the constructed feature matrix includes five rows and eight columns.
  • FS FS 30 + FS 31 + FS 32 + FS 33 + FS 34 + FS 35 + FS 36 + FS 37 (1) ,
  • FS is the frequency domain vibration acceleration signal corresponding to the time domain vibration acceleration signal
  • FS 30 to FS 37 are the frequency domain signals corresponding toS 30 ⁇ S 37 .
  • the crest factor of the frequency domain signal reflects a mechanical vibration level of the frequency domain signal.
  • the crest factor of the frequency domain signals in the i th frequency band is where peak 3i is a crest value of the frequency domain signals in the i th frequency band, and RMS 3i is a root mean square of the frequency domain signals in the i th frequency band.
  • the standard deviation reflects a dispersion degree of data in an array.
  • an impact phenomenon will happen.
  • a failure signal in each frequency band has a remarkable feature after demodulation, thus the standard deviation can indicate a bearing failure.
  • the standard deviation of the frequency domain signals in the i th frequency band is where L is the number of values of the frequency domain signals in the i th frequency band, x l is the l th value of the frequency domain signals in the i th frequency band, r is an average value of values of the frequency domain signals in the i th frequency band, and
  • the root mean square reflects a total energy level of a signal, thus it can serve as one feature parameter in bearing failure diagnosis.
  • the root mean square of the frequency domain signals in the i th frequency band is where L is the number of values of the frequency domain signals in the i th frequency band, and x l is the l th value of the frequency domain signals in the i th frequency band.
  • the feature parameters extracted from the frequency domain signals in the N frequency bands are not limited to the types of parameters provided in the above embodiments. Other feature parameters that can reflect characteristics of the frequency signals may be extracted, and are not described in detail here.
  • one or more of the feature vectors generated in S103 is selected to construct the feature matrix.
  • the feature matrix is fed to a trained neural network model.
  • a neural network may be pre-generated and trained.
  • a plurality of groups of data of known failures to be detected or diagnosed may be collected and a generated neural network model is trained.
  • weighting values of all layers may be continuously adjusted based on an input known feature matrix, until an error of the neural network model reaches a predetermined minimum error.
  • normalization is performed to the feature matrix before the feature matrix is fed to the neural network model.
  • an element with the maximum value is selected from the feature matrix, and other elements in the feature matrix are divided by the selected element respectively to realize the normalization of the feature matrix.
  • an output result of the trained neural network model is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the target matrix is predetermined.
  • a size of the target matrix is M by K, and K is the number of parts to be diagnosed in the bearing.
  • a bearing generally consists of Outer Ring (OR) , Inner Ring (IR) , roller, and cage.
  • a training procedure of a neural network model may include data preparation and training of the neural network model.
  • the acquired vibration acceleration signal, a failure signal feature matrix corresponding to the OR of the bearing, a failure signal feature matrix corresponding to the IR of the bearing, a failure signal feature matrix corresponding to the roller of the bearing, and a failure signal feature matrix corresponding to the cage of the bearing serve as the input of the neural network model, and the neural network model is trained by taking a predetermined target matrix as an output.
  • weighting values and thresholds are continuously adjusted according to a predetermined minimum error, until the predetermined minimum error is achieved.
  • data needed in the training of the neural network model and the determination of the minimum error may take a failure diagnosis result as reference, such as whether a failure occurs, an object of the failure diagnosis (i.e., a part of the bearing which needs to be diagnosed) , and a severity level of a failure in different working conditions.
  • k is 4, and the target matrix may be set as
  • a first row is a target vector representing a failure occurs in the OR of the bearing
  • a second row is a target vector representing a failure occurs in the IR of the bearing
  • a third row is a target vector representing a failure occurs in the roller of the bearing
  • a fourth row is a target vector representing a failure occurs in the cage of the bearing.
  • the target matrix may be reconstructed.
  • Each column in the target matrix may be expanded to be an independent M ⁇ K matrix, so as to obtain K target matrices which correspond to K parts of the bearing respectively.
  • K target matrices which correspond to K parts of the bearing respectively.
  • elements in different rows are the same.
  • K is 4 and M is 5.
  • the four columns in the target matrix are expanded to be four independent 5 ⁇ 4 target matrices which are the target matrices corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing, where the target matrix corresponding to the bearing in a normal status is the target matrix corresponding to the OR of the bearing is the target matrix corresponding to the IR of the bearing is the target matrix corresponding to the roller of the bearing is and the target matrix corresponding to the cage of the bearing is
  • the target matrix corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing are generated by expanding the predetermined target matrix.
  • the trained neural network model may include an input layer, a hidden layer and an output layer.
  • Data of the input layer is the feature matrix
  • data of the output layer is the predetermined target matrix.
  • the data of the output layer may include the target matrix corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing that are generated by expanding the predetermined target matrix.
  • the output result of the trained neural network model may be compared with the predetermined target matrix to obtain error values between the output result and the target matrix; and it is determined that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  • comparing the output result of the trained neural network model with the predetermined target matrix may include: comparing the output result of the trained neural network model with the plurality of target matrices generated by expansion, that is, comparing the output result of the trained neural network model with the target matrix corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing respectively, to obtain the minimum error value with the target matrices generated by expansion, and to further determine that a failure occurs in which part of the bearing.
  • the output result of the trained neural network model is a 5 ⁇ 4 matrix, and elements in the first column are within a range from 0.9 to 1. It can be determined that an error between the output result of the trained neural network model and the target matrix corresponding to the OR of the bearing is minimum, which further leads to a conclusion that a failure occurs in the OR of the bearing.
  • wavelet decomposition is performed to the acquired time domain vibration acceleration signal of the bearing, where both high-frequency part and low-frequency part are considered.
  • the feature parameters are extracted from the frequency domain signals in the N frequency bands respectively and the feature vectors are constructed, the feature matrix is constructed based on the feature vectors and fed to the neural network model, and the failure diagnosis result of the bearing is obtained based on the output result of the neural network model.
  • the determination of the bearing failure does not depend on subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
  • FIG. 3 is a structural diagram of a bearing failure diagnosis device according to an embodiment.
  • the bearing failure diagnosis device 30 includes: an acquiring circuitry 301 configured to acquire a vibration acceleration signal of a bearing which is running; a wavelet decomposing circuitry 302 configured to perform wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals; a feature vector constructing circuitry 303 configured to extract feature parameters from the plurality of signals respectively and construct feature vectors; a feature matrix constructing circuitry 304 configured to construct a feature matrix based on the feature vectors; an inputting circuitry 305 configured to feed the feature matrix to a trained neural network model; and a failure diagnosis result obtaining circuitry 306 configured to compare an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  • the acquiring circuitry 301 may be configured to acquire a time domain vibration acceleration signal of the bearing.
  • other circuitries in the bearing failure diagnosis device 30 may be set to be a portion of an on-line system or an off-line system according to practical requirements.
  • the feature vector constructing circuitry 303 may be configured to: demodulate the time domain signals in the N frequency bands and perform time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and extract feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and construct feature vectors.
  • the feature matrix constructing circuitry 304 may be configured to: construct a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
  • a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
  • the bearing failure diagnosis device 30 may further include a denoising circuitry (not shown in Figure 3) configured to: denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
  • a denoising circuitry (not shown in Figure 3) configured to: denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
  • the denoising circuitry may be configured to: denoise the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
  • the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  • the bearing failure diagnosis device 30 may further include a normalizing circuitry (not shown in Figure 3) configured to: normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
  • a normalizing circuitry (not shown in Figure 3) configured to: normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
  • the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
  • the failure diagnosis result obtaining circuitry 306 may be configured to: compare the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determine that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  • a computer readable storage medium which has computer instructions stored therein is provided, wherein once the computer instructions are executed, the bearing failure diagnosis method provided in the above embodiments is performed.
  • an electronic device including a memory and a processor
  • the memory has computer instructions stored therein, and once executing the computer instructions, the processor performs the bearing failure diagnosis method provided in the above embodiments.
  • the computer program may be stored in a readable storage medium, such as a Read-Only Memory (ROM) , a Random Access Memory (RAM) , a magnetic disk or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk a magnetic disk or an optical disk.

Abstract

Bearing failure diagnosis method and device, a readable storage medium, and an electronic device are provided. The bearing failure diagnosis method includes: acquiring a vibration acceleration signal of a bearing which is running (S101); performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals (S102); extracting feature parameters from the plurality of signals respectively and constructing feature vectors (S103); constructing a feature matrix based on the feature vectors (S104); feeding the feature matrix to a trained neural network model (S105); and comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing (S106). Accuracy of bearing failure diagnosis may be improved.

Description

BEARING FAILURE DIAGNOSIS METHOD AND DEVICE, READABLE STORAGE MEDIUM, AND ELECTRONIC DEVICE FIELD
The present disclosure generally relates to bearing failure detection field, and more particularly, to bearing failure diagnosis method and device, a readable storage medium, and an electronic device.
BACKGROUND
Bearing as a basic part of mechanical devices has been widely used in various equipment, such as a train. A working status of the bearing plays a vital role in the safety of train running. Therefore, it is quite important to diagnose bearing failures.
In existing techniques, to diagnose bearing failures, data analyzers generally make subjective judgement by observing an envelope spectrum waveform of a demodulated time domain vibration acceleration signal, which requires the data analyzers mastering related theory to perform analysis on data and thus is relatively subjective. There are also some bearing failure diagnosis methods based on neural network theory. However, the methods always result in low accuracy of bearing failure diagnosis.
SUMMARY
Embodiments of the present disclosure may improve accuracy of bearing failure diagnosis.
In an embodiment, a bearing failure diagnosis method is provided, including: acquiring a vibration acceleration signal of a bearing which is running; performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals;  extracting feature parameters from the plurality of signals respectively and constructing feature vectors; constructing a feature matrix based on the feature vectors; feeding the feature matrix to a trained neural network model; and comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
In some embodiments, the failure diagnosis result of the bearing may include at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
In some embodiments, acquiring a vibration acceleration signal of a bearing may include: acquiring a time domain vibration acceleration signal of the bearing.
In some embodiments, performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals may include: selecting a mother wavelet function, wherein a waveform of the mother wavelet function is relevant to a waveform of the time domain vibration acceleration signal of the bearing; and performing wavelet decomposition to the mother wavelet function to obtain time domain signals in N frequency bands, where N=2j, and j is the number of layers of the wavelet decomposition.
In some embodiments, extracting feature parameters from the plurality of signals respectively and constructing feature vectors may include: demodulating the time domain signals in the N frequency bands and performing time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and extracting feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and constructing feature vectors.
In some embodiments, constructing a feature matrix based on the  feature vectors may include: constructing a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
In some embodiments, a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
In some embodiments, prior to performing wavelet decomposition to the vibration acceleration signal of the bearing, the method may further include: denoising the vibration acceleration signal of the bearing.
In some embodiments, denoising the vibration acceleration signal of the bearing may include: denoising the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
In some embodiments, the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
In some embodiments, prior to feeding the feature matrix to a trained neural network model, the method may further include: normalizing elements in the feature matrix.
In some embodiments, the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
In some embodiments, comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing may include: comparing the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determining that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error  values.
In an embodiment, a bearing failure diagnosis device is provided, including: an acquiring circuitry configured to acquire a vibration acceleration signal of a bearing which is running; a wavelet decomposing circuitry configured to perform wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals; a feature vector constructing circuitry configured to extract feature parameters from the plurality of signals respectively and construct feature vectors; a feature matrix constructing circuitry configured to construct a feature matrix based on the feature vectors; an inputting circuitry configured to feed the feature matrix to a trained neural network model; and a failure diagnosis result obtaining circuitry configured to compare an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
In some embodiments, the failure diagnosis result of the bearing may include at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
In some embodiments, the acquiring circuitry may be configured to acquire a time domain vibration acceleration signal of the bearing.
In some embodiments, the wavelet decomposing circuitry may be configured to: select a mother wavelet function, wherein a waveform of the mother wavelet function is relevant to a waveform of the time domain vibration acceleration signal of the bearing; and perform wavelet decomposition to the mother wavelet function to obtain time domain signals in N frequency bands, where N=2j, and j is the number of layers of the wavelet decomposition.
In some embodiments, the feature vector constructing circuitry may be configured to: demodulate the time domain signals in the N frequency bands and perform time-frequency transformation to obtain  corresponding frequency domain signals in the N frequency bands; and extract feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and construct feature vectors.
In some embodiments, the feature matrix constructing circuitry may be configured to: construct a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
In some embodiments, a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
In some embodiments, the bearing failure diagnosis device may further include a denoising circuitry configured to: denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
In some embodiments, the denoising circuitry may be configured to: denoise the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
In some embodiments, the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
In some embodiments, the bearing failure diagnosis device may further include a normalizing circuitry configured to: normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
In some embodiments, the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the  predetermined target matrix.
In some embodiments, the failure diagnosis result obtaining circuitry may be configured to: compare the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determine that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
In an embodiment, a computer readable storage medium which has computer instructions stored therein is provided, wherein once the computer instructions are executed, any one of the above bearing failure diagnosis methods is performed.
In an embodiment, an electronic device including a memory and a processor is provided, wherein the memory has computer instructions stored therein, and once executing the computer instructions, the processor performs any one of the above bearing failure diagnosis methods.
Compared with the existing techniques, embodiments of the present disclosure may have following advantages. Wavelet decomposition is performed to the acquired vibration acceleration signal of the bearing to obtain a plurality of signals, feature parameters are extracted from the plurality of signals respectively and feature vectors are constructed, a feature matrix is constructed based on the feature vectors and fed to a trained neural network model which then processes the feature matrix to obtain an output result, and the output result is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing. The determination of the bearing failure does not depend on subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
Further, prior to performing wavelet decomposition to the vibration acceleration signal of the bearing, the vibration acceleration signal is denoised, so as to reduce interference to the vibration acceleration signal  caused by other signals, which may further improve accuracy of bearing failure diagnosis.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flow chart of a bearing failure diagnosis method according to an embodiment;
FIG. 2 is a diagram of wavelet decomposition according to an embodiment; and
FIG. 3 is a structural diagram of a bearing failure diagnosis device according to an embodiment.
DETAILED DESCRIPTIONOF EMBODIMENTS
In the existing techniques, to diagnose bearing failures, data analyzers generally make subjective judgement by observing an envelope spectrum waveform of a demodulated time domain vibration acceleration signal, which requires the data analyzers mastering related theory to perform analysis on data and thus is relatively subjective. There are also some bearing failure diagnosis methods based on neural network theory. However, the methods always result in low accuracy of bearing failure diagnosis.
In embodiments of the present disclosure, wavelet decomposition is performed to the acquired vibration acceleration signal of the bearing to obtain a plurality of signals, feature parameters are extracted from the plurality of signals respectively and feature vectors are constructed, a feature matrix is constructed based on the feature vectors and fed to a trained neural network model which then processes the feature matrix to obtain an output result, and the output result is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing. The determination of the bearing failure does not depend on  subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
In order to clarify the object, solutions and advantages of embodiments of the present disclosure, embodiments of present disclosure will be described clearly in detail in conjunction with accompanying drawings.
In an embodiment, a bearing failure diagnosis method is provided. Referring to Figure 1, the method is described in detail below with the detailed steps.
In S101, a vibration acceleration signal of a bearing which is running is acquired.
In some embodiments, when the bearing is running, the vibration acceleration signal of the bearing is acquired from vibration signals of a mechanical system where the bearing is disposed.
In practice, the bearing is generally a component of a mechanical system. When the mechanical system is running, a preset acceleration sensor may be employed to acquire the vibration signals of the mechanical system in real time. The acceleration sensor may be disposed inside the mechanical system or independent from the mechanical system.
The vibration signals of the mechanical system acquired by the acceleration sensor include the vibration acceleration signal of the bearing, vibration acceleration signals of other components in the mechanical system, and some background noises. Therefore, in some embodiments, after the vibration signals of the mechanical system are acquired by the acceleration sensor, the vibration acceleration signal of the bearing is extracted.
In some embodiments, the vibration acceleration signal of the bearing may be directly acquired by a sensor coupled with the bearing.  For example, a sensor is preset to be coupled with the bearing. When the bearing is running, the sensor is employed to acquire the vibration acceleration signal of the bearing in real time.
No matter the vibration acceleration signal of the bearing is extracted from the vibration signals of the mechanical system or directly acquired by the sensor coupled with the bearing, the obtained vibration acceleration signal of the bearing may include other noises. It could be understood that, the acquired vibration acceleration signal of the bearing in embodiments of the present disclosure is a signal acquired when the bearing is running.
Therefore, after the acquisition, the vibration acceleration signal of the bearing may be denoised, to reduce noises in the vibration acceleration signal of the bearing. In some embodiments, the vibration acceleration signal of the bearing may be denoised by using a wavelet shrinkage denoising method. In some embodiments, other denoising methods may be employed to denoise the vibration acceleration signal of the bearing, and are not described in detail here.
In S102, wavelet decomposition is performed to the vibration acceleration signal of the bearing.
In some embodiments, the vibration acceleration signal of the bearing may be a time domain vibration acceleration signal of the bearing or a frequency domain vibration acceleration signal of the bearing. If the vibration acceleration signal of the bearing is a time domain vibration acceleration signal of the bearing, wavelet decomposition is performed to the time domain vibration acceleration signal of the bearing. If the vibration acceleration signal of the bearing is a frequency domain vibration acceleration signal of the bearing, wavelet decomposition is performed to the frequency domain vibration acceleration signal of the bearing.
If wavelet decomposition is performed to the frequency domain  vibration acceleration signal of the bearing, a mother wavelet function which has a waveform relevant to a waveform of the frequency domain vibration acceleration signal of the bearing may be selected, and wavelet decomposition is performed to the selected mother wavelet function. If wavelet decomposition is performed to the time domain vibration acceleration signal of the bearing, a mother wavelet function which has a waveform relevant to a waveform of the time domain vibration acceleration signal of the bearing may be selected, and wavelet decomposition is performed to the selected mother wavelet function.
In the below embodiment, wavelet decomposition performed to the time domain vibration acceleration signal of the bearing is described in detail.
In the embodiment, a mother wavelet function which has a waveform relevant to a waveform of the time domain vibration acceleration signal of the bearing is selected, and wavelet decomposition is performed to the selected mother wavelet function, to obtain time domain signals in N frequency bands, where N=2j, and j is the number of layers of the wavelet decomposition.
In some embodiments, the layers of wavelet decomposition may be determined based on practical requirements. In some embodiments, j=3. Accordingly, after wavelet decomposition is performed to the selected mother wavelet function, time domain signals in eight frequency bands with a same band width are obtained.
FIG. 2 is a diagram of wavelet decomposition according to an embodiment. Referring to Figure 2, the number j of layers of wavelet decomposition is three.
Still referring to Figure 2, first, a signal S is decomposed to obtain signals SA1 and SD1. Second, the signal SA1 is decomposed to obtain signals SAA2 and SDA2, and the signal SD1 is decomposed to obtain signals SAD2 and SDD2. Third, the signal SAA2 is decomposed to obtain signals S30 and S31, the signal SDA2 is decomposed to obtain signals S32 and S33,  the signal SAD2 is decomposed to obtain signals S34 and S35, and the signal SDD2 is decomposed to obtain signals S36 and S37.
From above, the signal S is subjected to three-layer wavelet decomposition and reconstruction to obtain third-layer signals which include time domain signals in eight frequency bands with the same band width, i.e., S30, S31, S32, S33, S34, S35, S36 and S37.
In some embodiments, for the selection of the mother wavelet function, a mother wavelet function which has a waveform relevant to a waveform of the vibration acceleration signal of the bearing may be selected. Relevant waveform means that the waveform of the mother wavelet function is similar with the waveform of the vibration acceleration signal of the bearing, and the similarity reaches a predetermined threshold.
For example, a mother wavelet function which has a waveform similar with a waveform of the time domain vibration acceleration signal of the bearing may be selected according to practical experiences. As the waveform of the selected mother wavelet function is relevant to the waveform of the time domain vibration acceleration signal of the bearing, after wavelet decomposition is performed to the selected mother wavelet function, signals relevant to the time domain vibration acceleration signal of the bearing, among the time domain signals in the N frequency bands with the same band width, may be outlined, while signals irrelevant to the time domain vibration acceleration signal of the bearing may be weakened.
In some embodiments, the time domain signals in the N frequency bands are demodulated. If the time domain vibration acceleration signal of the bearing includes an impact frequency component caused by a bearing failure, the impact frequency component may be extracted from a high-frequency carrier signal after the demodulation of the time domain signals in the N frequency bands, as characteristics of the time domain signals in each frequency band are more distinct after the demodulation.
It is known in practice that, after time-frequency transformation is performed to the time domain signals to obtain frequency domain signals, characteristics of waveforms in the frequency domain may be more distinct than that of waveforms in the time domain. Therefore, after the demodulation of the time domain signals in the N frequency bands, time-frequency transformation is performed to the demodulated time domain signals in the N frequency bands, to transform the time domain signals in the N frequency bands into corresponding frequency domain signals in the N frequency bands.
In some embodiments, the time-frequency transformation may employ a Fast Fourier Transformation (FFT) method, to transform the time domain signals in the N frequency bands into the corresponding frequency domain signals in the N frequency bands.
In S103, feature parameters are extracted from the plurality of signals respectively and feature vectors are constructed.
In some embodiments, the extracted feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
In some embodiments, after wavelet decomposition is performed to the mother wavelet function to obtain frequency domain signals in N frequency bands, same feature parameters may be extracted from the frequency domain signals in each of the N frequency bands to obtain the feature vectors, where the number of the feature vectors is the same as the number of the feature parameters extracted from the frequency domain signals in each frequency band, and the number of elements in each feature vector is N.
For example, five feature parameters are extracted from the frequency domain signals in each frequency band, and N is 8. Accordingly, the number of the feature vectors is 5, and the number of  elements in each feature vector is 8.
In some embodiments, the feature parameters extracted from the frequency domain signals in the N frequency bands may include at least one selected from: energy of the frequency domain signals in each frequency band, a crest factor of the frequency domain signals in each frequency band, standard deviation of the frequency domain signals in each frequency band, a root mean square of the frequency domain signals in each frequency band, and 90 percentile of the frequency domain signals in each frequency band.
In S104, a feature matrix is constructed based on the feature vectors.
In some embodiments, the feature matrix may be constructed after the feature vectors are obtained in S103.
In some embodiments, after wavelet decomposition is performed to the mother wavelet function to obtain frequency domain signals in the N frequency bands, same feature parameters may be extracted from the frequency domain signals in each of the N frequency bands to obtain the feature vectors. Accordingly, a size of the constructed feature matrix is M by N, and M is the number of the feature vectors.
For example, three-layer wavelet decomposition is performed to the time domain vibration acceleration signal of the bearing, where j=3 and N=8. For the frequency domain signals in each frequency band, five feature parameters are extracted, and thus five feature vectors are constructed. In this way, a size of the constructed feature matrix is 5 by 8, that is, the constructed feature matrix includes five rows and eight columns.
S103 and S104 are described in detail below by taking N=8 as an example.
It is known in practice that, according to the wavelet packet reconstruction theory, the signal S can be perfectly reconstructed by the decomposed signals. Based on the law of conservation of energy,  energy in time domain is equal to energy in frequency domain. Therefore, the following Equation can be obtained,
FS=FS30+ FS31+ FS32+ FS33+ FS34+ FS35+ FS36+ FS37   (1) ,
where FS is the frequency domain vibration acceleration signal corresponding to the time domain vibration acceleration signal, and FS30 to FS37 are the frequency domain signals corresponding toS30~S37.
Assume that energy of the frequency domain signals in the ith frequency band is E3i
Figure PCTCN2017103304-appb-000001
where i=0, 1, 2, …, 7, k=1, 2, …, n, and xik is a wavelet packet coefficient of the third-layer signal S3i after wavelet decomposition. Therefore, the total energy of the frequency domain signals in the N frequency bands is
Figure PCTCN2017103304-appb-000002
Relative wavelet packet coefficient energy of the frequency domain signals in each frequency band in the third-layer is
Figure PCTCN2017103304-appb-000003
After the energy of the frequency domain signals in each frequency band is obtained, the feature vector based on the energy is constructed as R= [R30, R31, …, R37] .
It is known in practice that, the crest factor of the frequency domain signal reflects a mechanical vibration level of the frequency domain signal.
In some embodiments, the crest factor of the frequency domain signals in the ith frequency band is
Figure PCTCN2017103304-appb-000004
where peak3i is a crest value of the frequency domain signals in the ith frequency band, and RMS3i is a root mean square of the frequency domain signals in the ith  frequency band.
After the crest factor of the frequency domain signals in each frequency band is obtained, the feature vector based on the crest factor is constructed as C= [C30, C31, …, C37] .
It is known in practice that, the standard deviation reflects a dispersion degree of data in an array. When a failure occurs in the bearing, an impact phenomenon will happen. A failure signal in each frequency band has a remarkable feature after demodulation, thus the standard deviation can indicate a bearing failure.
In some embodiments, the standard deviation of the frequency domain signals in the ith frequency band is
Figure PCTCN2017103304-appb-000005
where L is the number of values of the frequency domain signals in the ith frequency band, xl is the lth value of the frequency domain signals in the ith frequency band, r is an average value of values of the frequency domain signals in the ith frequency band, and
Figure PCTCN2017103304-appb-000006
After the standard deviation of the frequency domain signals in each frequency band is obtained, the feature vector based on the standard deviation is constructed as σ= [σ30, σ31, …, σ37] .
It is known in practice that, the root mean square reflects a total energy level of a signal, thus it can serve as one feature parameter in bearing failure diagnosis.
In some embodiments, the root mean square of the frequency  domain signals in the ith frequency band is
Figure PCTCN2017103304-appb-000007
where L is the number of values of the frequency domain signals in the ith frequency band, and xl is the lth value of the frequency domain signals in the ith frequency band.
After the root mean square of the frequency domain signals in each frequency band is obtained, the feature vector based on the root mean square is constructed as RMS= [RMS30, RMS31, …, RMS37] .
In some embodiments, for the frequency domain signals in the ith frequency band, 90 percentile P3i of the maximum value in the ith frequency band is selected. After the 90 percentile of the frequency domain signals in each frequency band is obtained, the feature vector based on the 90 percentile is constructed as P= [P30, P31, …, P37] .
It could be understood that, the feature parameters extracted from the frequency domain signals in the N frequency bands are not limited to the types of parameters provided in the above embodiments. Other feature parameters that can reflect characteristics of the frequency signals may be extracted, and are not described in detail here.
In some embodiments, according to practical requirements, one or more of the feature vectors generated in S103 is selected to construct the feature matrix. For example, N=8, and the feature vectors based on the energy and the feature vectors based on the crest factor are selected from the feature vectors generated in S103 to construct the feature matrix. Accordingly, a size of the feature matrix is 2 by 8. For another example, N=8, and all the feature vectors generated in S103 are selected to  construct the feature matrix. Accordingly, a size of the feature matrix is 5 by 8.
In S105, the feature matrix is fed to a trained neural network model.
In some embodiments, a neural network may be pre-generated and trained. In practice, a plurality of groups of data of known failures to be detected or diagnosed may be collected and a generated neural network model is trained. During the training of the generated neural network model, weighting values of all layers may be continuously adjusted based on an input known feature matrix, until an error of the neural network model reaches a predetermined minimum error.
In some embodiments, to accelerate a converge speed of the neural network model, normalization is performed to the feature matrix before the feature matrix is fed to the neural network model. During the normalization, an element with the maximum value is selected from the feature matrix, and other elements in the feature matrix are divided by the selected element respectively to realize the normalization of the feature matrix.
In S106, an output result of the trained neural network model is compared with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
S105 and S106 are described in detail below.
In some embodiments, the target matrix is predetermined. A size of the target matrix is M by K, and K is the number of parts to be diagnosed in the bearing.
It is known in practice that, a bearing generally consists of Outer Ring (OR) , Inner Ring (IR) , roller, and cage. In practice, a training procedure of a neural network model may include data preparation and training of the neural network model. In the data preparation, the acquired vibration acceleration signal, a failure signal feature matrix  corresponding to the OR of the bearing, a failure signal feature matrix corresponding to the IR of the bearing, a failure signal feature matrix corresponding to the roller of the bearing, and a failure signal feature matrix corresponding to the cage of the bearing serve as the input of the neural network model, and the neural network model is trained by taking a predetermined target matrix as an output. In the training of the neural network model, weighting values and thresholds are continuously adjusted according to a predetermined minimum error, until the predetermined minimum error is achieved.
In some embodiments, data needed in the training of the neural network model and the determination of the minimum error may take a failure diagnosis result as reference, such as whether a failure occurs, an object of the failure diagnosis (i.e., a part of the bearing which needs to be diagnosed) , and a severity level of a failure in different working conditions.
In some embodiments, k is 4, and the target matrix may be set as
Figure PCTCN2017103304-appb-000008
In the target matrix, a first row is a target vector representing a failure occurs in the OR of the bearing, a second row is a target vector representing a failure occurs in the IR of the bearing, a third row is a target vector representing a failure occurs in the roller of the bearing, and a fourth row is a target vector representing a failure occurs in the cage of the bearing.
As the feature matrix serves as the input of the neural network model, and the size of the feature matrix is M by N, the target matrix may be reconstructed. Each column in the target matrix may be expanded to be an independent M×K matrix, so as to obtain K target matrices which  correspond to K parts of the bearing respectively. For each M×K matrix, elements in different rows are the same.
In some embodiments, K is 4 and M is 5. The four columns in the target matrix are expanded to be four independent 5×4 target matrices which are the target matrices corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing, where the target matrix corresponding to the bearing in a normal status is
Figure PCTCN2017103304-appb-000009
the target matrix corresponding to the OR of the bearing is
Figure PCTCN2017103304-appb-000010
the target matrix corresponding to the IR of the bearing is 
Figure PCTCN2017103304-appb-000011
the target matrix corresponding to the roller of the bearing is
Figure PCTCN2017103304-appb-000012
and the target matrix corresponding to the cage of the bearing is
Figure PCTCN2017103304-appb-000013
In the above embodiments, the target matrix corresponding to the  OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing are generated by expanding the predetermined target matrix.
In some embodiments, the trained neural network model may include an input layer, a hidden layer and an output layer. Data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix. To facilitate obtaining a diagnosis result, the data of the output layer may include the target matrix corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing that are generated by expanding the predetermined target matrix.
In some embodiments, the output result of the trained neural network model may be compared with the predetermined target matrix to obtain error values between the output result and the target matrix; and it is determined that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
In some embodiments, comparing the output result of the trained neural network model with the predetermined target matrix may include: comparing the output result of the trained neural network model with the plurality of target matrices generated by expansion, that is, comparing the output result of the trained neural network model with the target matrix corresponding to the OR of the bearing, the target matrix corresponding to the IR of the bearing, the target matrix corresponding to the roller of the bearing, and the target matrix corresponding to the cage of the bearing respectively, to obtain the minimum error value with the target matrices generated by expansion, and to further determine that a failure occurs in which part of the bearing.
For example, the output result of the trained neural network model is  a 5×4 matrix, and elements in the first column are within a range from 0.9 to 1. It can be determined that an error between the output result of the trained neural network model and the target matrix corresponding to the OR of the bearing is minimum, which further leads to a conclusion that a failure occurs in the OR of the bearing.
From above, wavelet decomposition is performed to the acquired time domain vibration acceleration signal of the bearing, where both high-frequency part and low-frequency part are considered. The feature parameters are extracted from the frequency domain signals in the N frequency bands respectively and the feature vectors are constructed, the feature matrix is constructed based on the feature vectors and fed to the neural network model, and the failure diagnosis result of the bearing is obtained based on the output result of the neural network model. The determination of the bearing failure does not depend on subjective judgement of a testing person, which may improve accuracy of bearing failure diagnosis.
FIG. 3 is a structural diagram of a bearing failure diagnosis device according to an embodiment. Referring to Figure 3, the bearing failure diagnosis device 30 includes: an acquiring circuitry 301 configured to acquire a vibration acceleration signal of a bearing which is running; a wavelet decomposing circuitry 302 configured to perform wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals; a feature vector constructing circuitry 303 configured to extract feature parameters from the plurality of signals respectively and construct feature vectors; a feature matrix constructing circuitry 304 configured to construct a feature matrix based on the feature vectors; an inputting circuitry 305 configured to feed the feature matrix to a trained neural network model; and a failure diagnosis result obtaining circuitry 306 configured to compare an output result of the trained neural network model with a predetermined target matrix to obtain a failure  diagnosis result of the bearing.
In some embodiments, the acquiring circuitry 301 may be configured to acquire a time domain vibration acceleration signal of the bearing.
In some embodiments, except the acquiring circuitry 301, other circuitries in the bearing failure diagnosis device 30 may be set to be a portion of an on-line system or an off-line system according to practical requirements.
In some embodiments, the wavelet decomposing circuitry 302 may be configured to: select a mother wavelet function, wherein a waveform of the mother wavelet function is relevant to a waveform of the time domain vibration acceleration signal of the bearing; and perform wavelet decomposition to the mother wavelet function to obtain time domain signals in N frequency bands, where N=2j, and j is the number of layers of the wavelet decomposition.
In some embodiments, the feature vector constructing circuitry 303 may be configured to: demodulate the time domain signals in the N frequency bands and perform time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and extract feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and construct feature vectors.
In some embodiments, the feature matrix constructing circuitry 304 may be configured to: construct a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
In some embodiments, a size of the target matrix may be M by K, and K may be the number of parts to be diagnosed in the bearing.
In some embodiments, the bearing failure diagnosis device 30 may further include a denoising circuitry (not shown in Figure 3) configured  to: denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
In some embodiments, the denoising circuitry may be configured to: denoise the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
In some embodiments, the feature parameters may include at least one selected from: energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
In some embodiments, the bearing failure diagnosis device 30 may further include a normalizing circuitry (not shown in Figure 3) configured to: normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
In some embodiments, the trained neural network model may include an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
In some embodiments, the failure diagnosis result obtaining circuitry 306 may be configured to: compare the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and determine that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
In an embodiment, a computer readable storage medium which has computer instructions stored therein is provided, wherein once the computer instructions are executed, the bearing failure diagnosis method provided in the above embodiments is performed.
In an embodiment, an electronic device including a memory and a  processor is provided, wherein the memory has computer instructions stored therein, and once executing the computer instructions, the processor performs the bearing failure diagnosis method provided in the above embodiments.
Those skilled in the art can understand that all of or a portion of the processes in the method provided in the above embodiments can be implemented by related hardware with instruction of computer program. The computer program may be stored in a readable storage medium, such as a Read-Only Memory (ROM) , a Random Access Memory (RAM) , a magnetic disk or an optical disk.
Although the present disclosure has been disclosed above with reference to preferred embodiments thereof, it should be understood that the disclosure is presented by way of example only, and not limitation. Those skilled in the art can modify and vary the embodiments without departing from the spirit and scope of the present disclosure.

Claims (28)

  1. A bearing failure diagnosis method, comprising:
    acquiring a vibration acceleration signal of a bearing which is running;
    performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals;
    extracting feature parameters from the plurality of signals respectively and constructing feature vectors;
    constructing a feature matrix based on the feature vectors;
    feeding the feature matrix to a trained neural network model; and
    comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  2. The method according to claim 1, wherein the failure diagnosis result of the bearing comprises at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
  3. The method according to claim 1 or 2, wherein acquiring a vibration acceleration signal of a bearing comprises:
    acquiring a time domain vibration acceleration signal of the bearing.
  4. The method according to any one of claims 1 to 3, wherein performing wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals comprises:
    selecting a mother wavelet function, wherein a waveform of the mother wavelet function is relevant to a waveform of the time domain vibration acceleration signal of the bearing; and
    performing wavelet decomposition to the mother wavelet function to obtain time domain signals in N frequency bands, where N=2j, and j is the  number of layers of the wavelet decomposition.
  5. The method according to claim 4, wherein extracting feature parameters from the plurality of signals respectively and constructing feature vectors comprises:
    demodulating the time domain signals in the N frequency bands and performing time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and
    extracting feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and constructing feature vectors.
  6. The method according to any one of claims 1 to 5, wherein constructing a feature matrix based on the feature vectors comprises:
    constructing a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
  7. The method according to any one of claims 1 to 6, wherein a size of the target matrix is M by K, and K is the number of parts to be diagnosed in the bearing.
  8. The method according to any one of claims 1 to 7, wherein prior to performing wavelet decomposition to the vibration acceleration signal of the bearing, the method further comprises:
    denoising the vibration acceleration signal of the bearing.
  9. The method according to claim 8, wherein denoising the vibration acceleration signal of the bearing comprises:
    denoising the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
  10. The method according to any one of claims 1 to 9, wherein the feature parameters comprise at least one selected from:
    energy of each of the plurality of signals, a crest factor of each of the  plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  11. The method according to any one of claims 1 to 10, wherein prior to feeding the feature matrix to a trained neural network model, the method further comprises:
    normalizing elements in the feature matrix.
  12. The method according to any one of claims 1 to 11, wherein the trained neural network model comprises an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
  13. The method according to any one of claims 1 to 12, wherein comparing an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing comprises:
    comparing the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and
    determining that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  14. A bearing failure diagnosis device, comprising:
    an acquiring circuitry configured to acquire a vibration acceleration signal of a bearing which is running;
    a wavelet decomposing circuitry configured to perform wavelet decomposition to the vibration acceleration signal of the bearing to obtain a plurality of signals;
    a feature vector constructing circuitry configured to extract feature parameters from the plurality of signals respectively and construct feature vectors;
    a feature matrix constructing circuitry configured to construct a feature matrix based on the feature vectors;
    an inputting circuitry configured to feed the feature matrix to a trained neural network model; and
    a failure diagnosis result obtaining circuitry configured to compare an output result of the trained neural network model with a predetermined target matrix to obtain a failure diagnosis result of the bearing.
  15. The device according to claim 14, wherein the failure diagnosis result of the bearing comprises at least one of the followings: whether a failure occurs in the bearing, a part of the bearing where a failure occurs, and a severity level of a failure.
  16. The device according to claim 14 or 15, wherein the acquiring circuitry is configured to acquire a time domain vibration acceleration signal of the bearing.
  17. The device according to any one of claims 14 to 16, wherein the wavelet decomposing circuitry is configured to:
    select a mother wavelet function, wherein a waveform of the mother wavelet function is relevant to a waveform of the time domain vibration acceleration signal of the bearing; and
    perform wavelet decomposition to the mother wavelet function to obtain time domain signals in N frequency bands, where N=2j, and j is the number of layers of the wavelet decomposition.
  18. The device according to claim 17, wherein the feature vector constructing circuitry is configured to:
    demodulate the time domain signals in the N frequency bands and perform time-frequency transformation to obtain corresponding frequency domain signals in the N frequency bands; and
    extract feature parameters from the corresponding frequency domain signals in the N frequency bands respectively, and construct feature  vectors.
  19. The device according to any one of claims 14 to 18, wherein the feature matrix constructing circuitry is configured to:
    construct a feature matrix based on the feature vectors, where a size of the feature matrix is M by N, and M is the number of the feature vectors.
  20. The device according to any one of claims 14 to 19, wherein a size of the target matrix is M by K, and K is the number of parts to be diagnosed in the bearing.
  21. The device according to any one of claims 14 to 20, further comprising a denoising circuitry configured to:
    denoise the vibration acceleration signal of the bearing before the wavelet decomposing circuitry performs wavelet decomposition to the vibration acceleration signal of the bearing.
  22. The device according to claim 21, wherein the denoising circuitry is configured to:
    denoise the vibration acceleration signal of the bearing by using a wavelet shrinkage denoising method.
  23. The device according to any one of claims 14 to 22, wherein the feature parameters comprise at least one selected from:
    energy of each of the plurality of signals, a crest factor of each of the plurality of signals, standard deviation of each of the plurality of signals, a root mean square of each of the plurality of signals, and 90 percentile of each of the plurality of signals.
  24. The device according to any one of claims 14 to 23, further comprising a normalizing circuitry configured to:
    normalize elements in the feature matrix before the inputting circuitry feeds the feature matrix to the trained neural network model.
  25. The method according to any one of claims 14 to 24, wherein the  trained neural network model comprises an input layer, a hidden layer and an output layer, data of the input layer is the feature matrix, and data of the output layer is the predetermined target matrix.
  26. The method according to any one of claims 14 to 25, wherein the failure diagnosis result obtaining circuitry is configured to:
    compare the output result of the trained neural network model with the predetermined target matrix to obtain error values between the output result and the target matrix; and
    determine that a failure occurs in a part of the bearing which corresponds to the minimum error value among the obtained error values.
  27. A computer readable storage medium which has computer instructions stored therein, wherein once the computer instructions are executed, the method according to any one of claims 1 to 13 is performed.
  28. An electronic device comprising a memory and a processor, wherein the memory has computer instructions stored therein, and once executing the computer instructions, the processor performs the method according to any one of claims 1 to 13.
PCT/CN2017/103304 2017-09-26 2017-09-26 Bearing failure diagnosis method and device, readable storage medium, and electronic device WO2019061006A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780094590.0A CN111094927A (en) 2017-09-26 2017-09-26 Bearing fault diagnosis method and device, readable storage medium and electronic equipment
PCT/CN2017/103304 WO2019061006A1 (en) 2017-09-26 2017-09-26 Bearing failure diagnosis method and device, readable storage medium, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103304 WO2019061006A1 (en) 2017-09-26 2017-09-26 Bearing failure diagnosis method and device, readable storage medium, and electronic device

Publications (1)

Publication Number Publication Date
WO2019061006A1 true WO2019061006A1 (en) 2019-04-04

Family

ID=65900314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103304 WO2019061006A1 (en) 2017-09-26 2017-09-26 Bearing failure diagnosis method and device, readable storage medium, and electronic device

Country Status (2)

Country Link
CN (1) CN111094927A (en)
WO (1) WO2019061006A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046476A (en) * 2019-06-05 2019-07-23 厦门大学 The ternary two of rolling bearing fault is into the sparse diagnostic method of Fractal Wavelet
CN110146156A (en) * 2019-06-27 2019-08-20 南昌航空大学 A kind of denoising method of aircraft engine rotor system fault vibration signal
CN110188485A (en) * 2019-06-03 2019-08-30 安徽理工大学 A kind of rolling bearing dynamic property degradation trend adaptive acquiring method
CN110222390A (en) * 2019-05-24 2019-09-10 武汉工程大学 Gear crack recognition methods based on wavelet neural network
CN110672323A (en) * 2019-09-02 2020-01-10 佛山科学技术学院 Bearing health state assessment method and device based on neural network
CN110781854A (en) * 2019-11-04 2020-02-11 上海联影智能医疗科技有限公司 Training method of fault detection model and fault detection method of electromechanical equipment
CN110795843A (en) * 2019-10-24 2020-02-14 北京建筑大学 Method and device for identifying faults of rolling bearing
CN110826607A (en) * 2019-10-24 2020-02-21 北京建筑大学 Fault detection method and device for rolling bearing
CN110866519A (en) * 2019-12-24 2020-03-06 安徽工业大学 Rolling bearing fault diagnosis method based on Fourier decomposition and multi-scale arrangement entropy partial mean value
CN110991564A (en) * 2019-12-24 2020-04-10 安徽工业大学 Variable working condition bearing fault diagnosis method based on multi-scale dispersion entropy deviation mean value and nonlinear mode decomposition
CN111222495A (en) * 2020-02-17 2020-06-02 济南大学 Rolling bearing fault diagnosis method based on wavelet decomposition and improved Manhattan distance
CN111275024A (en) * 2020-03-22 2020-06-12 东北电力大学 Fault diagnosis method for rolling bearing of variable-working-condition fan driven by limited data containing noise label
CN111325159A (en) * 2020-02-25 2020-06-23 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Fault diagnosis method and device, computer equipment and storage medium
CN111625762A (en) * 2020-04-29 2020-09-04 粤电集团贵州有限公司 Fan fault diagnosis method
CN111797789A (en) * 2020-07-10 2020-10-20 合肥工业大学 Time-frequency ridge line extraction method and device for fault feature interpretation
CN111832353A (en) * 2019-04-19 2020-10-27 中国科学院沈阳自动化研究所 Steam turbine rotor fault diagnosis method based on EMD and BA optimization SVM
CN111914703A (en) * 2020-07-20 2020-11-10 哈尔滨工业大学 Mechanical rotating part fault diagnosis method based on wavelet transformation and transfer learning GoogLeNet
CN112257530A (en) * 2020-10-13 2021-01-22 西安电子科技大学 Rolling bearing fault diagnosis method based on blind signal separation and support vector machine
CN112284735A (en) * 2020-10-21 2021-01-29 兰州理工大学 Multi-sensor rolling bearing fault diagnosis based on one-dimensional convolution and dynamic routing
CN112304611A (en) * 2020-09-14 2021-02-02 江苏大学 Deep learning-based bearing fault diagnosis method
CN112329650A (en) * 2020-11-09 2021-02-05 中国兵器工业集团第二一四研究所苏州研发中心 Accelerometer fault diagnosis method based on convolutional neural network
CN112465052A (en) * 2020-12-07 2021-03-09 重庆忽米网络科技有限公司 Equipment fault diagnosis report generation method and system based on convolutional neural network
CN112561306A (en) * 2020-12-11 2021-03-26 领伟创新智能系统(浙江)有限公司 Rolling bearing health state evaluation method based on Hankel matrix
CN112595515A (en) * 2020-12-04 2021-04-02 中国船舶工业综合技术经济研究院 Power shafting bearing fault detection method and system
CN112629863A (en) * 2020-12-31 2021-04-09 苏州大学 Bearing fault diagnosis method for dynamic joint distribution alignment network under variable working conditions
CN112766219A (en) * 2021-01-31 2021-05-07 石家庄铁道大学 Bearing health assessment method and device based on depth separable convolution self-encoder
CN112857805A (en) * 2021-03-13 2021-05-28 宁波大学科学技术学院 Rolling bearing fault detection method based on graph similarity feature extraction
CN113532835A (en) * 2021-08-18 2021-10-22 中国国家铁路集团有限公司 Railway contact net hard spot diagnosis method and device
CN113821888A (en) * 2021-09-23 2021-12-21 西安热工研究院有限公司 Vibration data fault diagnosis method based on periodic impact feature extraction and echo state network
EP3929554A1 (en) * 2020-06-26 2021-12-29 Siemens Aktiengesellschaft Improved fault detection in machines using ai
CN114757060A (en) * 2022-06-15 2022-07-15 石家庄铁道大学 Bearing fault diagnosis method based on morphological function construction scale space
CN115081491A (en) * 2022-08-18 2022-09-20 深圳市乐闵科技有限公司 Running state fault diagnosis method for sanitary towel production equipment
CN116183231A (en) * 2023-04-28 2023-05-30 安徽大学 Bearing fault diagnosis method based on digital twin
CN116296377A (en) * 2023-05-10 2023-06-23 北京奔驰汽车有限公司 Industrial robot RV reducer fault prediction method and device
CN116541713A (en) * 2023-06-27 2023-08-04 清华大学 Bearing fault diagnosis model training method based on local time-frequency characteristic transfer learning

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111680665B (en) * 2020-06-28 2023-06-20 湖南大学 Motor mechanical fault diagnosis method adopting current signals based on data driving
CN112067289A (en) * 2020-08-21 2020-12-11 天津电气科学研究院有限公司 Motor shaft and transmission shaft abnormal vibration early warning algorithm based on neural network
CN112146880B (en) * 2020-09-17 2022-03-29 天津大学 Intelligent diagnosis method for internal structure faults of rolling bearing at different rotating speeds
CN113642433B (en) * 2021-07-30 2024-04-02 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 Method, device, terminal equipment and medium for determining working state of elevator
CN113705096A (en) * 2021-08-27 2021-11-26 北京博华信智科技股份有限公司 Small sample deep learning-based impact fault diagnosis
CN114088401A (en) * 2021-11-03 2022-02-25 宁波坤博测控科技有限公司 Fault analysis method and device for rolling bearing of wind driven generator
CN114104224B (en) * 2021-11-15 2023-05-16 中国船舶集团有限公司第七一一研究所 Device management method, device, electronic device and computer readable storage medium
CN114659785A (en) * 2021-12-27 2022-06-24 三一重能股份有限公司 Fault detection method and device for transmission chain of wind driven generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292288A (en) * 2007-05-24 2008-12-04 Mitsubishi Electric Engineering Co Ltd Bearing diagnostic device for reduction gear
KR20120121621A (en) * 2011-04-27 2012-11-06 경희대학교 산학협력단 Diagnostic apparatus for vehicle, diagnostic method for vehicle and recording medium of the same diagnostic method
CN102829974A (en) * 2012-08-07 2012-12-19 北京交通大学 LMD (local mean decomposition) and PCA (principal component analysis) based rolling bearing state identification method
CN103076177A (en) * 2013-01-16 2013-05-01 昆明理工大学 Rolling bearing fault detection method based on vibration detection
CN103914617A (en) * 2014-03-25 2014-07-09 北京交通大学 Fault diagnosis method for subway vehicle bogie bearings
CN104807639A (en) * 2015-04-23 2015-07-29 广西大学 Fault diagnosis method and device for rolling bearing of running gear of locomotive
CN106650071A (en) * 2016-12-12 2017-05-10 中国航空工业集团公司上海航空测控技术研究所 Intelligent fault diagnosis method for rolling bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292288A (en) * 2007-05-24 2008-12-04 Mitsubishi Electric Engineering Co Ltd Bearing diagnostic device for reduction gear
KR20120121621A (en) * 2011-04-27 2012-11-06 경희대학교 산학협력단 Diagnostic apparatus for vehicle, diagnostic method for vehicle and recording medium of the same diagnostic method
CN102829974A (en) * 2012-08-07 2012-12-19 北京交通大学 LMD (local mean decomposition) and PCA (principal component analysis) based rolling bearing state identification method
CN103076177A (en) * 2013-01-16 2013-05-01 昆明理工大学 Rolling bearing fault detection method based on vibration detection
CN103914617A (en) * 2014-03-25 2014-07-09 北京交通大学 Fault diagnosis method for subway vehicle bogie bearings
CN104807639A (en) * 2015-04-23 2015-07-29 广西大学 Fault diagnosis method and device for rolling bearing of running gear of locomotive
CN106650071A (en) * 2016-12-12 2017-05-10 中国航空工业集团公司上海航空测控技术研究所 Intelligent fault diagnosis method for rolling bearing

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111832353A (en) * 2019-04-19 2020-10-27 中国科学院沈阳自动化研究所 Steam turbine rotor fault diagnosis method based on EMD and BA optimization SVM
CN111832353B (en) * 2019-04-19 2023-09-05 中国科学院沈阳自动化研究所 Steam turbine rotor fault diagnosis method based on EMD and BA optimization SVM
CN110222390A (en) * 2019-05-24 2019-09-10 武汉工程大学 Gear crack recognition methods based on wavelet neural network
CN110188485A (en) * 2019-06-03 2019-08-30 安徽理工大学 A kind of rolling bearing dynamic property degradation trend adaptive acquiring method
CN110188485B (en) * 2019-06-03 2020-08-25 安徽理工大学 Self-adaptive obtaining method for dynamic performance degradation trend of rolling bearing
CN110046476A (en) * 2019-06-05 2019-07-23 厦门大学 The ternary two of rolling bearing fault is into the sparse diagnostic method of Fractal Wavelet
CN110146156A (en) * 2019-06-27 2019-08-20 南昌航空大学 A kind of denoising method of aircraft engine rotor system fault vibration signal
CN110146156B (en) * 2019-06-27 2021-02-09 南昌航空大学 Denoising method for fault vibration signal of aircraft engine rotor system
CN110672323A (en) * 2019-09-02 2020-01-10 佛山科学技术学院 Bearing health state assessment method and device based on neural network
CN110795843B (en) * 2019-10-24 2024-03-29 北京建筑大学 Method and device for identifying faults of rolling bearing
CN110826607A (en) * 2019-10-24 2020-02-21 北京建筑大学 Fault detection method and device for rolling bearing
CN110795843A (en) * 2019-10-24 2020-02-14 北京建筑大学 Method and device for identifying faults of rolling bearing
CN110781854A (en) * 2019-11-04 2020-02-11 上海联影智能医疗科技有限公司 Training method of fault detection model and fault detection method of electromechanical equipment
CN110991564A (en) * 2019-12-24 2020-04-10 安徽工业大学 Variable working condition bearing fault diagnosis method based on multi-scale dispersion entropy deviation mean value and nonlinear mode decomposition
CN110866519A (en) * 2019-12-24 2020-03-06 安徽工业大学 Rolling bearing fault diagnosis method based on Fourier decomposition and multi-scale arrangement entropy partial mean value
CN110991564B (en) * 2019-12-24 2023-05-26 安徽工业大学 Variable working condition bearing fault diagnosis method based on multiscale dispersion entropy deviation mean value and nonlinear mode decomposition
CN110866519B (en) * 2019-12-24 2023-04-28 安徽工业大学 Rolling bearing fault diagnosis method based on Fourier decomposition and multiscale permutation entropy deviation value
CN111222495A (en) * 2020-02-17 2020-06-02 济南大学 Rolling bearing fault diagnosis method based on wavelet decomposition and improved Manhattan distance
CN111222495B (en) * 2020-02-17 2023-05-12 济南大学 Rolling bearing fault diagnosis method based on wavelet decomposition and improved Manhattan distance
CN111325159A (en) * 2020-02-25 2020-06-23 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Fault diagnosis method and device, computer equipment and storage medium
CN111325159B (en) * 2020-02-25 2023-09-08 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Fault diagnosis method, device, computer equipment and storage medium
CN111275024A (en) * 2020-03-22 2020-06-12 东北电力大学 Fault diagnosis method for rolling bearing of variable-working-condition fan driven by limited data containing noise label
CN111275024B (en) * 2020-03-22 2023-03-21 东北电力大学 Fault diagnosis method for rolling bearing of variable-working-condition fan driven by limited data containing noise label
CN111625762A (en) * 2020-04-29 2020-09-04 粤电集团贵州有限公司 Fan fault diagnosis method
EP3929554A1 (en) * 2020-06-26 2021-12-29 Siemens Aktiengesellschaft Improved fault detection in machines using ai
CN111797789B (en) * 2020-07-10 2024-02-06 合肥工业大学 Time-frequency ridge line extraction method and device for fault feature interpretation
CN111797789A (en) * 2020-07-10 2020-10-20 合肥工业大学 Time-frequency ridge line extraction method and device for fault feature interpretation
CN111914703A (en) * 2020-07-20 2020-11-10 哈尔滨工业大学 Mechanical rotating part fault diagnosis method based on wavelet transformation and transfer learning GoogLeNet
CN112304611A (en) * 2020-09-14 2021-02-02 江苏大学 Deep learning-based bearing fault diagnosis method
CN112257530B (en) * 2020-10-13 2023-10-20 西安电子科技大学 Rolling bearing fault diagnosis method based on blind signal separation and support vector machine
CN112257530A (en) * 2020-10-13 2021-01-22 西安电子科技大学 Rolling bearing fault diagnosis method based on blind signal separation and support vector machine
CN112284735A (en) * 2020-10-21 2021-01-29 兰州理工大学 Multi-sensor rolling bearing fault diagnosis based on one-dimensional convolution and dynamic routing
CN112329650A (en) * 2020-11-09 2021-02-05 中国兵器工业集团第二一四研究所苏州研发中心 Accelerometer fault diagnosis method based on convolutional neural network
CN112595515A (en) * 2020-12-04 2021-04-02 中国船舶工业综合技术经济研究院 Power shafting bearing fault detection method and system
CN112465052A (en) * 2020-12-07 2021-03-09 重庆忽米网络科技有限公司 Equipment fault diagnosis report generation method and system based on convolutional neural network
CN112465052B (en) * 2020-12-07 2023-04-07 重庆忽米网络科技有限公司 Equipment fault diagnosis report generation method and system based on convolutional neural network
CN112561306B (en) * 2020-12-11 2023-12-08 领伟创新智能系统(浙江)有限公司 Rolling bearing health state evaluation method based on Hankel matrix
CN112561306A (en) * 2020-12-11 2021-03-26 领伟创新智能系统(浙江)有限公司 Rolling bearing health state evaluation method based on Hankel matrix
CN112629863B (en) * 2020-12-31 2022-03-01 苏州大学 Bearing fault diagnosis method for dynamic joint distribution alignment network under variable working conditions
CN112629863A (en) * 2020-12-31 2021-04-09 苏州大学 Bearing fault diagnosis method for dynamic joint distribution alignment network under variable working conditions
CN112766219A (en) * 2021-01-31 2021-05-07 石家庄铁道大学 Bearing health assessment method and device based on depth separable convolution self-encoder
CN112857805A (en) * 2021-03-13 2021-05-28 宁波大学科学技术学院 Rolling bearing fault detection method based on graph similarity feature extraction
CN112857805B (en) * 2021-03-13 2022-05-31 宁波大学科学技术学院 Rolling bearing fault detection method based on graph similarity feature extraction
CN113532835A (en) * 2021-08-18 2021-10-22 中国国家铁路集团有限公司 Railway contact net hard spot diagnosis method and device
CN113821888A (en) * 2021-09-23 2021-12-21 西安热工研究院有限公司 Vibration data fault diagnosis method based on periodic impact feature extraction and echo state network
CN113821888B (en) * 2021-09-23 2024-02-27 西安热工研究院有限公司 Vibration data fault diagnosis method based on periodic impact feature extraction and echo state network
CN114757060A (en) * 2022-06-15 2022-07-15 石家庄铁道大学 Bearing fault diagnosis method based on morphological function construction scale space
CN115081491A (en) * 2022-08-18 2022-09-20 深圳市乐闵科技有限公司 Running state fault diagnosis method for sanitary towel production equipment
CN116183231A (en) * 2023-04-28 2023-05-30 安徽大学 Bearing fault diagnosis method based on digital twin
CN116296377A (en) * 2023-05-10 2023-06-23 北京奔驰汽车有限公司 Industrial robot RV reducer fault prediction method and device
CN116296377B (en) * 2023-05-10 2023-08-01 北京奔驰汽车有限公司 Industrial robot RV reducer fault prediction method and device
CN116541713A (en) * 2023-06-27 2023-08-04 清华大学 Bearing fault diagnosis model training method based on local time-frequency characteristic transfer learning
CN116541713B (en) * 2023-06-27 2023-12-12 清华大学 Bearing fault diagnosis model training method based on local time-frequency characteristic transfer learning

Also Published As

Publication number Publication date
CN111094927A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2019061006A1 (en) Bearing failure diagnosis method and device, readable storage medium, and electronic device
Lee et al. Convolutional neural net and bearing fault analysis
CN107356432B (en) Fault Diagnosis of Roller Bearings based on frequency domain window experience small echo resonance and demodulation
Cong et al. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis
CN110795843B (en) Method and device for identifying faults of rolling bearing
Han et al. The fault feature extraction of rolling bearing based on EMD and difference spectrum of singular value
CN110987434A (en) Rolling bearing early fault diagnosis method based on denoising technology
CN114636556A (en) Method for judging bearing fault based on CEEMDAN decomposition, electronic device and storage medium
Trendafilova An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition
Yi et al. Mechanical compound faults extraction based on improved frequency domain blind deconvolution algorithm
CN104596766B (en) Early fault determining method and device for bearing
CN113375939B (en) Mechanical part fault diagnosis method based on SVD and VMD
CN107957566A (en) Magnetic resonance depth measurement method for extracting signal based on frequency selection singular spectrum analysis
CN104462803B (en) A kind of autonomous type underwater robot fault identification method based on small echo approximate entropy
CN103940597A (en) Method for detecting mechanical faults based on generalized extremum morphological filtering
Shuuji et al. Low-speed bearing fault diagnosis based on improved statistical filtering and convolutional neural network
CN114486263B (en) Noise reduction demodulation method for vibration signal of rolling bearing of rotary machine
CN107563403B (en) Working condition identification method for high-speed train operation
Pirra et al. PCA algorithm for detection, localisation and evolution of damages in gearbox bearings
CN113155462B (en) Bearing fault diagnosis method based on octyl geometric mode decomposition and graph structure enhanced dynamic time warping
CN107490477B (en) The Fault Diagnosis of Gear Case method compared based on frequency spectrum kernel density function correlation
CN109612730A (en) A kind of rolling bearing fault localization method based on prewhitening analysis
Xu et al. Rolling bearing fault feature extraction via improved SSD and a singular-value energy autocorrelation coefficient spectrum
CN116399592A (en) Bearing fault diagnosis method based on channel attention dual-path feature extraction
Hu et al. Incipient mechanical fault detection based on multifractal and MTS methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927158

Country of ref document: EP

Kind code of ref document: A1